Boston, Clare M., Lukas, Sven and Carr, Simon ORCID: https://orcid.org/0000-0003-4487-3551 (2015) A Younger Dryas plateau icefield in the Monadhliath, Scotland, and implications for regional palaeoclimate. Quaternary Science Reviews, 108 . pp. 139-162.
Preview |
PDF
- Accepted Version
Available under License CC BY-NC-ND Download (803kB) | Preview |
Abstract
A record of Younger Dryas glaciation in Scotland is well established. However, the role of the Monadhliath, a significant plateau area extending over 840 km2 in central Scotland, has never been investigated systematically. We present the first systematic glacial geomorphological mapping across the whole region, which has led to the identification of hitherto-unrecorded glacial and associated landforms. The spatial distribution of these landforms indicates that the last phase of glaciation in the area was that of a local plateau icefield. In addition, a clear morphostratigraphical signature provides a strong indication that the icefield dates to the Younger Dryas (12.9–11.7 ka), which is supported by numerical ages in the southeast of the study area. Based on the geomorphological evidence and 2D glacier surface profile modelling, a 280 km2 icefield is reconstructed. A novel approach is introduced to quantify plateau icefield thickness for equilibrium line altitude (ELA) and palaeoprecipitation calculations, resulting in greater overall data confidence compared to traditional reconstruction methods. The ELA for the whole icefield is calculated to be 714 ± 25 m, whilst the ELAs of individual outlet glaciers range from 560 m in the west to 816 m in the east, demonstrating a significant W–E precipitation gradient across the region during the Younger Dryas. These ELAs compare well with those calculated for Younger Dryas ice masses reconstructed in neighbouring regions and are in good agreement with overall precipitation patterns suggested for Scotland during this time. Whilst the total amount of precipitation calculated from these ELAs is highly dependent on the method used, irrespective of this, the study suggests a more arid Younger Dryas climate in the region compared to the present day.
Item Type: | Article |
---|---|
Journal / Publication Title: | Quaternary Science Reviews |
Publisher: | Elsevier |
ISSN: | 1873-457X |
Departments: | Academic Departments > Science, Natural Resources & Outdoor Studies (SNROS) > STEM |
Depositing User: | Anna Lupton |
Date Deposited: | 15 Mar 2019 13:35 |
Last Modified: | 12 Jan 2024 13:45 |
URI: | https://insight.cumbria.ac.uk/id/eprint/4553 |
Downloads
Downloads per month over past year
Downloads each year