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ABSTRACT
Tropical forests harbour the majority of tree species on the planet but are increasingly subjected to deforestation and human-
driven disturbances. Understanding how human modifications impact various facets of diversity—i.e., taxonomic, functional, 
and phylogenetic—is crucial, as their responses can differ significantly. Additionally, the influence of species dominance and 
individual size class on the recovery trajectories of future forests is often overlooked. Here, we address these knowledge gaps by 
comparing the taxonomic, functional, and phylogenetic diversities of large (≥ 10 cm DBH) and small (≤ 2 cm DBH < 10 cm DBH) 
trees in undisturbed and human-modified Amazonian forests, considering different weights of species dominance using Hill 
Numbers. We sampled 25,313 large and 30,070 small trees across 215 forest plots distributed in two different regions of Eastern 
Amazonia and representing a range of human modification (i.e., undisturbed, logged, logged-and-burned, and secondary for-
ests). Our findings indicate that human modifications significantly reduce the taxonomic, functional, and phylogenetic diver-
sities of both large and small trees, regardless of dominance weightings. Secondary forests exhibited the lowest alpha-diversity 
and were the most dissimilar to undisturbed forests, while logged-and-burned forests were as distinct from undisturbed forests 
as they were from secondary forests across all diversity facets. Taxonomic and functional diversity showed similar sensitivity to 
human modification, while phylogenetic diversity was the least sensitive in alpha-diversity but equally sensitive in community 
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composition analyses. Overall, we showed that human modification explained 55% of the effect size variation found in alpha-
diversity and 42% of that found in community composition, with diversity facet, tree size and dominance weighting explaining 
either ≤ 5%. Given the deleterious impacts of human modification on the diversity of tropical forests, it is imperative to protect 
remaining undisturbed areas from selective logging and wildfires. Nevertheless, even disturbed primary forests still harbour 
more taxonomic, functional and phylogenetic diversity than secondary forests.

1   |   Introduction

Tropical rainforests harbour the majority of the world's biodi-
versity (Barlow et  al.  2018; Fine and Ree  2006), making their 
conservation pivotal for slowing down the current biodiversity 
crisis (Díaz et al. 2019). However, in the 21st century, forest loss 
has been higher in the tropics than anywhere else in the world 
(Harris et al. 2021). Forest loss is not the only threat to tropical 
forests—human disturbances, such as selective logging and fires 
are pervasive (Pearson et al. 2017). Across Amazonia, for exam-
ple, the area affected by these disturbances every year is greater 
than that deforested (Lapola et  al.  2023). Currently, human-
modified Amazonian forests, which include both disturbed pri-
mary forests and secondary forests (i.e., those growing in areas 
that have been completely deforested before), occupy at least 1.27 
million km2, representing 23% of the remaining forests in the re-
gion (Bullock et al. 2020; Smith et al. 2021). Despite undisturbed 
primary forests being irreplaceable for sustaining biodiversity 
(Gibson et  al.  2011), holding richer communities than those 
found in human-modified forests, the role of the latter is becom-
ing increasingly important as, in many landscapes, they are the 
last stronghold of a vanishing ecosystem (Gaveau et  al.  2016; 
Guedes Pinto et al. 2023; Malhi et al. 2014; Ribeiro et al. 2009).

Changes in taxonomic diversity in human-modified tropical 
forests are well documented, with studies showing local and re-
gional extinctions of several taxa, from birds and mammals to 
insects and plants (Barlow et al. 2007; López-Bedoya et al. 2022; 
Martin et al. 2013). Local extinctions of species that are depen-
dent on undisturbed forests are usually followed by a sharp in-
crease in pioneer or generalist species, resulting in significantly 
different compositions between pre- and post-disturbance 
communities (Filgueiras et al. 2021; Lohbeck et al. 2016; Pinho 
et al. 2025). For example, burned Amazonian forests, when com-
pared to undisturbed ones, experienced an increase in abun-
dance of 1680% of a single pioneer species (da Silva et al. 2020). 
Human modifications also bring about changes in the distribu-
tion of key functional traits (Both et al. 2019; Hogan et al. 2018), 
affecting forests' functional diversity (Ernst et al. 2006; Hawes 
et al. 2020; Mestre et al. 2020) and impacting a number of eco-
system functions, such as seed dispersal and the fixation of soil 
nitrogen (Reiss et al. 2009; Wong et al. 2020). Human modifica-
tions can also impact the phylogenetic composition of affected 
forests if the resulting species turnover generates phylogenetic 
clustering—i.e., communities with less divergent evolutionary 
histories (Ding et al. 2012).

Although these three facets of diversity (i.e., taxonomic, func-
tional, and phylogenetic) can be affected by human modification, 
understanding their different responses and sensitivities is import-
ant as responses are not always congruent (Devictor et al. 2010; 
Mazel et al. 2018) and they provide different and complementary 

information on forests' resilience (Aguirre-Gutiérrez et al. 2020; 
Winter et al. 2013). For instance, while taxonomic diversity (TD) 
will measure and indicate the identity and richness of species, 
functional diversity (FD) will reflect the diversity of a multitude 
of traits (e.g., morphological, chemical., reproductive) that have 
a closer linkage with ecosystem functioning, with higher FD in-
dicating higher functional stability (Cadotte et al. 2011). On the 
other hand, phylogenetic diversity (PD) captures the relationship 
of biogeographic histories and lineage diversity with community 
structure and will indicate the ability of a community to adapt 
to environmental changes (Cadotte et al. 2012; Forest et al. 2007; 
Srivastava et al. 2012). By analysing these three facets together, 
we can create a more holistic understanding of communities in 
human-modified ecosystems, possibly uncovering patterns that 
would not be detected if only taxonomic diversity was evaluated. 
This was the case, for example, for arboreal ants in New Guinea, 
which presented higher taxonomic diversity in primary forests, 
but higher functional diversity in secondary ones, likely reflect-
ing high competition levels among species colonizing this new 
habitat (Hoenle et al. 2024).

Despite the ubiquity of human-modified rainforests across the 
tropics, there is a paucity of research investigating how these 
modifications affect all three diversity facets e.g., (López-
Baucells et al. 2022; Rurangwa et al. 2021). Furthermore, the 
majority of studies looking at the impacts of human modifica-
tion on diversity focus on occurrence (presence/absence) and 
do not address the changes in species dominance, which are so 
prominent in human-modified forests (Filgueiras et al. 2021). 
Finally, for indeterminate growers (i.e., organisms that grow 
throughout their lives), such as plants, the different size 
classes of a community are seldom analysed separately, with 
most tropical forest studies focusing only on large trees—i.e., 
individuals ≥ 10 cm diameter at breast height (DBH) (e.g., 
Aguirre-Gutiérrez et al. 2020; Esquivel-Muelbert et al. 2019; 
Marca-Zevallos et  al.  2022). However, small trees—i.e., in-
dividuals < 10 cm DBH—are known to respond faster to 
human modification than large ones (Krishnadas et al. 2019; 
Rocha-Santos et al.  2023; Slik et al.  2002), due to lagged re-
cruitment i.e., a tree may take centuries until it recruits into 
the 10 cm size class (Vieira et  al.  2005). This could possibly 
result in significant differences in the taxonomic, functional 
and phylogenetic composition of different size classes, which 
could potentially be reflected in the future of the forest stand 
(Berenguer et al. 2018).

Here, we address these knowledge gaps by comparing the taxo-
nomic, functional and phylogenetic diversities of large and small 
trees in undisturbed and human-modified Amazonian forests, 
while considering different metrics of species dominance (i.e., 
Hill Numbers, with different weights attributed to rare, com-
mon, and dominant species—see Methods for more details). We 
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use data from 215 plots distributed across undisturbed, logged, 
logged-and-burned, and secondary forests in two Amazonian 
regions where human modification is prevalent across the land-
scape. Our sampling encompassed 25,313 large and 30,070 small 
trees, which we combined with data on 20 functional traits, 14 of 
which were sampled in situ. Specifically, we ask: (Q1) How does 
human modification affect the diversity of large and small trees? 
(Q2) Which facets of diversity and which tree size class are most 
sensitive to human modification? We address these questions by 
focusing on the alpha-diversity and community composition of 
the sampled plots.

2   |   Methods

2.1   |   Study Areas

We sampled two regions of Eastern Amazonia—Paragominas and 
Santarém (the latter including also the municipalities of Belterra 
and Mojuí dos Campos; Figure  1). In each region, we selected 
18 third-order catchments with an average of 5000 ha each (see 
Gardner et al. 2013 for more details). In each catchment, we estab-
lished plots (250 × 10 m) in evergreen non-flooded forests, located 
at least 100 m away from forest edges. Plots were separated by a 
minimum distance of 1500 m to avoid spatial autocorrelation. The 
number of plots per catchment varied according to the proportion 
of forest cover present—i.e., catchments with more forest had more 
plots than those with less forest, maintaining a standard density 
of one plot per 400 ha. In total, we sampled 215 plots distributed 
across four forest classes: undisturbed, logged, logged-and-burned, 
and secondary forests (Figure 1, Table S1). Each forest class was 
determined using a combination of on-the-ground assessments of 
past human modification (e.g., the presence of charcoal or logged 
stumps) with the visual analysis of a chronosequence of Landsat 
images covering 22 years in the case of Paragominas and 20 years 
for Santarém (more details in Berenguer et al. 2014).

2.2   |   Large and Small Tree Sampling

Across all 215 plots, we sampled all trees ≥ 10 cm diame-
ter at breast height (DBH). In each plot, we set five subplots 
(20 × 5 m) in which we sampled all trees ≥ 2 cm DBH < 10 cm 
DBH (Figure  1). From the 55,383 sampled individuals, 475 
could not be identified to species level and were excluded from 
all analyses.

2.3   |   Functional Trait Sampling

We compiled data from 20 functional traits (Table  S2)—14 of 
which were sampled in situ in Santarém and six from data pub-
lished in the literature. In a subsample of our 215 plots (n = 21), 
we sampled bark thickness in all individuals ≥ 10 cm DBH, to-
taling 2470 trees from 426 species (see Berenguer et  al.  2021 
for more information). Leaf area, leaf dry matter content, leaf 
thickness, specific leaf area and nine chemical traits (i.e., C, Ca, 
Fe, K, Mg, Mn, N, P, Zn) were sampled in 20 plots. For these 
traits, sampling focused only on the species that contributed to 
80% of the basal area of each plot (more details in Berenguer 
et al. 2021). From each sampled individual, a branch that was 

fully exposed to the sun was collected. In total, these traits were 
sampled in 1325 individuals from 260 species. Dispersal traits 
(i.e., seed width, fruit type, and dispersal mode) were compiled 
from herbarium samples combined with several sources in 
the literature (see Hawes et al. 2020 for a complete list of data 
sources). Potential tree size and water deficit affiliation were de-
rived from data from > 500 plots distributed across Amazonia 
(the sampling approach is described in Esquivel-Muelbert 
et al. 2019). Finally, wood density was compiled from the Wood 
Density Database (Zanne et al. 2009), filtering by tropical South 
America. When a given trait was available for multiple individ-
uals of the same species, we averaged it at the species level. For 
species lacking any trait information, we attributed genus-level 
data; when that was not possible, we assigned family-level data 
(Tables S3 and S4). We excluded from these analyses five indi-
viduals from three species, which only had data for a single trait. 
Finally, we performed pairwise correlation analysis between all 
continuous traits using the function “cor” in R software. None of 
the trait pairs had a strong correlation (i.e., all r < 0.7; Figure S1).

2.4   |   Phylogenetic Tree Construction

We constructed a single phylogenetic tree for all our dataset (i.e., 
including all species from both sampled regions, Figure S2). For 
this, we used the R20100701 ultrametric tree from Phylomatic 
(Webb and Donoghue 2005), where the branch lengths were ad-
justed using the default ages file (Wikström et al. 2001). Based 
on the resulting tree we calculated the mean pairwise phyloge-
netic distance (Webb et al. 2008), using a null model based on 
frequency by randomizing the within-species community abun-
dance. We excluded 500 individuals of 27 species that were not 
present in the phylogenetic tree from the analyses of this study.

2.5   |   Data Analysis

2.5.1   |   Alpha-Diversity and Differences in Community 
Composition Calculation

We used the Hill numbers approach to calculate alpha-diversity 
and differences in community composition (Chao et al. 2014). 
Hill numbers provide a framework where biological diversity 
is measured as the effective number of taxonomic, functional 
and phylogenetic entities, which, in turn, can be weighted by 
some measure of relative importance, such as abundance (Chao 
et  al.  2014). The parameter q determines the weight we want 
to give to relative abundances in an assemblage. With q = 0, the 
relative abundance of each species is not considered, and for 
instance, the effective number of taxonomic entities equals the 
number of species (i.e., the same as species richness). With q = 1 
the species are weighted by their frequencies, and Hill numbers 
are the effective number of common species in the assemblage, 
a conversion from and thus theoretically similar to the Shannon 
Index. Finally, with q = 2, very abundant species receive a higher 
weight and Hill numbers are the effective number of dominant 
species in a given assemblage, a conversion from and thus theo-
retically similar to the Gini-Simpson index.

To calculate alpha-diversity for the three diversity facets 
(i.e., taxonomic, functional, and phylogenetic) we used the 
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“iNEXT.3D” package in R (Chao et al. 2021), with three differ-
ent dominance weightings (i.e., q0, q1 and q2) to obtain alpha 
taxonomic, functional and phylogenetic diversities for each of 
the sampled plots, for both large and small trees. For commu-
nity composition, we calculated a dissimilarity matrix for each 
diversity facet, for each dominance weighting, for large and 
small trees and for each sampling region separately. For this, we 
used the “iNEXT.beta3D” package in R (Chao et  al.  2023). In 
both cases (i.e., alpha-diversity and community composition), 

we used matrices of species × plots with species abundances in 
cells to calculate taxonomic alpha-diversity and differences in 
community composition. For functional diversity, we first used 
values for the 20 functional traits of all species to construct spe-
cies functional distance matrices based on the Gower distance, 
using the package “FD” (Laliberté et al. 2023). We did this sep-
arately for species of large and small trees and for Paragominas 
and Santarém. We used these distance matrices along with spe-
cies × plots matrices to calculate functional diversity (Figure S2). 

FIGURE 1    |    Sampling design. Map of the study area in the municipalities of Santarém and Paragominas (in black) in the state of Pará (grey con-
tour) in the Brazilian Amazon (black contour). The sampling of large trees (i.e., ≥ 10 cm DBH) was conducted in 215 plots of 10 × 250 m. Small trees 
(i.e., 2–9.9 cm DBH) were sampled in five 20 × 5 m subplots within each plot. We obtained the alpha diversity and the dissimilarity in species compo-
sition in four forest classes, being 1—Undisturbed, 2—Logged and 3—Logged-and-burned primary forests, and 4—Secondary forests. For each plot, 
we used the Hill Numbers approach to calculate three facets of diversity (Taxonomic—TD, Functional—FD, and Phylogenetic—PD diversities), and 
used three dominance weightings to access the importance of relative abundance of the species in diversity calculation (parameter q). With q = 0, 
there is no weight for species abundance and diversity is the same as species richness, with q = 1, common species have more weight in the diversity 
calculation, similar to Shannon Index, and with q = 2, the weight of dominant species is higher, similar to Gini-Simpson index. Map lines delineate 
study areas and do not necessarily depict accepted national boundaries.
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Similarly, for phylogenetic diversity, we cut the global phyloge-
netic tree of all species into four phylogenetic trees for large and 
small trees and for each sampling region, and used it to calcu-
late phylogenetic alpha-diversity and differences in community 
composition for each plot (Figure S2).

2.5.2   |   Effect of Human Modification on 
Alpha-Diversity and Community Composition

To evaluate the impacts of human modification on alpha diver-
sity, we first scaled and centered the values of alpha diversity. 
Then, we used the scaled alpha diversity to run linear mixed 
effect models (LMMs) separately for each region, each tree size, 
each diversity facet and each dominance weighting, ending up 
with 36 models (2 regions × 2 tree sizes × 3 diversity facets × 3 
dominance weightings). In all models, we considered forest class 
as an explanatory variable and included catchment as a random 
factor (Figure S2). We ran a contrast analysis for each model to 
understand which forest classes were different from each other. 
To do that, we used the “multcomp” package and corrected p 
values for multiple comparisons using the “single-step” method 
(Hothorn et al. 2008).

For community composition, we used the dissimilarity matri-
ces of taxonomic, functional and phylogenetic diversity of large 
and small trees calculated using the three dominance weight-
ings and for both regions to run PERMANOVAs. As for alpha-
diversity, we ran 36 PERMANOVAs, including forest class and 
catchment as explanatory variables using the “vegan” pack-
age (Oksanen et al. 2022). After that, to test which forest class 
had different community composition from each other, we ran 
pairwise PERMANOVAs using the “pairwiseAdonis” package 
(Martinez Arbizu 2020). The p values were adjusted using the 
“bonferroni” method. To visualize the dissimilarities in com-
munity composition, we ran a Non-Metric Multidimensional 
Scaling (NMDS) analysis for each dissimilarity matrix (36 in 
total) using the vegan package in R (Oksanen et al. 2022).

2.5.3   |   Sensitivity of Different Facets of Diversity, 
Dominance Weightings and Tree Sizes to Human 
Disturbances

To evaluate the sensitivity of different metrics, we first calcu-
lated the effect sizes of each forest class comparison for each 
metric. As we scaled and centered the alpha-diversity to run 
LMMs, we used the differences in estimates for each pair of 
forest class comparisons as our effect size metric. We used the 
“multcomp” package (Hothorn et al. 2008) to run the pairwise 
comparisons (as done in the contrast analysis described in 
section  2.5.2) resulting in six effect size values for each LMM 
(6 × 36 = 216 in total). For community composition, as R2 values 
are biased by the number of degrees of freedom, we calculated 
Omega2 for each comparison of forest class and for each metric 
from the pairwise PERMANOVAs. Omega2 values are unbiased 
estimators of effect sizes and can also be interpreted as variance 
explained.

To understand the sensitivity of different diversity facets, dom-
inance weightings and tree sizes to human modifications, we 

ran two LMMs (one for alpha-diversity and one for community 
composition) using effect sizes as response variables and a four-
way interaction as an explanatory variable (Figure S2). The four-
way interaction combined the pair of forest class comparison, 
diversity facet, dominance weighting and tree size. In addition, 
we used region as a random factor. We followed a method of 
backward stepwise elimination of non-significant terms to ob-
tain a minimum model that best explained the variation in effect 
sizes. After we obtained the minimum model, we ran contrast 
analysis to verify which levels of each factor were different from 
each other using the “emmeans” package (Lenth 2023). Finally, 
we calculated the variance explained by each term (variance 
partition) of the minimum models using the “partR2” package 
(Stoffel et al. 2021).

3   |   Results

3.1   |   Effects of Human Disturbances on 
Alpha-Diversity and Community Composition

Human modifications affected most of the alpha-diversity and 
all the composition models—i.e., at least two forest classes were 
significantly different from each other for 33 of the 36 models 
assessing changes in alpha-diversity and for all the 36 models 
assessing changes in composition (Table  1). In terms of pair-
wise comparisons, secondary forests generally showed lower 
taxonomic, functional and phylogenetic alpha-diversity when 
compared to all classes of primary forests, representing the for-
est class with the highest number of significant differences in 
relation to the others (Figure  2 and Figures  S3–S5). Mirroring 
the pattern found for alpha-diversity, community composition 
of secondary forests presented the highest number of significant 
differences when compared to all individual classes of primary 

TABLE 1    |    Number of times a forest class was significantly different 
from another following alpha-diversity (i.e., 36 LMMs) and composition 
(i.e., 36 PERMANOVAs) analyses.

Forest class Undisturbed Logged

Logged-
and-

burned

Alpha-diversity

Undisturbed —

Logged 1 —

Logged-and-
burned

5 21 —

Secondary 22 33 28

Composition

Undisturbed —

Logged 18 —

Logged-and-
burned

26 31 —

Secondary 34 36 30
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6 of 13 Global Change Biology, 2025

forests (Table  1), showing the highest values of dissimilarity 
(Figure 3 and Figures S6–S12).

3.2   |   Sensitivity of Different Facets of Diversity, 
Dominance Weightings and Tree Sizes to Human 
Modifications

For alpha-diversity, the taxonomic and functional facets were 
significantly more sensitive to human modifications than the 
phylogenetic one (Figure  4c, Table  S5), while for community 
composition all three facets of diversity were equally sensitive. 
When looking at different dominance weightings (i.e., q values), 
we also found contrasting results between alpha-diversity and 
community composition: while for the former there was no 
difference in the sensitivity of the different dominance weight-
ings considered, for the latter q1 and q2 were significantly more 
sensitive than q0 (Figure  5b, Table  S9). Overall, large trees 
were significantly more sensitive than small ones to human 

modifications (i.e., higher effect sizes) in alpha-diversity anal-
yses, although in the comparison between undisturbed and 
logged-and-burned forests, small trees were more sensitive, and 
between logged-and-burned and secondary forests there was 
no difference between the sensitivity of tree sizes (Figure 4a,b 
and Tables S6 and S7). For community composition, large and 
small trees were similarly sensitive. Across all models of alpha-
diversity, the highest effect sizes were observed in comparisons 
between the three classes of primary forests with secondary 
forests (Figure 4a and Table S8). For community composition, 
the pairwise comparisons between undisturbed and logged for-
ests with secondary forests also showed the highest effect sizes; 
however, the comparison between logged-and-burned forests 
with secondary ones showed low effect sizes (Figure  5a and 
Table  S10). Finally, we found that for alpha-diversity 55% of 
the effect size variation was explained by the forest class com-
parison, while diversity facets and tree size explained only ~5% 
each, and dominance weighting was unimportant (Figure 4d). 
As with the alpha-diversity analysis, forest class comparison 

FIGURE 2    |    Alpha-diversity of large trees sampled in four forest classes in Paragominas, in the Brazilian Amazon. Alpha-diversity was calculated 
for each dominance weighting (i.e., q0, q1, and q2) and diversity facet. The Y axes for taxonomic, functional and phylogenetic diversity have different 
scales. Different letters denote significant differences (p < 0.05) in mean values within each dominance weighting and facet analysed. LBF, logged-
and-burned forests; LF, logged forests; SF, secondary forests; UF, undisturbed forests. Results for small trees in Paragominas, and large and small 
trees in Santarém can be found in the Figures S3–S5.
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7 of 13Global Change Biology, 2025

explained most of the variation found in the models of commu-
nity composition (42%), while dominance weightings explained 
only 3%, and diversity facets and tree size were unimportant 
(Figure 5c).

4   |   Discussion

Using a dataset of 55,383 individuals sampled across two dif-
ferent regions in Amazonia, combined with 20 functional traits 
and employing the most up-to-date phylogenetic tree available, 
we found that human modifications impacted the taxonomic, 
functional and phylogenetic diversity of both large and small 
trees, regardless of how dominance is accounted for in affected 
communities. In other words—logging, wildfires and clear fell-
ing have a much greater influence on plant diversity than the 
choice of diversity facet, tree size, or dominance weighting used 
in our analyses. This finding shows the profound effects of 
human modifications in Amazonian forests, and more specifi-
cally on the organisms that effectively constitute the structure 
of a forest and represent the primary energy source for a multi-
tude of other taxa. The changes we demonstrate here go a long 
way to explaining why human-modified forests also hold fauna 
communities that are taxonomically, functionally and phylo-
genetically different, and generally more impoverished, than 
those found in undisturbed forests (Colombo et al. 2023; Mestre 
et al. 2020; Solar et al. 2015). In summary, human-modified for-
ests are fundamentally different from their undisturbed coun-
terparts. We discuss these results by first exploring what they 

reveal about the impact of different human modifications on 
diversity, before exploring the implications for how we measure 
and assess diversity.

4.1   |   Human Modification Negatively Affects Tree 
Diversity in Tropical Forests

Understanding the greatest drivers of diversity change in trop-
ical forests is key to helping develop evidence-based policies to 
prevent further biodiversity loss. We found that secondary for-
ests had the lowest levels of alpha-diversity and were the most 
dissimilar to undisturbed ones, regardless of the region, the 
diversity facet, the tree size or the dominance weighting ana-
lyzed. This result is hardly surprising as clear felling is the most 
severe form of human modification to a previously forested 
area. Secondary forests occupy as much as 235,000 km2 across 
Amazonia (Smith et  al.  2021) and are the target of a growing 
wave of interest – as secondary forests grow, they sequester 
CO2 from the atmosphere, therefore making an essential con-
tribution to mitigating climate change (Chazdon et  al.  2016; 
Heinrich et al. 2021). However, secondary forests hold smaller 
carbon stocks than primary ones (Berenguer et al. 2014; Smith 
et  al.  2020), and they also harbor a distinctive flora, which is 
much poorer taxonomically, functionally and phylogenetically. 
Restoration projects must be clear about their biodiversity tar-
gets and present results not only based on the number of species, 
but also on their composition, which is significantly different 
from that of the primary forest baseline. While secondary forests 

FIGURE 3    |    Mean pairwise dissimilarity in community composition of large trees sampled in four forest classes in Paragominas, in the Brazilian 
Amazon. Dissimilarity was calculated using different dominance weightings (i.e., q0, q1 and q2) for taxonomic, functional, and phylogenetic diver-
sity. LBF, logged-and-burned forests; LF, logged forests; SF, secondary forests; UF, undisturbed forests. Results for small trees in Paragominas, and 
large and small trees in Santarém can be found in the Figures S6–S8.
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8 of 13 Global Change Biology, 2025

are key to combating both the climate and the biodiversity crisis, 
their altered composition should not be overlooked.

In terms of primary forests, our results show that even distur-
bances that seemed to have minimal impact on diversity, such 
as selective logging, still led to significant shifts in community 
composition. In the Brazilian Amazon, selective logging is often 
promoted as a conservation tool and is allowed in certain pro-
tected areas and public forests. Our results show that this is not 
an innocuous activity and highlight the need for policies to be 
clear about the biodiversity impacts that selective logging can 
have on biodiversity. Fire and logging together have an even 
greater influence—logged-and-burned forests were as dissimi-
lar to undisturbed forests as to secondary forests for all facets of 
diversity. Given that these forests present a lower alpha-diversity 
and a significantly different tree community composition from 
undisturbed forests, it is expected that large areas of the Amazon 

may already be severely impoverished, and unable to provide 
the full range of ecosystem services found in undisturbed pri-
mary forests (Nunes et al. 2022). Our results reinforce the need 
to prevent wildfires across Amazonia as a way of slowing the 
biodiversity crisis.

Both large and small trees were affected by human disturbance, 
although effect sizes were greater in large trees for most alpha-
diversity comparisons. This is likely a consequence of recruit-
ment time into each size cohort—trees will recruit faster to the 
smaller cohort (i.e., ≥ 2 cm DBH < 10 cm DBH) than in the larger 
one (i.e., ≥ 10 cm DBH). In human-modified forests, decreases 
in alpha-diversity can be partially offset by the recruitment 
of fast-growing pioneer species (Cochrane and Schulze  1999; 
Laurance et  al.  2011; Schwartz et  al.  2014), which can reach 
larger sizes in ≤ 6 years (Mesquita et  al.  2001). However, pio-
neers represent a smaller pool of species than that of old-growth 

FIGURE 4    |    Sensitivity analysis of alpha-diversity responses to human modifications. The predicted mean effect sizes and standard errors for 
differences in alpha-diversity values are shown only for the significant terms of the sensitivity analysis, which were (a) forest class comparisons, 
(b) tree size and (c) diversity facet. Panels (a) and (b) display identical effect size values but are faceted by either forest class comparison or tree size 
(small = blue, large = yellow) to better illustrate the interaction between them. Different letters in (a) show forest class comparisons that have differ-
ent effect sizes within each tree size class. Asterisks in (b) show forest class comparisons in which large and small trees differed in mean effect size. 
Different letters in (c) show the different effect sizes between diversity facets. Panel (d) shows the variance partition of the effect sizes according to 
the sensitivity analysis. For estimated marginal means of each level of these fixed terms see Tables S5–S8. Facets of diversity: TD, taxonomic diver-
sity; FD, functional diversity; PD, phylogenetic diversity. Forest classes: UF, undisturbed forests; LF, logged forests; LBF, logged-and-burned forests; 
SF, secondary forests. 
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9 of 13Global Change Biology, 2025

trees (Nascimento et al. 2005), thus not being able to completely 
compensate for the total number of species lost following for-
est modification. Furthermore, old-growth tree species can take 
from decades to centuries to recruit to the larger cohort (i.e., 
≥ 10 cm DB) (Ferreira et al. 2020; Vieira et al. 2005), maintain-
ing lower levels of alpha-diversity for a prolonged period of time. 
In terms of community composition, for all facets of diversity, 
large and small trees had similar sensitivity. Overall, our results 
indicate that human-modified forests could remain significantly 
different from an undisturbed baseline for decades to come, es-
pecially given that the current smaller cohort holds a different 
set of species, suggesting that trees recruiting into the larger size 
will continue to be distinct from those found in undisturbed 
forests. Finally, another factor that could potentially contrib-
ute to human-modified Amazonian forests holding altered tree 
communities for a prolonged period is the long lifespan of pi-
oneer species, which live, on average, for 104 years (Laurance 
et al. 2004). The combination of very slow growth rates of old-
growth species and long lifespans of pioneers indicates that tree 
communities will remain altered for over a century, even if no 
new disturbances occur.

4.2   |   Which Form of Diversity Is the Most 
Sensitive to Human Modification?

Taxonomic diversity has been the basis of many ques-
tions in Ecology for almost a century (e.g., Clements  1936; 
Gleason  1926; Lindeman  1942). More recently, it was ques-
tioned whether functional and phylogenetic diversities would 
respond to stressors in the same way as taxonomic diversity 
(Faith 1992; Laureto et al. 2015). Here, when examining the 
impacts of human modification on alpha-diversity, we found 
that the taxonomic and functional facets of diversity had sim-
ilar sensitivity, while phylogenetic diversity was the least sen-
sitive. It is likely that most lineages were negatively affected 

but still maintained representative species, explaining the 
observed patterns of phylogenetic alpha-diversity and corrob-
orating the idea of phylogenetic redundancy. Finally, all three 
diversity facets showed similar responses to human modifica-
tion in terms of community composition. As such, when ex-
amining the impacts of human modification in Amazonian 
tree communities, the examination of taxonomic diversity 
seems sufficient to capture changes in both functional and 
phylogenetic diversities.

4.3   |   The Importance of Dominance Weighting 
for Diversity Assessment

Amazonian lowland forests are the most diverse on Earth, 
housing c. 16,000 tree species, or 22% of the world's total (Gatti 
et al. 2022; ter Steege et al. 2013). However, this hyperdiver-
sity is not equally distributed among different taxa, with only 
227 species accounting for almost half of all trees in the re-
gion (ter Steege et al. 2013). This pattern of hyperdominance 
could potentially be affected by human-driven modification 
– something yet to be tested. Furthermore, dominance varies 
across forest strata, with different species dominating the can-
opy, the midstorey and the understorey (Draper et al.  2021). 
It remains unclear if human modification will affect domi-
nance patterns differently in each stratum. Our results for 
alpha-diversity show that the effects of human modification 
on rare, common and dominant species (i.e., q0, q1 and q2) are 
of similar magnitude, demonstrating that tree communities in 
human-modified forests experience changes in evenness. For 
species composition, both common and dominant species (i.e., 
q1 and q2) were the most sensitive, indicating that the changes 
in the identity of these species are higher than for rare and less 
abundant ones in human-modified forests. These alterations 
in community evenness and composition raise questions 
about the functioning of human-modified forests—across 

FIGURE 5    |    Sensitivity analysis of Amazonian tree community composition responses to human modifications. The predicted mean effect sizes 
and standard errors (Omega2 from PERMANOVAs) for differences in community composition are shown only for the significant terms of the sen-
sitivity analysis, which were (a) forest class comparison and (b) dominance weightings (i.e., q0, q1 and q2). Letters indicate significant differences 
between forest class comparisons. Panel (c) shows the variance partition of the effect sizes according to the sensitivity analysis. Pairwise comparisons 
are ordered from highest to lowest mean effect sizes. For estimated marginal means of each level of these fixed terms see Tables S9–S11. UF, undis-
turbed forests; LF, logged forests; LBF, logged-and-burned forests; SF, secondary forests.
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10 of 13 Global Change Biology, 2025

undisturbed parts of the Amazon, hyperdominant species 
tend to have a disproportionately large contribution towards 
carbon storage and productivity (Fauset et  al.  2015); thus 
changes in both the identity and the abundance of tree species 
could impact the carbon cycle.

5   |   Conclusion

Despite disturbed primary forests (i.e., logged, and logged-
and-burned) having significantly lower levels of taxonomic, 
functional and phylogenetic diversity than undisturbed for-
ests, they are still significantly more diverse than secondary 
forests. These results highlight two important and policy-
relevant points: (1) It is crucial to effectively protect undis-
turbed primary forests, avoiding human-driven disturbance; 
and (2) It is essential to also protect disturbed primary forests 
from further human-driven disturbances as they still hold 
high levels of diversity, with protection even more needed 
in places where there are few or no remnants of undisturbed 
forests. While recently there has been great investment and 
political interest in the restoration of Amazonian forests, our 
results clearly demonstrate that, for biodiversity conserva-
tion, we should prioritize the protection of undisturbed pri-
mary forests and avoid further disturbances in those already 
human-modified.
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