
1

An Adaptive Meta-Reinforcement Learning Framework for Dynamic

Flexible Job Shop Scheduling
Lincong Wu, Xiaoxia Li*, Xin Lu, Zaiwen Feng, Yanguo Jing

Abstract—The optimization of flexible job shop scheduling
is essential for improving manufacturing efficiency and perfor-
mance in dynamic production environments. However, existing
scheduling methods face challenges in scalability and adapt-
ability, which limits their effectiveness in such environments.
To address these limitations, this paper proposes a generalized
and modular DFJSP framework that systematically decomposes
shop-floor elements into key modules, enabling flexible and
resilient scheduling under dynamic conditions. Building on this
framework, an Adaptive Markov Decision Process (AMDP) is
formulated to capture real-time shop-floor states and guide op-
timal action selection. Leveraging Meta-Reinforcement Learning
(MRL), the proposed approach integrates Model-Agnostic Meta-
Learning (MAML) with Proximal Policy Optimization (PPO)
to facilitate rapid adaptation to new scheduling tasks while
enhancing policy generalization. Numerical experiments demon-
strate that the framework effectively balances multiple dynamic
objectives, including makespan and energy consumption, and
adapts efficiently to real-time variations in job priorities, machine
availability, and processing times. The results highlight the
potential of combining modular problem formulation, AMDP
modeling, and MRL for scalable, efficient, and robust DFJSP
solutions in modern manufacturing environments.

Note to Practitioners—This paper presents a MRL framework
that offers an efficient solution for dynamic flexible job shop
scheduling, enabling rapid adaptation to unexpected events such
as machine breakdowns and urgent job insertions while simul-
taneously optimizing both makespan and energy consumption.
Through a modular design, the framework can be flexibly
adapted to various shop floor configurations. Leveraging the
MAML-PPO algorithm, the model requires only a small amount
of data to generate new scheduling solutions within seconds,
demonstrating a significantly faster response compared to con-
ventional methods such as genetic algorithms. For practical
deployment, it is recommended to prioritize the integration of
dynamic event definitions (e.g., failure probabilities) and to utilize
GPU-accelerated computing. Additionally, module functionali-
ties (e.g., logistics coordination) should be adjusted according
to production requirements to achieve rapid improvements in
operational efficiency and resource optimization.

Index Terms—meta-learning, reinforcement learning, meta-
reinforcement learning, dynamic flexible job shop scheduling

I. INTRODUCTION

IN recent years, manufacturing has become increasingly
competitive due to stringent regulations, sustainability re-

quirements, and rapidly evolving market demands. To re-
main competitive, manufacturers must continuously enhance
operational efficiency, with shop-floor scheduling playing a
central role in strategic planning and long-term sustainability.
High-quality scheduling solutions are critical for improving
key performance metrics, including productivity, energy ef-
ficiency, and overall operational flexibility [1], [2]. Within
this context, flexible job shop scheduling problem (FJSP),

in which each operation can be processed by any machine
from a candidate set, has been widely studied. In real-world
manufacturing, FJSPs are inherently dynamic: job arrivals,
machine availability, and processing times vary over time, and
unexpected events such as machine breakdowns or urgent job
insertions frequently occur. This dynamic nature introduces
significant challenges in accurately modelling the problem and
constructing efficient scheduling solutions. Despite substantial
research on FJSPs, there remains a lack of rapid, generalizable
frameworks capable of efficiently formulating and solving
dynamic FJSP (DFJSP) under diverse and uncertain shop-floor
conditions.

Various approaches have been explored to tackle FJSP. Dis-
patching rules provide fast, experience-based decision-making
but are sensitive to shop-specific configurations and often
yield suboptimal results in complex or variable environments
[3]. Meta-heuristic algorithms, such as genetic algorithms
and particle swarm optimization, can explore near-optimal
solutions by searching the scheduling space [4], however
their efficiency declines with problem size, and their iterative
nature limits responsiveness in dynamic settings. More re-
cently, machine learning techniques, particularly reinforcement
learning (RL), have shown promise in overcoming some of
these limitations [5]–[7]. RL methods can learn effective
scheduling policies from interaction with the environment but
face challenges including sample inefficiency [8] and slow
adaptation to diverse shop-floor conditions. Meta-learning
offers a potential solution to these challenges by enabling
rapid adaptation to new tasks based on prior experience [9].
When combined with RL, meta-reinforcement learning allows
agents to leverage both prior knowledge and real-time interac-
tions, representing a promising avenue for DFJSP. MRL has
demonstrated success in other domains, such as traffic signal
management [10] and intelligent robot control [11]. However,
its application to shop-floor scheduling remains in its early
stages. DFJSPs are inherently complex, making it difficult to
represent job sequences, machine availability, and processing
times in a way that MRL models can effectively process.
The diversity of shop-floor environments further complicates
model generalization, and real-world uncertainties, such as
machine breakdowns and supply chain disruptions, must be
incorporated to enhance robustness and reliability. As DFJSPs
grow in size and complexity, the development of scalable MRL
algorithms will become increasingly essential.

To bridge these gaps, this paper presents an innovative
DFJSP framework that incorporates meta learning and RL
algorithms to address the modelling, adaptability, and scal-
ability challenges of current scheduling methodologies. The
research demonstrates that combining advanced deep learning

2

algorithms with a distributed computing architecture provides
an effective means of meeting the versatile requirements of
modern manufacturing processes. Research innovations in-
clude the following aspects:

• A generalized and modular DFJSP framework is devel-
oped to address diverse real-world shop-floor environ-
ments. The proposed framework innovatively decomposes
elements into distinct modules that map environmental
variations, thereby enhancing flexibility and enabling ro-
bust scheduling under dynamic and uncertain conditions.

• An Adaptive Markov Decision Process is systematically
formulated for DFJSP by mapping real-time shop-floor
states to the modular framework for optimal action selec-
tion. The proposed AMDP enables MRL algorithms to
effectively manage dynamic machining processes while
enhancing scheduling efficiency and adaptability.

• A novel MRL framework is developed to enhance both
the efficiency and generalization of policy learning in
dynamic shop-floor environments. As a case study, the
framework integrates MAML with PPO to enable rapid
adaptation to new scheduling tasks through knowledge
transfer across various tasks.

The remainder of this paper is organized as follows. Section
II provides a review of related work. Section III introduces the
modular architecture for DFJSP and the AMDP formulation.
Section IV proposes the MRL framework for DFJSP and the
MAML-PPO algorithm. Section V presents the experimental
results and analysis. Finally, Section VI concludes the paper.

II. RELATED WORK

The recent surge in scholarly attention towards solving
FJSPs within the context of RL emphasizes the increasing sig-
nificance of this field within both ML and operations research
communities [12]. This section explores recent advancements
in FJSP formulations and the development of MRL techniques
tailored to these challenges.

A. FJSP framework and Markov Decision Process

In modern industrial production, the complexity arising
from customization, product variety, and dynamic uncertainties
has led scholars to extend FJSPs to better reflect real-world
manufacturing environments. For instance, Wang et al. [13]
proposed an improved FJSP framework that incorporates mul-
tiple dynamic events and objectives—such as job insertions,
machine breakdowns, and varying job priorities—to more
closely mirror real-world production environments. Kong et
al. [14] enhanced the FJSP by integrating the transportation
problem into the model, enabling a more accurate represen-
tation of manufacturing environments where machines are
distributed across multiple shop floors. Meanwhile, [15] intro-
duced an FJSP model with sequence-dependent setup times,
enhancing the realism of the scheduling problem by reflecting
the variability of machine setup durations and the complexities
of actual manufacturing environments. These enhancements to
FJSPs substantially increase their complexity, enabling more
realistic representations of manufacturing environments but
also expanding the search space and raising computational

demands for identifying optimal solutions [16]. In addition, the
absence of standardized benchmark problems that incorporate
critical factors such as dynamic events and realistic shop-
floor configurations restricts progress in the field. This lack of
benchmarking not only hinders the development of universally
applicable solutions but also underscores the urgent need for
collaborative efforts to establish consistent metrics and test
cases for FJSP research.

Additionally, Markov Decision Process (MDP) is widely
used to model FJSP because it’s the basis of RL. Numerous
MDP-based RL approaches for FJSP have been proposed.
For instance, Kun et al. [17] introduced a disjunctive graph
representation, achieving superior results compared to rule-
based methods by leveraging graph neural networks and
reinforcement learning techniques. In addition, Zhu et al. [18]
proposed an adaptive real-time scheduling method within a
multi-agent system (MAS) framework for handling combined
processing constraints in FJSPs. More recently, Zhang and
Li [19] incorporated machine degradation into the dynamic
modeling of FJSPs by formulating the problem as a joint
scheduling and preventive maintenance decision-making pro-
cess. The machine states were modelled as a discrete multi-
state degradation process using a continuous-time Markov
chain, which allowed the scheduling policy to explicitly ac-
count for stochastic degradation and maintenance costs. More
recently, Li et al. [20] advanced the field by integrating a
graph attention network within an MDP-RL framework to
tackle multiple objectives simultaneously, such as makespan
minimization and energy consumption, significantly improving
Pareto-optimal results in flexible job shop environments. Fur-
thermore, Xu et al. [21] transformed FJSP into an MDP and
employed a Transformer-based deep reinforcement learning
model to effectively learn scheduling policies across complex
state–action spaces. Obviously, the real-world shop-floor’s dy-
namics and complexity are neglected by the existing research
works.

In conclusion, modeling FJSPs faces several challenges.
FJSPs are inherently complex and vary across companies due
to different constraints, priorities, and operational practices,
resulting in a lack of standardized modeling approaches.
Existing models are often time-consuming to develop and
may fail to capture real-world shop-floor dynamics, such as
multiple objectives and unexpected events. The absence of a
comprehensive reference framework further limits the devel-
opment of effective and adaptive solutions across industrial
contexts.

B. Meta-reinforcement Learning for FJSP

In recent years, a variety of meta-learning algorithms com-
bined with RL has emerged as a promising solution for
achieving rapid adaptation to novel tasks with limited training
data. Nagabandi et al. [8] introduced a sample-efficient meta-
learning approach to enable swift adaptation of robotic systems
within dynamic environments and Wang et al. [22] presented
meta-learning strategies to boost learning efficacy across var-
ious robotic settings. Within the industrial domain, MRL
methods have primarily been employed to optimize machining

3

processes. Changqing Liu et al. [23] developed an MRL model
that can be updated with a minimal amount of real monitoring
data, achieving optimization for the finishing process and
deformation control. Qinge Xiao et al. [24] used a meta-
actor-critic approach to optimize the machining parameters.
Furthermore, McClement et al. [25] applied a context-based
MRL method in industrial process control. The proposed sys-
tem enables adaptation to new process dynamics and different
control objectives within the same process. These diverse
applications across industrial processes highlight the versatility
and practical utility of MRL methods in tackling the challenges
associated with rapid adaptation to new tasks within dynamic
and complex real-world scenarios. MRL has been proven to
be a valuable tool in addressing scheduling challenges. In
heterogeneous edge computing systems, Liwen Niu et al. [26]
introduced a multi-agent meta-PPO algorithm, which aims at
optimizing task scheduling by adapting control policy learning
to nonstationarity. Similarly, in cloud computing environments,
Xi Xiu et al. [27] proposed an MRL-based method to enhance
adaptability to diverse environments. The results showed that
the proposed system can improve sample efficiency in various
task scheduling problems. Furthermore, in home energy man-
agement systems, Luolin Xiong et al. [28] employed an MRL-
based transferable scheduling strategy to address uncertainties
in renewable energy sources and fluctuation in customer load.
Regarding FJSP problems, Finn et al. [29] and Ahmedet et
al. [30] presented MAML, which leverages past experiences to
generalize to new scenarios. This makes it particularly suitable
for DFJSP, where schedules must adapt quickly to changing
conditions. Hierarchical MRL is another potential approach
for solving FJSPs. It involves decomposing tasks into multiple
sub-tasks to be solved across various hierarchical levels [31].
By leveraging the inherent structure within tasks, this approach
enhances learning efficiency and improves adaptation to dy-
namic scheduling environments. In conclusion, integrating
meta-learning with reinforcement learning holds significant
promise for enabling rapid adaptation to novel tasks across
various real-world domains. However, the application of MRL
to shop-floor scheduling remains in its early stages, further
research is required to overcome key challenges. DFJSPs
are inherently complex, making it difficult to represent job
sequences, machine availability, and processing times in a
way that MRL models can effectively process, while the
diversity of shop-floor environments presents challenges for
generalization. Additionally, real-world uncertainties such as
machine breakdowns and supply chain disruptions must be
incorporated to enhance the robustness and reliability of these
scheduling models. As DFJSPs grow in size and complexity,
scalable MRL algorithms will become increasingly essential.

III. DFJSP FRAMEWORK AND MODEL

As highlighted in the literature, existing scheduling sys-
tems and FJSP models suffer from limited adaptability to
diverse production environments, insufficient responsiveness
to dynamic changes, and a lack of modular design, restricting
their broader applicability and effectiveness. To address these
issues in FJSP modeling and frameworks, this section proposes

Fig. 1: A Hierarchical and Modular General Framework for
DFJSP

a modular framework for DFJSP to enhance adaptability,
responsiveness, and scalability across various production en-
vironments, along with an AMDP formulation to support
structured decision-making using MRL.

A. Modular Framework for DFJSP

The evolution of modern industrial enterprises has turned
the FJSPs into complex spatio-temporal dynamic challenges
that require flexible expansion and robust contraction based
on varying operational scenarios, which includes incorporating
transpiration logistics, handing out multiple objectives, man-
aging additional resources, and responding to dynamic events.
To address these dynamic complexities, a generalized and
modular DFJSP framework with hierarchical layers has been
developed, as illustrated in Fig. 1. The framework is organized
into three layers, each comprising multiple modules tailored
to dynamic factors such as multiple objectives, machine
breakdowns, urgent job insertions, and variable processing
times. By systematically decomposing these challenges into
modular components, the framework enhances transparency
in decision-making and enables efficient reconfiguration of
scheduling strategies in real time, thereby reinforcing flexi-
bility and adaptability across diverse industrial contexts. The
top layer, named Scheduling Environment layer, is responsible
for the initial setup and configuration of the DFJSP. It estab-
lishes the foundational components essential for initiating the
scheduling process and comprises three modules: a Factory
Module, an Objective Module and a Constraint Module, re-
spectively.

1) Factory Module: is designed to manage the initial
configuration information of the factory, including machines,
operations, personnel allocation, raw materials, material trans-
portation capacity, and more. This information may be sourced
from higher-level enterprise management systems such as
MES (Manufacturing Execution System) or ERP (Enterprise
Resource Planning).

4

2) Objective Module: is designed to manage and balance
multiple, often conflicting production objectives, including
completion time, energy consumption, machine utilization, in-
ventory levels, and delivery deadlines. The relative importance
of these objectives may vary depending on company-specific
priorities and operational strategies.

3) Constraint Module: The constraint module is responsi-
ble for setting various constraints in the production process
to ensure smooth operations. Typically, workshop constraints
include scheduling rules, workpiece priorities, production se-
quences, machine availability, order delivery dates, and other
resource limitations. When dealing with issues of collab-
orative optimization with other systems, such as logistics,
warehousing, and scheduling systems, this module also reflects
spatio-temporal coupling constraints or resource competition
constraints.

The scheduling planning layer is the intermediate compo-
nent of the proposed framework, consisting of two important
modules: the scheduling generation module and the scheduling
planning module. These modules support the use of different
scheduling algorithms to develop scheduling plans.

1) Schedule generation module: The scheduling generation
module is responsible for generating the optimal production
schedule by integrating inputs from the factory, goal, con-
straint, and dynamic event modules. This module uses multiple
scheduling agents and supports various scheduling techniques,
including metaheuristic algorithms, scheduling rules, or rein-
forcement learning strategies.

2) Scheduling plan module: The scheduling planning mod-
ule is responsible for deploying the current scheduling plan
and managing the data of historical scheduling plans.

The physical layer includes the execution module and the
disruption module. This layer is responsible for the actual
execution of the scheduling plan and real-time monitoring
of the production process. It uses an ”execution-feedback”
control loop, which ensures that production activities follow
the optimized schedule while also managing any disruptions
or deviations that arise during operations.

1) Execution Module: The execution module ensures the
scheduling plan is implemented smoothly on the shop floor
and continuously monitored. It consists of two parts: real-time
scheduling execution, which coordinates machines, workers,
and materials according to the plan, and scheduling plan
evaluation, which gathers feedback and performance data to
support continuous improvement of future schedules.

2) Disturbance Module: is designed to handle a wide range
of dynamic events that can disrupt production, covering both
internal and external factors. Internal disturbances include un-
expected machine breakdowns, variations in processing times,
or staff unavailability, while external disturbances may arise
from urgent job insertions, order changes, supply chain delays,
or logistical constraints. By using feedback from the plan
evaluation, this module makes timely adjustments to reduce
downtime, mitigate risks, and strengthen the robustness of the
production system.

In conclusion, the proposed hierarchical DFJSP framework
is designed to seamlessly offer a flexible and adaptable so-
lution for managing complex scenarios in dynamic industrial

environments. Its modular structure allows components to be
added or removed based on specific production needs, making
it easy to integrate functions like transportation logistics or
expanded resource management.

B. AMDP-Based Formulation of DFJSP

Within the proposed modular framework, the DFJSP is
integrated to establish a comprehensive, generalised defini-
tion. This modular approach allows the problem to be sys-
tematically decomposed into key elements, including factory
resources, operational constraints, performance objectives, and
potential disturbances. Building on this foundation, we develop
an AMDP modle, which is tailored to capture the dynamic and
stochastic nature of DFJSP. The model is designed not only
to optimise primary objectives, such as minimizing makespan
and energy consumption, but also to incorporate relevant
operational constraints and to adapt to diverse dynamic events
occurring on the shop floor. To develop the AMDP model, the
DFJSP is systematically decomposed into four modules within
the proposed framework. These modules, which capture the
essential elements, constraints, objectives, and disturbances,
are summarised in Table I and details as follows:

1) Factory Module Definition: Let n be the number of jobs
to be machined. Let m be the number of machines in the
shop floor. The jobs and the machines can be denoted as J =
{J1, J2, . . . , Jn} and M = {M1,M2, . . . ,Mm} respectively.
Each job Ji consists of ni operations Oi,j (j = 1, 2, . . . , ni).
Each operation Oi,j can be processed by any machine from
a set of available machines Mi,j ⊆ M . The processing time
of each operation on different machines is expressed as ti,j,k
, where k indexes the machine.

2) Objective module Definition: The criteria that are con-
sidered by the manufacturers to improve their manufacturing
performances, are integrated into the objective module to be
used as the optimization objectives. Since productivity and
sustainability are the manufacturing performances focus, both
makespan and machining energy consumption are contained in
the objective module. The former is to minimize the maximum
completion time of all jobs and operations:

Cmax = max
i,j
{Ci,j} (1)

where Ci,j is the completion time of the operation Oi,j ,
and Cmax (i.e. makespan) is the maximum completion time.
Minimizing makespan reduces the maximum completion time,
enhances resource utilization, and shortens lead time. The
model accounts for job priorities, machine availability, and
dependencies to achieve this objective.

The latter is to minimize the machining energy consump-
tion, focusing on the idle and processing phases. The energy
consumption during these phases for machine Mk is:

Eproc
i,j,k = P proc

k × ti,j,k (2)

where Eproc
i,j,k is the energy consumed by machine Mk during

the processing of operation Oi,j , and P proc
k is the processing

power of machine Mk. The idle energy consumption is:

Eidle
k = P idle

k × tidlek (3)

5

TABLE I: A general DFJSP definition

Factory elements module Constraint module Objective module Disturbance
J = {J1, J2, . . . , Jn} Operation order makespan Emergency job insertion

M = {M1,M2, . . . ,Mm} Operation allocation Energy consumption Machine breakdown
Jinfo 0 < i ≤ n Machine capacity Machine Maintenance
Minfo 0 < j ≤ m

where P proc
k is the idle power of machine Mk. Thus, the total

energy consumption for machine Mk is:

ECk =
∑

Oi,j∈J

Eproc
i,j,k + Eidle

k (4)

Minimizing EC improves the sustainability and efficiency of
the manufacturing system.

3) Constraint Module Definition: Three common con-
straints are considered in this paper, listed in Table I. The
constraint details are as follows:

Operation sequence constraint: The start time of operation
Oi,j should be later than the completion time of its preceding
operation, which is formulated as follows:

Si,j ≥ Ci,j−1 (5)

where Si,j represents the start time of operation Oi,j , and
Ci,j−1 is the completion time of its preceding operation. For
the first operation (j = 1), it is assumed that Ci,0 = 0 to
ensure production can start immediately.

Operation assignment constraint: Each operation must be
assigned to a specific machine, which is implemented through
the binary variable Xi,j,k:∑

k∈M

Xi,j,k = 1 ∀i, j (6)

When operation Oi,j is assigned to machine Mk, Xi,j,k =
1; otherwise, Xi,j,k = 0. This constraint prevents operations
from being unassigned or redundantly assigned to multiple
machines.

Machine capacity constraint: A machine can only perform
one operation at any given time:∑

i,j

Xi,j,k,t ≤ 1 ∀k, ∀t (7)

This constraint limits the number of operations processed by
machine Mk at time t, ensuring that it does not become
overloaded, which could cause the scheduling plan to fail.

4) Disturbance Module Definition: It is known that there
are many different disturbances that may occur on the shop
floor. Also, all these disturbances can be integrated into the
disturbance module to be responsed to. Table I lists three most
commonly occurred disturbances (i.e. emergency job insertion,
machine breakdown and machine maintenance), which are
related to jobs and machines.

As illustrated in Fig. 2, a FJSP instance can be effectively
represented as a disjunctive graph (DG), described by the
tuple DG = (O,P, U) [7]. In this formulation, the set of
vertices, O, represents the operations to be scheduled, where
each vertex corresponds to a specific operation in the job
shop environment. The directed arc set, P , denotes precedence
constraints between operations within the same job. These arcs

dictate the sequence in which operations must be executed,
ensuring the correct order of processing. The set of undirected
arcs, U , known as the disjunction set. Each subset represents
operations that can be executed on the same machine, allowing
flexibility in assigning operations to machines. The undirected
arcs within each subset connect operations competing for the
same machine resources. In the disjunctive graph, undirected
arcs (disjunctions) link operations that could be scheduled
on the same machine, while directed arcs ensure the proper
order of operations within a job. This Fig. 2 illustrates the
iterative process of solving the DFJSP using a DG . The
process begins with a complex graph where directed arcs
represent the sequential order of operations within a job, while
undirected arcs signify conflicts where different jobs compete
for the same machine. Each step in the solving process is
a decision point: a set of undirected arcs is chosen and
converted into directed arcs to determine the processing order
of operations. With each decision, the undirected arcs in the
graph are gradually ”oriented” until all operations are assigned
and sequenced. Ultimately, all undirected arcs are transformed
into directed ones, forming a complete and feasible scheduling
solution that specifies which machine performs each operation
and in what order. Essentially, the process resolves potential
machine conflicts through a series of decisions to create a
finalized, coherent schedule.

Following these definitions, the DFJSP scheduling problem
can be formally formulated as an AMDP, which is defined
by the set {S,A,R, T, γ,D}, where S represents the set of
states, A represents the set of actions, and R(rt+1|st, at, st+1)
is the reward function. T (st+1|st, at) denotes the transition
equation, discount factor γ = 1 indicates that there is no decay
in the accumulation of rewards (in this study, it is assumed
that rewards are not discounted). Specifically, D refers to the
Disturbance Event Set, originating from the disturbance mod-
ule in the DFJSP architecture. This set encompasses all types
of disturbances, such as equipment failures and emergency
order insertions, that may affect the workshop environment.
The specific AMDP definition for the proposed DFJSP is as
follows:

1) State: The state space St represents the complete con-
figuration of the job shop at time t, including operation-level,
machine-level, and operation–machine interaction level. The
corresponding features are defined as follows:

• Operation features fopt : minimum energy consump-
tion Eop,min

t , scheduling status flag Flagopt , completion
time lower bound LBop

t , remaining energy consumption
Eop,rem

t , waiting time W op
t , and remaining processing

time P op
t .

• Machine features fma
t : unscheduled operations count

Cma
t , machine free time Fma

t , waiting time Wma
t , ma-

chine status Sma
t , remaining processing time Pma

t , and

6

Fig. 2: A Process Instance for Addressing a FJSP

current energy consumption rate Rma
t .

• Operation–machine Pair features fpat : processing time
and workload ratios Rpa

t , and operation energy consump-
tion Epa

t .

Thus, the state vector can be formulated as:

St = {fopt , fma
t , fpat }. (8)

The features in the state vector are adaptive and can
be adjusted with the dynamic events occurring in the shop
floor. For example, when machine breakdown occurs, the
corresponding machine’s features will be masked. When new
jobs are inserted, the jobs’ operation features will be added.
All detailed feature definitions and calculation methods are
provided in the Supplemental Items.

2) Action: In a DFJSP, an action involves selecting a
machine for a specific operation or determining the sequence
of operations on a machine. As shown in Fig. 2, an action at
time step t is defined as selecting an operation–machine pair
for scheduling. Formally, let Mav

t denote the set of available
machines and Oav

t denote the set of available operations. Then
an action can be expressed as:

at = ⟨Mk, Oi,j⟩, Mk ∈Mav
t , Oi,j ∈ Oav

t , (9)

where Mk is the selected machine , and Oi,j is the j-th
operation of job i.

Taking such an action means assigning operation Oi,j to
machine Mk, thereby fixing the corresponding undirected arc
in the disjunctive graph representation. This gradually reduces
the available sets Oav

t and Mav
t , until all operations are

scheduled and the process ends. When dynamic events occur
on the shop floor, the action set will be adjusted following the
current state to support the regeneration of new solutions.

3) Reward: In this work, the reward, rt, is designed to
simultaneously minimize the makespan and reduce energy
consumption, while adhering to the constraints of the system.
It is defined at time step t as follows:

rt = λ1 × rec + λ2 × rmk (10)

where rec and rmk represent the rewards obtained from
reducing the total energy consumption and the maximum
completion time of all operations (makespan), respectively. λ1

and λ2 are the weights associated with energy consumption
and makespan rewards, respectively.

The reward for energy consumption rec is based on the
reduction in energy used by the machines between two con-
secutive time steps t and t+ 1:

rec =

NM∑
k=1

ECk(st)−
NM∑
k=1

ECk(st+1) (11)

in which the energy consumption ECk of machine k is
calculated based on the equation referenced in Equation (4).
Assuming a complete scheduling cycle consists of |O| time
steps, the cumulative energy consumption reward can be
expressed as:

|O|∑
t=0

rec =

(
NM∑
k=1

ECk(s0)

)
−

(
NM∑
k=1

ECk(s|O|)

)
(12)

The total energy consumption at the initial state∑NM

k=1 ECk(s0) is a constant, unaffected by the scheduling
policy. Therefore, maximizing the cumulative reward∑|O|

t=0 rec is equivalent to minimizing the total energy
consumption in the terminal state

∑NM

k=1 ECk(s|O|).
The reward for makespan rmk is based on the reduction in

the makespan between two consecutive steps:

rmk = Cmax(st)− Cmax(st+1) (13)

where Cmax(st) represents the makespan at step t. Similarly,
it can be deduced that maximizing the cumulative reward∑|O|

t=0 rmk is equivalent to minimizing the total makespan at
the terminal state Cmax(s|O|).

4) Disturbance Event Set: The disturbance event set D =
{d1, d2, . . . , dp} captures all unexpected or planned events that
can disrupt the production environment, requiring real-time
adaptations to maintain optimal performance. In this study,
we consider three representative types of disturbances:

(1) Emergency Job Insertion. To simulate this event, a new
job Jnew is inserted into the operation queue during execution.
Each new job consists of a sequence of operations Onew =
{Onew

1 , Onew
2 , . . . , Onew

m }, which follow the same precedence
constraints as regular jobs.

(2) Machine Breakdown. To model this disturbance, a
masking mechanism that disables the broken machine Mk,
is applied to prevent any operation assignment to it within
the breakdown window. Once the machine recovers, the mask
is removed and the machine returns to the available pool.
This approach ensures that scheduling decisions automatically
adapt to a reduced set of feasible machines.

(3) Machine Maintenance. Planned maintenance events
share a similar implementation to breakdowns, but with known

7

start times and durations. During the maintenance window, the
corresponding machine Mk is masked and cannot be scheduled
for new operations. Unlike breakdowns, maintenance events
are typically pre-specified, enabling the scheduler to proac-
tively adjust the allocation strategy, reduce potential delays,
and improve system resilience.

The proposed disturbance mechanisms enable the schedul-
ing framework to effectively manage both unplanned disrup-
tions and planned interruptions. By dynamically updating the
operation queue and machine availability through masking, the
system can maintain adaptive, real-time scheduling in complex
and uncertain production environments.

In summary, the proposed AMDP, formulated based on
the DFJSP framework, is capable of addressing multiple
dynamic objectives, exemplified in this study by makespan
and energy consumption. This formulation underscores the
flexibility of the approach, demonstrating its applicability
across a wide range of real-world shop-floor environments.
The model’s inherent adaptability enables real-time respon-
siveness to fluctuations in job priorities, machine availability,
and processing times, thereby supporting efficient, robust,
and resilient scheduling under dynamic production conditions.
Furthermore, the developed AMDP provides a versatile foun-
dation for the implementation of various machine learning
algorithms.

IV. MRL BASED METHOD FOR DFJSP

As mentioned above, MRL can be employed to quickly
adapt to new tasks with minimal data and make decision,
which is required by DFJSP. A general conceptual framework,
tailored for applying MRL to DFJSP scenarios, is proposed
in this section. This framework serves as a blueprint for
integrating the necessary components that facilitate efficient
learning and adaptation in response to real-time changes on the
shop floor. Following this, the integration of MAML and PPO
is explored and implemented within the proposed framework
to evaluate its performance in addressing DFJSP challenges,
particularly in terms of rapid adaptation and optimization
under fluctuating operational conditions.

A. The Overall MRL Framework for DFJSP

As shown in Fig. 3, the conceptual framework of MRL
for DFJSP consists of two phases: training and adapting. The
training phase is responsible for training the MRL model
using a diverse group of tasks where each task interaction is
modeled as an MDP. The adapting phase fine-tunes the trained
MRL model, enabling it to respond quickly to changes in the
manufacturing environment. The following sections provide
a detailed explanation of each phase. In the training phase,
meta-learning and RL are combined with each other to train
the MRL model for DFJSP. Several iterations are executed
in the training process. In each iteration, the task-specific
parameters θi are initialized by the Meta Learner. The current
MRL model with θi is used to interact with the scheduling
environment. During the interaction, a tuple including the
state-action-reward-state transitions, denoted as {(s, a, r, s′)},
is obtained. This tuple is commonly referred to as ”experience

Fig. 3: Overall framework of the MRL based method for
DFJSP.

data.” To facilitate effective learning, the experience dataset is
partitioned into two subsets: the support set and the query set.
Specifically, we follow a ratio of 9:1, where 90% of the data
is allocated to the support set and 10% to the query set. The
support set is employed by the RL component to adjust and
refine its parameters based on task-specific loss values, thereby
capturing expertise within the given task. In contrast, the query
set is used by the Meta Learner to update meta-parameters,
ensuring that the learned initialization acquires generalization
capabilities for unseen tasks. As a result, the final MRL model
is trained by jointly considering both task-specific and cross-
task expertise, enabling rapid and adaptive decision-making in
DFJSP environments.

During the adapting phase, the trained MRL model is fine-
tuned to accommodate new scheduling tasks introduced by
the dynamic manufacturing environment. Since the new tasks
create new states within the manufacturing environment, the
trained MRL model is used to decide which action to execute.
Based on the execution of the action on the Simulator, a
number of trajectories {(s, a, r, s′)} are generated and passed
to the adapter for further fine-tuning of the model. After
several iterations of fine-tuning on the new tasks, a target
model suitable for the new manufacturing environment can
be obtained. This model can then be used to make optimal
decisions for the DFJSP.

B. MAML-PPO Algorithm Applied in the MRL framework

MAML is one of the most representative meta-learning
methods [29]. It has been shown to be highly effective because
of its flexibility and efficiency in adapting to new tasks. PPO
is a highly stable policy gradient RL algorithm that maintain
a delicate balance between exploration (trying new actions)
and exploitation (leveraging known solutions). Following the

8

Fig. 4: Illustration of MAML-PPO for Training Process

framework presented in the former section, the MAML-PPO
will be described in detail for both the training and the
adaptation phases in this section.

1) MAML-PPO for the training phase: As illustrated in
Fig. 4, multiple different scheduling tasks are employed to
generate the training set. As mentioned previously, the training
set is divided into two parts: the support set and the query set.
The support set is used by the task learner (i.e. the inner loop
of the MAML-PPO) to train the task-specific parameters θi
for each task’s RL model. Meanwhile, the query set is used
by the MAML-PPO outer loop to train the MRL parameters
Φ. As listed in Algorithm 1, the MAML-PPO for the training
phase is composed of two loops: the inner loop (see Line
9-14) and the outer loop (see Line 8-16). All the tasks in
the training task set Etrain is addressed one by one in the
inner loop. The parameters of RL models (i.e. PPO’s actor
and critic networks), denoted as θi are first initialized by
the current meta-parameters Φ. These parameters are called
task-specific because they are obtained using the data set of
a task. Then, the RL models are used to interact with the
scheduling environment, which has been modeled as a MDP, to
generate policy πθi and decide the action to be executed. This
interaction yields a support set Msup, which is composed of
some collections of state transitions formatted as {(s, a, r, s′)}.
This set captures a sequence of states, actions taken, rewards,
and the subsequent states resulting from those actions, thereby
forming the basis for the agent to learn. Based on the obtained
support set, the task-specific parameters θi are updated and
optimized using gradient descent method for the PPO loss
L(πθi), which consists of three main components: the clipped
policy loss, the value function loss, and the entropy bonus.
Specifically, the clipped policy loss is given by:

LPPO-clip(πθi) =Et [min (rt(θi)At,

clip (rt(θi), 1− ϵ, 1 + ϵ)At)]
(14)

Algorithm 1 Training Process for Meta-Learning based on
MAML-PPO

1: Input:
2: Training environment tasks Etrain
3: Learning rates α, β
4: Meta-parameters Φ
5: Output:
6: Trained meta-parameters Φ
7: Function TRAIN
8: for each iteration t = 1, 2, . . . , T do: // Outer-loop
9: for Ei ∈ Etrain do: // Inner-loop

10: Initialize task-specific parameters θi ← Φ
11: Generate support set Msup using current πθi

12: Update task-specific parameters

θi ← θi − α∇θiL(πθi ,Msup)

13: Generate task i query replays Mqry,i using π′
θi

14: end for // End Inner-loop
15: Update meta-parameters

Φ← Φ− β∇Φ

|Etrain|∑
i=1

L(π′
θi ,Mqry,i)

16: end for // End Outer-loop
17: end function

where rt(θi) =
πθi

(at|st)
π
θold
i

(at|st) is the importance sampling ratio,

At is the advantage function, and ϵ is a hyper-parameter
that controls the range of the ratio to avoid excessively large
updates.

The complete PPO loss function is defined as:

L(πθi) = LPPO-clip(πθi) + c1Lvalue + c2Lentropy (15)

where:

9

• Lvalue = 1
2 (Vθi(st) − Gt)

2 is the value function loss,
measuring the mean squared error between the estimated
value Vθi(st) and the target return Gt.

• Lentropy = −
∑

a πθi(a|st) log πθi(a|st) is the entropy
bonus, which encourages exploration by penalizing de-
terministic policies.

• c1 and c2 are hyper-parameters controlling the weights
of the value function loss and the entropy bonus, respec-
tively.

RL models with updated task-specific parameters are further
used to generate improved policies π′

θi
to collect the query

set Mqry,i from the environment. Clearly, because of the
task-specific training, the generalization and robustness of
the current RL models are needed to be improved to fit
the dynamic scheduling environment. Thus, the query sets
associated with all tasks in Etrain are further used in the outer
loop to train the RL models. The meta-loss which is a sum
of the losses of all tasks is employed to refine the meta-
parameters of the RL models. After several iterations of the
inner and outer loops, both task-specific and generalized have
been taken into account, and thus the obtained MRL models
can be used to support the further quick fine-tuning of the
models to respond to dynamic manufacturing environments.

Fig. 5: Illustration of the MAML-PPO for Adapting Process

2) MAML-PPO for the Adapting phase: As illustrated in
Fig. 5 and detailed in Algorithm 2, the adaptation phase of
MAML-PPO enables the meta-trained model to quickly adjust
to new scheduling tasks that are caused by the disturbances
occurring in the dynamic manufacturing environment. The
process begins by initializing task-specific parameters θ1 with
the meta-trained parameters Φ. The learner (i.e. the agent
deployed with the trained MRL models) then interacts with
the environment using the current policy πθj to generate a
small number of task trajectories(typically no more than 5),
forming the dataset Dtrain (line 5). These trajectories encap-
sulate essential information about the new task while keeping
the sample size minimal to ensure fast adaptation. Based on

Dtrain, the loss L(θj ,Dtrain) is computed (line 6), and gradient
updates are applied iteratively to refine the actor and critic
networks (line 7). After Niter iterations (typically Niter < 10),
the final adapted parameters θadapted = θN are obtained.
This procedure equips the RL policy with robust adaptability,
allowing it to effectively respond to the unique requirements of
new scheduling tasks and maintain stable performance under
varying operational conditions.

Algorithm 2 MAML-PPO Adapting Phase

1: Input: Meta-trained parameters Φ
2: Output: Adapted parameters θadapted
3: Initialize task-specific parameters θ1 = Φ
4: for each gradient step j from 1 to N do
5: Generating Dtrain for task using πθj

6: Compute loss L(θj ,Dtrain)
7: Update parameters: θj ← θj − α∇θjL
8: end for
9: Update adapted parameters θadapted ← θN

V. EXPERIMENTS

A series of experiments were conducted to evaluate the
performance of the proposed MRL framework for DFJSPs.
To assess the framework’s effectiveness of scheduling, gener-
alization capability, and adaptability to novel environments,
the experimental instances incorporated various disturbance
events, simulating dynamic shop floor conditions. The exper-
iments were carried out on a high performance computational
platform, which provided the necessary processing power
and memory to handle the computational demands of MRL
training and adaptation. The hardware setup consists of two
Hygon 7185 processors, each featuring 32 cores with a clock
speed of 2.0 GHz, 256GB of DDR4 RAM, and an NVIDIA
RTX 3080 GPU equipped with 10GB of GDDR6X memory.

A. Preparatory Works

In this experiment, two preparatory tasks were carried out:
dataset preparation and network design. These steps were
essential for training and evaluating the proposed MRL frame-
work for DFJSP, ensuring robust performance and adaptability
to dynamic manufacturing environments.

1) Datasets: Multiple scheduling tasks are generated to
support the training and testing of the MRL models used in
the proposed framework for DFJSP. In this context, Nj and
Nm denote the number of jobs and machines in the scheduling
tasks, respectively. These scheduling tasks are different from
each other in Nj or Nm because multiple tasks that share
underlying similarities and exhibit distinct differences are
required to achieve meta-learning. To simulate the dynamic
and complex nature of real shop floor environments, two
key factors were taken into consideration. First, dynamic and
unpredictable events were explicitly incorporated, including
emergency job insertions, machine breakdowns, and sched-
uled maintenance. Second, the optimization objectives were
carefully selected. In manufacturing, makespan and energy

10

consumption are key performance metrics, but they often con-
flict—optimizing one may worsen the other. The performance
of these two criteria is shown in Fig. 6. The red line represents
energy consumption performance, while the blue line shows
makespan performance, both normalized across iterations.
Between iterations 100 and 250, a clear conflict emerges:
optimizing for makespan leads to a significant rise in energy
consumption. This highlights the inherent conflict between
optimizing makespan and minimizing energy consumption
in real-world production settings. Thus, both makespan and
energy consumption are incorporated into our dataset, making
it a more accurate representation of the challenges encountered
in dynamic manufacturing environments.

Fig. 6: The trade-off between makespan and Energy Consump-
tion in Scheduling Environment

2) Network Design: Since the DFJSP involves both ma-
chines and the operations executed on them, key informa-
tion is essential for efficient scheduling. This information
includes operation attributes, machine characteristics and the
interactions between them. To handle this information, our
framework deploys several networks. As shown in Fig. 7, the
operation and machine data are processed through separate
attention networks to retrieve features specific to operations
and machines. The output of these attention networks, along
with the interactions between operations and machines, is then
combined to form a comprehensive feature set. This combined
feature set is passed to the PPO networks for decision-making.
The PPO network consists of two components: the policy net-
work, which generates actions, and the critic network, which
predicts value estimates. Both networks are implemented as
multilayer perceptrons (MLPs) with multiple fully connected
layers, allowing for efficient processing and decision-making
in dynamic scheduling environments.

To ensure robust training, different configurations were
systematically tested, and the final hyper-parameters adopted
in our MAML-PPO framework are summarized in Table II.
Consistent with industrial practice, where meeting due times
is often more critical than reducing energy usage, makespan
was given higher priority. Specifically, we applied a weighting
scheme of 0.8 for makespan and 0.2 for energy consumption.
The two objectives can align under certain conditions, exten-
sive testing confirmed that this weighting provides the best

Fig. 7: Network Structure Used in Our Framework

trade-off. This design balances productivity with sustainability,
ensuring that the learned scheduling policy remains both
efficient and practical for real-world applications.

B. Training Model

TABLE II: Hyper-parameters for MAML-PPO

Hyperparameter Value
The learning rate α for the inner loop 6e-4
The learning rate β for the outer loop 6e-4
The number of training steps H 1500
The number of tasks in a batch K 4
Update epoch J 4
The rate of samples for each task’s support set N 0.8
The rate of samples for each task’s query set N ′ 0.2
The learning rate δ for the fine-tuning 6e-4
The number of fine-tuning steps U 5
Factor makespan 0.8
Factor EC 0.2
Discounting factor 1

The training progress, depicted in Fig. 8, demonstrates
the performance of the MAML-PPO approach in optimizing
different objectives within the DFJSP. The figure is divided
into three rows, each representing the training process under
different optimization objectives: makespan (MK), energy con-
sumption (EC), and the combined objective of 0.8MK+0.2EC.
For each optimization objective, the corresponding training
loss, the mean rewards, and the mean objective values are
plotted over time. The results shown in the figure indicate
a continuous improvement in model performance as training
progresses. The decrease in training loss, increase in the
mean reward, and reduction in the mean makespan or energy
consumption demonstrate the effectiveness of the combined
MAML-PPO approach for solving DFJSPs. Moreover, the
figure shows a steady decline in training loss, while the mean
rewards increase. This indicates that the model is effectively
learning and improving its ability to make better scheduling
decisions over time. Additionally, as shown in the figure, the
mean objective values (MK and EC) gradually decrease over
time. This trend further demonstrates the model’s ability to
effectively optimize the job shop environment by improving
both productivity (through makespan reduction) and energy
efficiency (through lower energy consumption). The decreas-
ing values of these objectives indicate that the model is
progressively improving its performance in achieving the dual
optimization goals. This highlights the model’s efficiency in
managing competing objectives within the dynamic produc-
tion environment. However, as depicted in the training data,

11

Fig. 8: Training Curves of MAML-PPO on makespan or EC Tasks in the FJSP. makespan Objective: (a)MAML Training
Loss(MK). (b)Mean Rewards(MK). (c)Mean makespan(MK); Energy Consumption Objective: (d)MAML Training Loss(EC).
(e)Mean Rewards(EC). (f)Mean Energy Consumption(EC); 0.2EC + 0.8MK Objective: (g)MAML Training Loss(MKEC).
(h)Mean makespan(MKEC). (i)Mean Energy Consumption(MKEC).

fluctuations in rewards and objective values appear every 50
iterations. These fluctuations are linked to the MAML meta-
learning environment, where new scheduling tasks are intro-
duced every 50 iterations. As a result, the model experiences a
brief period of adaptation to changing tasks and this adaptation
leads to a temporary instability in performance. This behavior
is not a sign of training failure. It is an expected outcome of the
model adjusting to evolving conditions, which is a common
feature of meta-learning processes. Another significant obser-
vation is that instability in the loss curve emerges during the
later stages of MAML multi-objective training. This instability
indicates a conflict between optimizing MK and EC, which is
a common challenge in multi-objective optimization problems.
As the model focuses on improving one objective at a time,
it can accidentally degrade the other. This creates a challenge
in optimizing both objectives simultaneously. This trade-off
between objectives becomes more evident in the later stages

of training.

C. Evaluation of Model Generalization and Adaptation

To evaluate the generalization and adaptability of the trained
MAML-PPO models in adapting to new tasks, we compared
their performance with three baseline models:

1) Independent Task-Specific Training: In this baseline, the
PPO models are trained separately on each new task. That
is, a specific model can be built for each new task. Thus, it
can serve as a reference for evaluating how well each model
performs under various optimization criteria.

2) Pre-trained PPO models: The PPO models are pre-
trained in the same tasks used to train the MAML-PPO
models. The parameters obtained from this pretraining serve
as the initial values for the PPO models, which are then fine-
tuned to adapt and make decisions for the new tasks.

12

Fig. 9: Adaptation Performance Comparison Among the Mod-
els in Scene: makespan. (a) 10 × 5. (b) 20 × 5. (c) 15 × 10,
(d)20× 10.

Fig. 10: Adaptation Performance Comparison Among the
Models in Scene: Energy Consumption. (a) 10×5. (b) 20×5.
(c) 15× 10, (d)20× 10.

3) Random Initialized models: The PPO models are initial-
ized with random parameters and then fine-tuned via gradient
descent to adapt to the new tasks.

For the first baseline, training the models independently on
each task allowed for a direct assessment of performance with-
out the influence of prior knowledge or shared initialization.
For baselines (2) and (3), the models were fine-tuned to adapt
to the new tasks using multiple steps of gradient descent. In
the experiments, each fine-tuning process involved up to five
gradient updates with 10 sampled trajectories.

Fig.9-11 illustrate the performance comparison between the
MAML-PPO model and the baseline models to adapt to the

Fig. 11: Adaptation Performance Comparison Among the
Models in Scene: 0.8mk + 0.2ec Rewards. (a) 10 × 5. (b)
20× 5. (c) 15× 10, (d)20× 10.

new task with different sizes: 10×5,20×5, 15×10, and 20×10
(denoting the number of jobs and machines, respectively).
The results shown in Fig. 9 were obtained according to the
makespan criteria. It is clear that the task-specific training
model achieved the best results in scenarios (c and d), as these
models are tailored specifically for the new tasks. The results
achieved by fine-tuning the proposed MAML-PPO model
outperformed those of the task-specific training model in sce-
narios (a and b). Compared to the pretrained and randomly ini-
tialized models, the proposed MAML-PPO model consistently
showed the quickest adaptability to new tasks with only five
fine-tuning steps. Although the pretrained PPO model showed
some improvements during fine-tuning, its performance in the
20 × 5 and 20 × 10 tasks was less significant. This was due
to the differences between the tasks it was trained on and the
new tasks to which it needed to adapt. The randomly initialized
model performed the worst in all scenarios. This was because
there was a significant gap between its random parameters and
the optimal ones required for the new tasks. Similar results can
be observed in Fig. 10 where energy consumption was used
as the evaluation criterion. It is important to note that some
fluctuation appeared in the curves of the proposed MAML-
PPO model due to the incorporation of random exploration in
the decision-making process. Additionally, Fig. 11 presents the
fine-tuning curves in multi-objective environments, where both
makespan and energy consumption are included in the reward
criteria (see Equations 17-19). The results in Fig. 11 further
demonstrate the superior adaptability of the proposed MAML-
PPO model compared to the baseline models. These findings
collectively show that MAML-based meta-learning allows
decision-making models to swiftly adapt to new environments
with minimal fine-tuning steps.

As shown in Table III and IV, the proposed MAML-
PPO was compared with three representative methods for the
DFJSP. The optimal results and the computation time for

13

TABLE III: Comparison of Adaption Time (AT) (s) and
makespan (MK) across Different Methods

Size MAML-PPO DANRL PDR(FIFO) GA

10 × 5 MK 444.4 416.0 569.4 359.0
AT 1.50 0.16 0.44 1.01

20 × 5 MK 730.7 767.0 1045.8 718.0
AT 3.05 0.33 0.90 2.62

15 × 10 MK 598.4 613.0 871.1 756.0
AT 4.60 0.51 1.36 4.83

20 × 10 MK 659.0 752.0 1088.1 953.0
AT 6.22 0.70 1.79 5.06

Note: AT denotes the adaptation or model solving time. For MAML-PPO,
AT includes both adaptation and problem-solving time.

TABLE IV: Comparison of Adaption Time (AT) (s) and EC
(KJ) across Different Methods

Size MAML-PPO DANRL PDR(FIFO) GA

10 × 5 EC 7379 6432 9789 7344
AT 1.75 0.62 0.17 4.31

20 × 5 EC 11622 11277 19633 14552
AT 3.45 1.25 0.33 8.08

15 × 10 EC 17582 17002 32806 21898
AT 5.02 1.94 1.36 11.19

20 × 10 EC 19412 21617 44061 27453
AT 7.60 2.65 0.84 14.91

Note: AT denotes the adaptation or model solving time. For MAML-
PPO, AT includes both adaptation and problem-solving time.

various instances with different scales were listed in the tables.
It is clear that the fine-tuning of the MAML-PPO models
was completed in a few seconds that meets the real-world
factory response requirements for new scheduling tasks. Just
focusing on the makespan objective (see Table III), the fine-
tuning time for the MAML-PPO model slightly increased as
the task size grew, ranging from 1.50s for smaller instances
to 6.22s for larger ones. Although this performance is slower
than the DANRL method, the difference is mainly due to the
additional adaptation processes inherent in the meta-learning
approach. In particular, for specific problem configurations
such as 20×10 and 15×10, the MAML-PPO method yielded
better results. This highlights its effectiveness in adapting to
different shop floor scenarios. While the rule-based method
(FIFO) is recognized for its efficiency, its overall perfor-
mance in optimizing makespan fell short in comparison to the
adaptability and effectiveness of our MAML-PPO approach.
The genetic algorithm (GA) showed advantages in smaller-
scale problems (e.g. 10 × 5 and 20 × 5), but its performance
declined significantly in larger-scale problems due to the high
number of iterations required in the algorithm. For the criteria
of energy consumption (see Table IV), the fine-tuning time
for the MAML-PPO model increased from 1.75 seconds to
7.60 seconds as the task size grew. This increase is attributed
to the more complex nature of the EC objective, which
involves additional features (see Equations 3-5) that require
computation. The FIFO method continues to maintain high
efficiency but became increasingly inefficient as task size grew.
Similar to the makespan scenario, the GA experienced a rapid
rise in fine-tuning time with larger task sizes. However, it
should be noted that the performance of MAML-PPO may

not always surpass that of models specifically trained for
each individual task, especially when dealing with highly
complex problems. In such cases, the performance of MAML-
based models may slightly decline, as MAML is inherently
designed to generalize across a broad range of tasks rather
than deeply optimize for any single one. Despite this, the speed
advantage offered by MAML remains significant. For small-
scale problems, MAML might only require a few seconds
to complete fine-tuning, whereas for larger-scale problems, it
may take only a few minutes. In contrast, traditional models
trained from scratch for a single task could take several
hours or more. The substantial reduction in time and resource
costs for training makes MAML an ideal choice for dynamic
environments where rapid adaptation to new tasks is crucial.
This rapid adaptability makes MAML particularly valuable
in time-sensitive situations or environments that require fre-
quent model updates and fine-tuning. MAML’s efficiency in
adjusting to new conditions makes it a highly promising
learning strategy for real-world applications, such as industrial
scheduling, autonomous systems, and dynamic resource allo-
cation. By reducing adaptation time while maintaining strong
performance, MAML offers great potential for environments
that require both quick responses and continuous optimization.

TABLE V: Comparison of Makespan (MK) and Adaption
Time (AT)(s) across Different Methods on Large-Scale In-
stances

Size MAML-PPO DANRL PDR GA

40 × 5 MK 1302 1299 1660 1589
AT 4.85 0.75 1.27 3.00

40 × 10 MK 1109 1017 1735 1412
AT 10.87 1.52 2.75 5.80

40 × 15 MK 895 881 1830 1578
AT 19.76 2.80 4.60 8.63

40 × 20 MK 913 921 2230 1313
AT 31.62 3.12 5.83 11.68

Note: AT denotes the adaptation or model solving time. For
MAML-PPO, AT includes both adaptation and problem-solving
time.

As shown in Table V, the proposed MAML-PPO model
was compared with DANRL, PDR, and GA on large-scale
DFJSP instances. Two aspects are reported: makespan (MK)
and adaptation time (AT). In terms of makespan, MAML-
PPO consistently produced competitive or superior results,
especially in larger instances (e.g., 40×20, MK = 913), where
it significantly outperformed GA (1313) and PDR (2230). This
shows that the meta-learning approach remains stable and
effective as the problem size grows. More importantly, AT
in MAML-PPO does not mean training from scratch. Instead,
it represents the deployment time needed to adapt the pre-
trained model to a new scheduling task. Even for the largest
instances, this time was about 30 seconds, which is acceptable
in industrial practice. Compared with traditional methods that
require long retraining or many iterations, MAML-PPO can
be put into use almost immediately once deployed. There-
fore, beyond algorithmic performance, MAML-PPO offers
clear industrial value: it eliminates costly retraining, enables
rapid deployment, and delivers high-quality schedules under
dynamic and large-scale conditions. This makes it particularly

14

suitable for modern manufacturing systems where both quick
responses and reliable optimization are required.

D. Response to Disturbance Events in various Shop Floor
Configurations

In real-world manufacturing environments, additional fac-
tors such as machine reliability, workforce availability, mate-
rial supply delays, and unplanned urgent orders often introduce
complexities beyond those captured in controlled computa-
tional experiments. To evaluate the proposed solution under
varying conditions, a set of generalized environment settings
was created, varying both the number of jobs and machines.
The number of jobs ranged from 5 to 25 in increments of 3,
while the number of machines followed the same intervals.
The models, including the MAML-PPO model, the model
pretrained on the same task sets, and the randomly initialized
model, were fine-tuned using five gradient updates.

Fig. 12 illustrated the generalizability of the MAML-PPO
model in addressing different FJSPs. Colors were used to
represent the ratio of the completion time of the MAML-
PPO model relative to the other models (pretrained, specific-
task, or randomly initialized models). Importantly, a ratio of
less than 1 indicates that the MAML-PPO model performed
better than the other models under the same number of fine-
tuning steps. Specifically, Figures (a), (b), and (c) highlighted
the performance of the MAML-PPO model when it was
fine-tuned under makespan. It is clear that the MAML-PPO
model outperformed the other methods in most configurations,
especially when the number of jobs exceeded the number
of machines. This highlights the ability of the MAML-PPO
model to adapt effectively to complex scenarios. In Figures
(d), (e), and (f), the performance of the MAML-PPO model
is shown under energy consumption. Similarly, the MAML-
PPO model consistently outperformed the pretrained, specific
task, and randomly initialized models in the majority of
configurations. This further emphasizes the effectiveness of the
model in minimizing energy consumption, even when dealing
with varying complexity in job-to-machine ratios. Overall, the
MAML-PPO model demonstrates excellent generalization and
adaptability across different shop floor configurations.

TABLE VI: Performance Comparison of Different Scheduling
Algorithms Under Dynamic Disturbance Events

Event MAML DANRL GA FIFO

Original makespan 585 588 949 1012
Schedule Time(s) 1.56 1.55 2.33 0.31
Periodic makespan 672 714 984 1071

Maintenance Time(s) 1.45 1.33 2.85 0.27
Machine makespan 639 661 977 1087

Breakdown Time(s) 1.02 1.02 2.14 0.20
Emergency Job makespan 645 671 1013 1189

Insertion Time(s) 1.15 1.34 2.48 0.27

To further assess the effectiveness of the proposed MRL
framework for DFJSP, three typical disturbance scenarios com-
monly observed in real-world shop floors were simulated. As
illustrated in Fig. 13, these disturbances include periodic main-
tenance, predictive maintenance with machine breakdown, and

emergency job insertions, all occurring during the execution of
the original schedule for an initial configuration comprising 17
jobs and 11 machines (17× 11). The proposed MRL method
was employed to regenerate updated schedules to effectively
address and respond to these disturbances. The details of each
scenario are elaborated below.

Response to Periodic Maintenance: In this scenario, cer-
tain machines temporarily become unavailable due to periodic
maintenance. A Gantt chart, illustrated in Fig. 14, visually
compares the original scheduling plan with the regenerated
schedule. From the figure, machine 4, 5, and 6 (M4, M5 and
M6) do not execute any tasks between time units 150 and
270. When the factory specifies the machines scheduled for
maintenance and their respective maintenance periods, these
machines are set to an unavailable state during the given
period to prevent any processing. To maintain production
continuity, operations originally assigned to machines under-
going maintenance can be dynamically reallocated to other
available machines. However, idle times may still occur before
the start or after the completion of the maintenance period,
primarily due to the constraints imposed by the FJSP rules.
During this period, the system transitions from the initial
configuration (17 jobs and 11 machines, labeled as A) to a
reduced configuration (17 jobs and 8 machines, labeled as
B) and this transition is represented by an A → B arrow
in Fig. 13, illustrating the shift in machine availability due
to maintenance activities. The comparison, shown in Fig.
14, clearly highlights the adjustments made to accommodate
machine maintenance. Furthermore, to address this disruption,
the original scheduling solution required adjustments. In our
proposed MRL framework, the adaptation phase was executed
to fine-tune the MRL model and quickly generate an updated
scheduling solution, as shown in Table.VI. According to the
table, the rescheduling process took only 1.45 seconds, demon-
strating the ability of the framework to meet real-time response
requirements in industrial applications. Furthermore, the opti-
mal result obtained by our MAML-PPO is much better than
the ones obtained by both the dual attention network-based
reinforcement learning (DANRL) [6] and GA approaches.
These results highlight the effectiveness of the MAML-PPO
model in adapting to changes in machine availability.

Response to Predictive Maintenance with Machine
Breakdown: Unlike periodic maintenance, predictive main-
tenance occurs without prior planning, as it depends on
predictive analysis of the machine state. Additionally, machine
breakdowns often happen suddenly in this scenario. As a
result, the scheduling system needs to immediately re-assess
the availability of the remaining machines and reallocate
the affected jobs to ensure the continuity of the machining
process. For example, the process from A (17 × 11) to C
(17×10) in Fig. 13 demonstrates the fine-tuning process when
a machine faces predictive maintenance and simultaneously
experiences a breakdown. This transition reflects a new task
with fewer machines being input into the MRL framework for
the DFJSP. As shown in Fig. 15, a machine failure occurred in
machine M4 at time unit 120 that caused an interruption. As a
result, rescheduling was required to reallocate the operations,
originally assigned to M4, to other available machines. From

15

Fig. 12: Comparison of Generalization Performance of Different Models Under Various Disturbance Events. (a) MAML Model /
10×5 Model (makespan). (b) MAML Model / Pre-training Model (makespan). (c) MAML Model / Random Model (makespan).
(d) MAML Model / 10 × 5 Model (EC). (e) MAML Model / Pre-training Model (EC). (f) MAML Model / Random Model
(EC).

Fig. 13: Adaptive Performance of MAML Model in Response
to Disturbance Events

the Gantt chart, a newly generated scheduling plan, which
successfully reassigned the extra tasks from M4 to others,
was produced through our proposed approach. Due to a new
scheduling plan immediately in response to machine failure

Fig. 14: Gantt Chart Representing Predictive Maintenance

or predictive maintenance is critical, we compared the new
scheduling generation time with other algorithms, listed in
Table VI. The results showed that the MAML-PPO model
generated a solution in just 1.02 seconds, outperforming the
results of the DANRL and GA approaches. This demonstrates
that the MRL model can quickly identify jobs that need to
be reassigned and evaluate the capabilities of the remaining

16

Fig. 15: Gantt Chart Representing Machine Breakdown

Fig. 16: Gantt Chart Representing Job Insertion

machines. Moreover, the flexibility of the MAML model
enables it to adapt to various breakdown scenarios, whether
caused by a single machine failure or multiple machines going
offline simultaneously. By efficiently redistributing tasks, the
model prevents bottlenecks, maintains throughput, and ensures
that production targets are met in industrial environments.

Response to Emergency Job Insertion: In contrast to
previous disturbances, the insertion of emergency work in-
volves an increase in the number of jobs. For instance (see
Fig. 13), the configuration changed from managing 17 jobs
on 11 machines A (17× 11) to accommodating 20 jobs with
the same number of machines D (20×11). Upon receiving the
new job request, the job assignments in the existing schedule
and the capacity of the available machines are analyzed to
develop a new scheduling task. As shown in Fig. 16, when an
urgent job is inserted in time unit 120, the proposed MRL
model generates a new scheduling plan by leveraging its
rapid adaptation capabilities. In the new schedule, the newly
added job operations are highlighted in fluorescent yellow in
the Gantt chart. The results showed that the MAML model
effectively balances the emergency job need with ongoing

production demands by optimizing the overall scheduling
strategy. This involves making real-time adjustments to the
job queue and machine assignments, helping minimize idle
time and maximize throughput. Furthermore, shown in Table
VI, the proposed MAML model took only 1.15 seconds to
generate a new plan to address this issue. This demonstrates
the effectiveness of the MAML model in handling such disrup-
tions and highlights its suitability for dynamic manufacturing
environments.

These case studies illustrate the exceptional quick response
capability and adaptability of the proposed MRL model in
managing various disturbance events. It is known that various
disturbance events may occur in the real-world manufacturing
environment. Additionally, a fast and high-quality response
is expected to deal with the sudden disturbances. The pro-
posed MRL model can not only minimize downtime but also
maximize throughput by swiftly reallocating resources and
optimizing job assignments in response to disturbances—such
as machine maintenance, breakdowns, or emergency job inser-
tions. The inherent flexibility of the MRL model ensures that
the scheduling system can promptly adjust to real-world pro-
duction environments, even facing with sudden and unforeseen
disruptions.

VI. CONCLUSION

This paper introduced a novel MRL framework for address-
ing the complex and dynamic nature of FJSPs. By combining
the flexibility of the AMDP with the adaptability of meta-
learning, the proposed approach effectively tackles key chal-
lenges of a dynamic shop floor environment, such as scalabil-
ity, adaptability to dynamic events, and sample inefficiency.
The modular architecture of the framework accommodates
a wide range of dynamic configurations on the shop floor,
including machine failures, insertions of emergency work,
and machine maintenance, allowing real-time adjustments
to scheduling decisions. The incorporation of MAML-PPO
algorithms within the proposed MRL framework significantly
enhances the system’s capacity to generalize across a variety
of tasks and environments. Extensive benchmarking of the
proposed MAML-PPO algorithm across a range of FJSP
scenarios, which include diverse shop-floor configurations,
operational constraints, and unforeseen events, reveals that
the MRL framework outperforms traditional baseline methods,
such as pre-training, random initialization, and task-specific
training, particularly in task adaptation efficiency and address-
ing the complex and dynamic disturbance challenges. Overall,
the proposed MRL framework presents a robust and scalable
solution for DFJSP, offering substantial improvements in both
operational efficiency and flexibility. Future work will explore
additional meta-learning and RL techniques, incorporate more
diverse and realistic dynamic events, and further evaluate
the framework’s adaptability in real-world manufacturing con-
texts, aiming to enhance overall manufacturing performance.

ACKNOWLEDGMENTS

This work was supported in part by the Natural Science
Foundation of China under Grant 61803169 and the Funda-

17

mental Research Funds for Central Universities under Grant
2662018JC029.

REFERENCES

[1] J. Xie, L. Gao, K. Peng, X. Li, and H. Li, “Review on flexible job shop
scheduling,” IET collaborative intelligent manufacturing, vol. 1, no. 3,
pp. 67–77, 2019.

[2] J. Para, J. Del Ser, and A. J. Nebro, “Energy-aware multi-objective
job shop scheduling optimization with metaheuristics in manufacturing
industries: a critical survey, results, and perspectives,” Applied Sciences,
vol. 12, no. 3, p. 1491, 2022.

[3] C. Pickardt, J. Branke, T. Hildebrandt, J. Heger, and B. Scholz-Reiter,
“Generating dispatching rules for semiconductor manufacturing to min-
imize weighted tardiness,” in Proceedings of the 2010 winter simulation
conference. IEEE, 2010, pp. 2504–2515.

[4] L. Zhang and T. Wong, “Solving integrated process planning and
scheduling problem with constructive meta-heuristics,” Information
Sciences, vol. 340-341, pp. 1–16, 2016. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0020025516000037

[5] W. Song, X. Chen, Q. Li, and Z. Cao, “Flexible job-shop scheduling
via graph neural network and deep reinforcement learning,” IEEE
Transactions on Industrial Informatics, vol. 19, no. 2, pp. 1600–1610,
2022.

[6] R. Wang, G. Wang, J. Sun, F. Deng, and J. Chen, “Flexible job shop
scheduling via dual attention network-based reinforcement learning,”
IEEE Transactions on Neural Networks and Learning Systems, 2023.

[7] C. Zhang, W. Song, Z. Cao, J. Zhang, P. S. Tan, and X. Chi, “Learning
to dispatch for job shop scheduling via deep reinforcement learning,”
Advances in neural information processing systems, vol. 33, pp. 1621–
1632, 2020.

[8] A. Nagabandi, I. Clavera, S. Liu, R. S. Fearing, P. Abbeel, S. Levine,
and C. Finn, “Learning to adapt in dynamic, real-world environments
through meta-reinforcement learning,” arXiv preprint arXiv:1803.11347,
2018.

[9] S.-F. Huang, C.-J. Lin, D.-R. Liu, Y.-C. Chen, and H.-y. Lee, “Meta-tts:
Meta-learning for few-shot speaker adaptive text-to-speech,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 30, pp.
1558–1571, 2022.

[10] X. Du, J. Wang, and S. Chen, “Multi-agent meta-reinforcement learning
with coordination and reward shaping for traffic signal control,” in
Advances in Knowledge Discovery and Data Mining, H. Kashima,
T. Ide, and W.-C. Peng, Eds. Cham: Springer Nature Switzerland,
2023, pp. 349–360.

[11] A. Dargazany, “Drl: Deep reinforcement learning for intelligent robot
control – concept, literature, and future,” 2021.

[12] X. Zhang and G.-Y. Zhu, “A literature review of reinforcement
learning methods applied to job-shop scheduling problems,” Computers
Operations Research, vol. 175, p. 106929, 2025. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0305054824004015

[13] H. Wang, J. Cheng, C. Liu, Y. Zhang, S. Hu, and L. Chen,
“Multi-objective reinforcement learning framework for dynamic flexible
job shop scheduling problem with uncertain events,” Applied Soft
Computing, vol. 131, p. 109717, 2022.

[14] J. Kong and Y. Yang, “Research on multi-objective flexible job shop
scheduling problem with setup and handling based on an improved
shuffled frog leaping algorithm,” Applied Sciences, vol. 14, no. 10, 2024.
[Online]. Available: https://www.mdpi.com/2076-3417/14/10/4029

[15] S. Hatami, S. Ebrahimnejad, R. Tavakkoli-Moghaddam, and
Y. Maboudian, “Two meta-heuristics for three-stage assembly
flowshop scheduling with sequence-dependent setup times,” The
International Journal of Advanced Manufacturing Technology,
vol. 50, no. 9, pp. 1153–1164, 2010. [Online]. Available:
https://doi.org/10.1007/s00170-010-2579-5

[16] S. Dauzère-Pérès, J. Ding, L. Shen, and K. Tamssaouet, “The flexible job
shop scheduling problem: A review,” European Journal of Operational
Research, vol. 314, no. 2, pp. 409–432, 2024.

[17] K. Lei, P. Guo, W. Zhao, Y. Wang, L. Qian, X. Meng, and L. Tang,
“A multi-action deep reinforcement learning framework for flexible job-
shop scheduling problem,” Expert Systems with Applications, vol. 205,
p. 117796, 2022.

[18] H. Zhu, M. Chen, Z. Zhang, and D. Tang, “An adaptive real-time
scheduling method for flexible job shop scheduling problem with
combined processing constraint,” IEEE Access, vol. 7, pp. 125 113–
125 121, 2019.

[19] Y. Zhang and Y. Li, “Flexible job-shop scheduling problem based
on markov state decision process,” Journal of Physics: Conference
Series, vol. 2825, no. 1, p. 012013, aug 2024. [Online]. Available:
https://dx.doi.org/10.1088/1742-6596/2825/1/012013

[20] Y. Li, W. Zhong, and Y. Wu, “Multi-objective flexible job-shop schedul-
ing via graph attention network and reinforcement learning,” The Journal
of Supercomputing, vol. 81, no. 1, p. 293, 2025.

[21] S. Xu, Y. Li, and Q. Li, “A deep reinforcement learning method based
on a transformer model for the flexible job shop scheduling problem,”
Electronics, vol. 13, no. 18, p. 3696, 2024.

[22] H. Wang, J. Zhou, and X. He, “Learning context-aware task rea-
soning for efficient meta-reinforcement learning,” arXiv preprint
arXiv:2003.01373, 2020.

[23] C. Liu, Y. Li, C. Huang, Y. Zhao, and Z. Zhao, “A meta-reinforcement
learning method by incorporating simulation and real data for machin-
ing deformation control of finishing process,” International Journal of
Production Research, vol. 61, no. 4, pp. 1114–1128, 2023.

[24] Q. Xiao, C. Li, Y. Tang, and L. Li, “Meta-reinforcement learning of
machining parameters for energy-efficient process control of flexible
turning operations,” IEEE Transactions on Automation Science and
Engineering, vol. 18, no. 1, pp. 5–18, 2019.

[25] D. G. McClement, N. P. Lawrence, P. D. Loewen, M. G. Forbes,
J. U. Backström, and R. B. Gopaluni, “A meta-reinforcement learning
approach to process control,” IFAC-PapersOnLine, vol. 54, no. 3, pp.
685–692, 2021.

[26] L. Niu, X. Chen, N. Zhang, Y. Zhu, R. Yin, C. Wu, and Y. Cao,
“Multi-agent meta-reinforcement learning for optimized task scheduling
in heterogeneous edge computing systems,” IEEE Internet of Things
Journal, 2023.

[27] X. Xiu, J. Li, Y. Long, and W. Wu, “Mrlcc: an adaptive cloud task
scheduling method based on meta reinforcement learning,” Journal of
Cloud Computing, vol. 12, no. 1, p. 75, 2023.

[28] L. Xiong, Y. Tang, C. Liu, S. Mao, K. Meng, Z. Dong, and F. Qian,
“Meta-reinforcement learning-based transferable scheduling strategy for
energy management,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 70, no. 4, pp. 1685–1695, 2023.

[29] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in International conference on
machine learning. PMLR, 2017, pp. 1126–1135.

[30] I. Ahmed, M. Quinones-Grueiro, and G. Biswas, “Performance-weighed
policy sampling for meta-reinforcement learning,” arXiv preprint
arXiv:2012.06016, 2020.

[31] K. Frans, J. Ho, X. Chen, P. Abbeel, and J. Schulman, “Meta learning
shared hierarchies,” arXiv preprint arXiv:1710.09767, 2017.

