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ABSTRACT

1. The Flood Pulse Concept is a foundational ecological theory that emphasizes the critical role of lateral connectivity between a
river channel and its floodplain. Many tropical rivers inundate the surrounding floodplain in the flood stage, thereby receiv-
ing large amounts of terrestrial organic matter that can be decomposed by microbes and directly consumed by animals. This
dynamic could simultaneously drive down oxygen concentrations while also supporting fish production.

2. We used two lines of evidence to investigate the fate of terrestrial organic matter during the low- and high-water seasons in
the Jurud River, Amazonas, Brazil: spot measurements of dissolved oxygen and isotopic measurements (8'3C, 8'°N) of fishes
and food source pathways originating from C3 and C4 plants, phytoplankton, and periphyton.

3. Dissolved oxygen concentrations were low (mean <3.0mg/L) throughout the floodplain during high water, while higher
values (mean =6.5mg/L) were evident during low water, suggesting variable rates of ecosystem respiration, production and
atmospheric exchange across seasons.

4. Most fish species, including the commercially and culturally important pirarucu (Arapaima sp.), had a strong dependence on
terrestrial C3 plants during the falling-water season (median source proportions 34%-77%), while fishes shifted to rely on the
phytoplankton pathway (median proportions 11%-82%) during low water. Our results demonstrate that terrestrial C3 plant
resources are channeled into the food web through detritivorous fishes, such as bodé (Liposarcus pardalis), and frugivorous
fishes, such as pacu (Mylossoma aureum).

5. During high water, a dispersed food web takes shape as fish move into the flooded forest, driven by terrestrial resources and
accompanied by low oxygen conditions. During low water, a concentrated food web emerges in the remaining oxbow lakes,
consistent with fast-growing algal resources.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.
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1 | Introduction

Exchanges of organic matter across ecosystem boundaries pro-
vide resources for the growth of consumers (Polis et al. 1997).
The quality, quantity, timing, and duration of these exchanges
vary seasonally and have concomitant effects on individual con-
sumers and overall food-web structure (Marcarelli et al. 2011;
McMeans et al. 2015; Subalusky and Post 2019; Simon and
Vasseur 2021). Flows of terrestrial plant matter to aquatic eco-
systems are among the highest rates of carbon flux in the world
(Gounand et al. 2018), especially in periodically flooded rain-
forests where rates can reach as high as 10t/ha/year (Chave
et al. 2010). There are two potential fates for this carbon—respi-
ration by microbes via decomposition (Tiegs et al. 2024) and/or
direct entry into the metazoan food web (Marcarelli et al. 2011).

Leaf litter is rarely an important primary resource for aquatic
metazoan food webs (Roach 2013), even when it is abundant,
because it is much poorer quality than algae and phytoplank-
ton (Elser et al. 2000; Hixson et al. 2015; Brett et al. 2017).
For example, in floodplain food webs of open savannas, there
is sufficient attached algal production to make these algae the
dominant source of organic matter for fishes and benthic macro-
invertebrates (Jardine et al. 2012, 2013). Even in some floodplain
ecosystems with greater forest coverage, the fate of most terres-
trial organic matter subsidies is respiration by microbes rather
than incorporation into metazoan food webs (Lewis et al. 2000;
Thorp and Delong 2002; Brett et al. 2017). However, evidence
suggests that terrestrial organic matter can subsidize metazo-
ans in large tropical riverscapes when it is modified by fungi
and bacteria through trophic upgrading (Moore et al. 2004;
Hiltunen et al. 2017) or when it is delivered as nutritious fruits,
seeds or insects (Correa and Winemiller 2014). In these forested
ecosystems, terrestrial organic matter is believed to come to the
trophic rescue of aquatic consumers whose nutritional needs
cannot be met by aquatic productivity alone (Goulding 1980;
Junk and Wantzen 2004). Unlike the aforementioned savanna
floodplains, many large tropical riverscapes have reduced algal
productivity due to shading and low nutrient concentrations
(Bayley 1989). The original flood-pulse concept envisages an
aquatic-terrestrial transition zone where growth of aquatic
plants occurs in newly flooded areas coincident with leaf-litter
breakdown (Junk and Wantzen 2004). Therefore, unlike in
other global riverscapes, we hypothesize that terrestrial organic
matter resources substantially subsidize both the microbial and
metazoan food webs in forested tropical floodplains, especially
in the high-water season compared to the low-water season
(Wantzen et al. 2002; Venarsky et al. 2020). To test this hypoth-
esis, we combine measurements of the oxygen environment
(indicators of the relative balance of primary production and
ecosystem respiration) with isotopic analyses of fishes to reveal
the likely role of terrestrial organic matter in both metazoan and
microbial food webs (Marcarelli et al. 2011).

Most rivers are net heterotrophic (Battin et al. 2023), driven by
organic matter inputs that are respired by microbes (Duarte and
Prairie 2005). In tropical systems, rates of primary production
and respiration mirror those of temperate systems, with larger
rivers having higher production and respiration rates (Marzolf
and Ardén 2021). Warm temperatures in the tropics likely lead to
persistently high respiration rates because respiration increases

linearly with temperature across biomes (Yvon-Durocher
et al. 2012). In larger tropical rivers and their floodplains, oxy-
gen measurements are rare, likely owing to logistical challenges
in accessing often remote, dynamic systems. Prolonged bouts of
hypoxia in large tropical river floodplains suggest intense res-
piration of decaying leaves and soil organic matter (Hamilton
et al. 1997; Lewis et al. 2000; Holtgrieve et al. 2013), but the up-
take of this organic matter into the metazoan food web has not
been demonstrated (Lewis Jr et al. 2001).

The source pathways supporting the biomass of fishes and other
aquatic consumers can be revealed with ecological tracers be-
cause the chemical fingerprints of sources are often distinct
and preserved from the bottom of the food chain to top pred-
ators. Stable isotopes of C and N show how different sources
(e.g., algae, aquatic plants, leaf litter) contribute to animal nu-
trition (Jardine et al. 2017). Early work in Amazonian systems
identified that many fishes rely on phytoplankton rather than
higher plants, while C4 aquatic plants were not being consumed
in the food web despite their numerical abundance (Hamilton
et al. 1992; Forsberg et al. 1993). Knowing the origins of organic
matter in the animal food chain can reveal much about ecosys-
tem stability (Rooney et al. 2006) and the need to maintain or en-
hance certain source pathways for conservation (Vadeboncoeur
et al. 2003), but it also has implications for exposure to contam-
inants, such as mercury, that are derived from the diet (Nyholt
et al. 2022).

Our goal was to determine the importance of terrestrial organic
matter to food webs in oxbow lakes of a large Amazonian tribu-
tary, the Jurué River, Brazil. Previous work in this system sug-
gests top-down control by arapaima (Arapaima sp., also known
as pirarucu) that would imply feeding on a phytoplankton path-
way during low water (Campos-Silva et al. 2021). However,
observations of forest feeding by fishes in the region, the high
prevalence of detritivory in the fish community, and the pro-
longed flood pulse would suggest a potential role for terrestrial
organic matter in aquatic food webs. We therefore hypothe-
sized that food webs would shift from those supported by algal
organic matter in the low-water season to a dominance of ter-
restrial organic matter in the high-water season, and that these
shifts would be accompanied by changes in oxygen concentra-
tions as indicators of whole-ecosystem metabolism (primary
production and respiration). We used C and N stable isotopes to
estimate dietary source proportions for fishes in the low-water
and falling-water seasons, the latter representing growth during
the high-water season. We complemented these estimates with
spot measurements of dissolved oxygen (DO) in high- and low-
water seasons to infer the role of forest litter in metazoan and
microbial food webs.

2 | Methods
2.1 | Study Area

We sampled oxbow lakes and the main channel of the Jurua
River in Amazonas, Brazil (Figure 1), one of the largest trib-
utaries (~3280km long) of the Amazon River. Human pop-
ulation density in the basin is low, and there are two large
protected areas (the Médio Jurua Extractive Reserve and the
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FIGURE 1 | Sampling locations for food-web samples (fishes and
baseline organisms) and dissolved oxygen measurements along the
Jurud River, Brazil.

Uacari Sustainable Development Reserve) in the study region.
Though some of the study lakes are outside of the protected
areas, all are surrounded by intact forest with limited agri-
cultural development, urbanization or mineral extraction.
The Jurud River was declared a Ramsar site in 2018 and has a
highly rhythmic flood pulse (Jardine et al. 2015) with consis-
tent timing and magnitude of floods each year. Discharge typ-
ically peaks between 8000 and 9000 m3/s in April and drops
to ~1000m?3/s in September (Jackson et al. 2022). Oxbow lakes
remain connected to the river for approximately 6 months
before receding and disconnecting, leaving high densities of
fishes (Silvano et al. 2000) that are captured by local commu-
nities for subsistence and some commercial fishing (Newton
et al. 2012; Endo et al. 2016; Ferreira et al. 2021). Lakes are
designated with different levels of local protection from fish-
ing to rebuild populations of the iconic arapaima, a valuable
resource (Campos-Silva and Peres 2016). Fish and food-
web sampling took place in the same lakes during the low-
and falling-water seasons 8 months apart in a paired design
(Table S1), whereas DO measurements were made opportunis-
tically at different locations and times but in the same reach
of the river (Figure 1). While we did not link the DO measure-
ments directly to the food web measurements, we used the
two as parallel lines of evidence to infer the role of terrestrial
inputs in food web structure and ecosystem metabolism.

2.2 | Dissolved Oxygen Measurements

We measured DO concentrations during high water in 2years
(Table S2). First, we took depth-specific measurements from
31 oxbow lakes during late March and April 2017, all of which
were connected to the main river channel by floodwaters. We
used a DO probe and sampled at 30cm increments for the 1st
meter and every 1 m thereafter until we reached bottom, using
these measurements to assess stratification. Later, in April 2023,
we used a simple titration kit (Hach Model OX-2P) to estimate

surface-water DO concentrations in 13 locations across the
floodplain, again at locations that were connected to the main
channel. Though this kit likely produced less sensitive and pre-
cise DO readings, we assumed similar accuracy as the probes
that we used elsewhere and applied this method to examine
general patterns in these remote areas. We followed the man-
ufacturer's protocol by adding supplied reagents to a measured
volume of water, mixing and adding a solution drop by drop
until the sample became clear. Measurements were taken as
early in the day as possible to capture DO minima and again as
late in the day as possible to capture DO maxima. We tested at a
range of sites, from the main river channel to deep (> 1km) into
the floodplain forest as well as in oxbow lakes. At each site we
qualitatively described the canopy cover as open, partially open,
or closed and took readings of temperature, pH and conductivity
with a handheld device (Hanna) as well as a Secchi depth read-
ing (Table S2).

During the low-water season, we used Hobo oxygen loggers sus-
pended just below the surface to measure DO in eight oxbow
lakes in September 2022. All of these sites were either com-
pletely disconnected from the main channel or had small chan-
nels draining water away from the lake at the time of sampling.
We were unable to obtain depth-specific data during this season
with this method and assume that lakes may have been ther-
mally stratified at this time, with correspondingly variant DO
concentrations in the epilimnion and hypolimnion (Tundisi
et al. 1984). Though we obtained continuous data for 24-48h at
each lake, we report here the mean, minimum and maximum
for sites between the hours of 06:00 and 18:00 to allow direct
comparison with our spot measurements during the high-water
season, and group the data as two times of day—early (06:00
to 12:00) and late (12:00 to 18:00) - to reduce confounding diel
variation. All of these sites had open canopies and we also took
readings of pH, temperature, conductivity and Secchi depth.

2.3 | Food-Web Sample Collection

We collected muscle tissue samples from the dominant fish
species during the low-water season in September 2018 and
again during the falling-water season in June 2019. Fishes were
captured with gill nets by local community members in dis-
connected oxbow lakes and therefore represent the most numer-
ically abundant large-bodied species but not the overall diversity
of the community. We removed muscle samples from above the
lateral line of each fish and stored these samples frozen until
they were transported to the laboratory at the Instituto Nacional
de Pesquisas da Amazonia in Manaus, Brazil for processing.

To represent the basal source pathways available to fishes,
we used a mix of primary producers and primary consum-
ers (Jardine et al. 2017). We used primary consumers when
possible because they have less temporal isotopic variation
relative to primary producers (Cabana and Rasmussen 1996)
and therefore represent longer-term average isotope values for
the source of interest (Finlay 2001; Post 2002). For the phy-
toplankton baseline, we collected zooplankton using multiple
vertical hauls of a plankton net in the center of each oxbow. For
the periphyton baseline, we collected snails (Ampullariidae)
by hand in shallow areas. Although Ampullariidae eat a
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TABLE1 | &"Cand 8N values of sources used in the isotope mixing models.

Low-water season

Falling-water season

Mean Mean
N Meand3C +£SD 15N +SD N Meand®C  £SD 15N +SD
Benthic algae (estimated 7 -27.8 5.3 4.5 1.6 7 =259 6.2 6.2 1.5
from snails)
C3 plants 22 -30.8 1.2 3.1 2.0 24 -31.0 1.6 3.4 1.5
C4 plants 2 -13.0 0.2 5.9 2.2 2 -13.0 0.2 5.9 2.2
Phytoplankton (estimated 33 —-35.6 5.1 5.6 1.6 29 —40.9 2.6 6.8 0.7

from zooplankton)

mixed diet that includes attached algae (Lépez-van Oosterom
et al. 2016), these snails were the best representative of the
benthic pathway because obligate scraping insects (e.g., may-
flies) are rare in these systems. For the terrestrial baseline, we
collected leaves that had fallen into the water and rinsed them
of attached algae, as well as fruits and seeds gathered from the
forest floor. Though aquatic plants were relatively rare, espe-
cially during the low water phase, we collected any that were
seen and stored them separately, using the isotope data to de-
termine whether they used the C3 or C4 photosynthetic path-
way (Ehleringer and Cerling 2002). All samples were stored
frozen on board a research boat and transported to Manaus
for processing.

In Manaus, samples were freeze-dried and ground to a powder.
Samples were weighed to 1 mg (animal tissue) or 4mg (plant
tissue) and shipped to the University of California Davis Stable
Isotope Facility for analysis. Samples were combusted in a PDZ
Europa ANCA-GSL elemental analyzer and resultant gases de-
livered to a PDZ Europa 20-20 isotope ratio mass spectrome-
ter (Sercon Ltd., Cheshire, UK). Standards that were analyzed
alongside samples had standard deviations of ~0.2%. for 8'3C
and ~0.3%o for 8°N.

2.4 | Data Analysis

For the isotope data, we first lipid-corrected all fish 8'3C values
using C/N ratios as a proxy for lipid content and the formula
for all fish tissues (8'*C_ ,=8"C +3.093 xIn(C/N) —2.976) from
Logan et al. (2008). We then ran mixing models using MixSIAR
(Stock et al. 2018) in R v. 4.3.1 with four basal sources (Table 1)
after correction for trophic enrichment. To do so, all basal
sources needed to be standardized to the same trophic level
(primary producers) (Jardine et al. 2017). To estimate the phy-
toplankton baseline value, we subtracted mean trophic discrim-
ination values of 0.4%o (Post 2002) and 0.6%. (Bunn et al. 2013)
from the mean zooplankton 8'3C and 8N values, respectively.
For the periphyton baseline, we subtracted these same amounts
from the mean snail values. For C3 and C4 plants, we used the
isotope values of the plants themselves, grouping leaves, fruits/
seeds and C3 macrophytes together into a C3 plants category be-
cause their isotope ratios were similar. Even though C4 plants
were isotopically distant from all consumers, suggesting a lim-
ited role in the food web, we retained this source in the model
because eliminating sources that contribute minimally can

distort the mixing polygon and give erroneous source propor-
tion estimates (Phillips et al. 2014). There were no significant
differences in source values between seasons (Friedman test;
813C p=0.56, 8'°N p=0.08), but the probability value was low
indicating a possible type II error. Therefore, we used season-
specific source values in the mixing models to attempt to tempo-
rally match values with fish consumers.

We grouped the fish community into three trophic catego-
ries. Herbivore-detritivores included bodé (Liposarcus par-
dalis), curimata (Prochilodus nigricans), pacu (Mylossoma
aureum), tapioca (Potamorhina pristigaster) and tambaqui
(Colossoma macropomum). Omnivores included cichlids,
characids, pimelodids, tripotheids, and anostomids. Predators
included arapaima, aruana (Osteoglossum bicirrhosum), pi-
ranha (Serrasalmidae), tucunaré (Cichla spp.), and traira
(Hoplias malabaricus). For each of the categories, we applied
8N trophic discrimination factors from basal source to con-
sumer estimated from Bunn et al. (2013). These values were
3.9%o £ 1.4%o0, 4.3%0 £ 1.5%0, and 5.7%o + 1.6%o, respectively for
herbivorous-detritivorous species, omnivorous species, and
predatory species. For 8!13C trophic discrimination, we used the
value of 0.4%o + 1.3%0 from Post (2002) and applied it increas-
ingly from 0.4%o + 1.3%o for herbivorous-detritivorous species,
to 0.6%o + 1.3%o for omnivorous species, and 0.8%o + 1.3%o for
predators as we assumed herbivore-detritivores would be one
trophic level above basal sources, omnivores would be 1.5 tro-
phic levels above basal sources, and predators would be two
trophic levels above basal sources. In MixSIAR, we ran one
model for each season with uninformative priors (25% con-
tribution from each of the four sources), separated by trophic
group with lake as a random factor. We used the “normal” run
time function for all model runs, which includes 3 chains, a
chain length of 100,000 and burn-in of 50,000. Models have
failed to converge when Gelman-Rubin values are >1.05 (a
value of 1 indicates convergence) and more than 5% of Geweke
z-scores fall outside the 95% confidence interval comparing
the first and second parts of the chain (+1.96 standard devi-
ations). When this occurred, we re-ran the model in “long”
or “very long” mode and used outputs from the latter models
(Table S3). We then used the lake- and species-specific me-
dian values produced by MixSIAR to test for seasonal effects
in source proportions, with season as a fixed factor and spe-
cies nested in lake as random factors in a linear mixed effects
model with the R package lme4 (Bates et al. 2015). Model
assumptions were evaluated by examining residuals versus
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fitted values and Q-Q plots. We used the model estimates and
associated error (standard error and 95% confidence intervals),
rather than p-values, to compare among seasons and sources.

3 | Results
3.1 | Dissolved Oxygen Concentrations

Oxbow lakes were well mixed during the high-water season with
limited evidence of thermal stratification except for a few of the
lakes (Figure 2). Dissolved oxygen concentrations were always
below 5mg/L (66% saturation) and declined with depth in some
lakes (Figure 3). The mean concentration was 2.9mg/L (36%
saturation, n =417 observations). Likewise, DO concentrations
measured throughout the flooded forest during the high-water
season were also low, indicative of hypoxic conditions in some
cases (Figure 4a). Despite sampling at the end of sunny days in
open waters (the main river channel and oxbows), concentra-
tions were always below 5.5mg/L and averaged 3.0mg/L, corre-
sponding to 38% saturation (n =25 observations). Concentrations
were generally lowest early in the day and under closed canopies,
with our lowest reading of 0.2mg/L occurring at 08:15 under
a partial canopy. The pH values were always below 7.0, rang-
ing from 5.5-6.8, and temperatures were high, ranging from
26.1°C to 33.0°C (Table S2). Variability among sites was much
smaller in the floodplain during high water (Figure 4a) than in
the lakes during low water (Figure 4b), when mean daytime DO
concentrations ranged from 3.1-9.2mg/L (mean=6.5mg/L).

During low water, pH averaged 6.5 (range = 5.5-7.5), conductiv-
ity ranged from 0 to 125uS/cm, and Secchi depths ranged from
12 to 65cm (Table S2).

3.2 | Stable-Isotope Ratios

Mean isotope values for basal sources were well differentiated
in dual isotope space (§'°N vs. 813C biplots, Figure 5), but there
was considerable variation within sources (Table 1). As ex-
pected, phytoplankton (estimated from zooplankton) were 13C-
depleted relative to the other sources, averaging —37.7%o. across
all sites and times. C3 plants also had relatively low 8§'3C values
(mean =—30.9%o), but their §'°N values were lower than those of
plankton. Periphyton (estimated from grazing snails) had higher
813C values (mean = —26.4%.) than both plankton and C3 plants,
but this source was the most variable (range —34.7%o to —18.0%o).
C4 plants were enriched in 3C (mean 8'3C = —13.0%o) relative to
all sources and had elevated 8'°N values (mean = 5.9%o), but the
sample size for this group was small (n=2).

Fishes had a broad range of 8'3C values but a relatively nar-
row range of 8"°N values (Figure 5). During the low-water sea-
son, among the herbivore-detritivores, bodé and curimata had
low (mean=-31.5%0 and —32.2%0) but variable (—37.2%o to
—25.8%0 and —36.0%o to —27.1%oc) 8'3C values, while pacu had
more constrained §'3C values (mean=—26.9%o, range —27.8%o
to —25.8%o) (Figure 5a). The mean 8'3C value during the low-
water season for all herbivore-detritivores was —31.5%o =+ 3.3%o.
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FIGURE 3 | Dissolved oxygen concentrations (mg/L) versus depth in oxbow lakes of the Jurud River during the high-water season, highlighting

low and stable DO concentrations throughout the water column in most lakes.

During the falling-water season, these isotope patterns largely
held (Figure 5b), and pacu and tambaqui became more dom-
inant in the sample, making up 51% of the individuals as op-
posed to only 16% in the low-water season. This led to a slightly
higher mean 8'3C value for all herbivore-detritivores during the
falling-water season (—30.6%0+4.1%0) (Figure 5b). Omnivores
had a wide range of 8§'3C values (—35.6%0 to —26.9%0) during
the low-water season and a mean value of —30.5%o %+ 2.7%o, but
comparisons to the falling-water season were made difficult
by relatively small sample sizes for omnivores in the latter sea-
son. As expected, omnivores had 8'°N values between those of
herbivore-detritivores and predators in both seasons. Predators
had the highest 8'3C values (low water=—30.1%o=*1.9%o,
falling water=-29.7%0+1.8%0) and &N values (low
water =10.4%o %+ 0.9%o, falling water =10.7%o % 0.6%o.), but vari-
ation among individuals was lower than that in herbivore-
detritivores and omnivores.

3.3 | Mixing-Model Outputs

Mixing models suggested seasonal shifts in sources used
by fishes (Figure 6, Table S4). During the falling-water
season, the C3 plant pathway made the greatest contri-
bution, accounting for more than 50% of the diet in her-
bivore/detritivores (estimate =0.52+0.05SE, t=10.74),
omnivores (estimate=0.63+0.04SE, t=16.16) and predators
(estimate=0.51+0.02SE, t=23.08). Species that had the high-
est contribution from this pathway in this season included

bodd, pacu, and arapaima (Table S4). As evidenced by non-
overlapping 95% confidence intervals, the contribution of the C3
plant source significantly declined in all three trophic groups
between the falling-water and low-water seasons, with low-
water season estimates of 0.24+0.04SE, 0.12+0.00SE, and
0.15+0.02SE for herbivore/detritivores, omnivores, and pred-
ators, respectively (Figure 6). During the falling-water season,
phytoplankton made only a minor contribution to diets, but
this increased significantly during the low-water season. In
herbivore/detritivores, phytoplankton contributions increased
from 0.32+0.06SE (t=5.34) to 0.49+0.05SE (t=3.30); in om-
nivores it increased from 0.12+0.07SE (t=1.7) to 0.46 +0.07 SE
(t=4.74); and in predators it increased from 0.19+0.03 (t=6.75)
to 0.51+0.02SE (t=14.06). Like the corresponding decrease
in C3 plant importance, the increase in phytoplankton pro-
portions was significant between seasons for all three trophic
groups. Species with the largest contributions from plankton in
the low-water season were the herbivores curimata and tapioca
and the predators piranha and tucunaré (Table S4). Periphyton
made only modest contributions to diet with slight increases
between the falling-water and low-water seasons. The highest
proportions were for omnivores in the low-water season, with
an estimate of 0.26 +0.04 (t =4.58). C4 plants played the smallest
role in fish diets, with model estimates below 0.10 for all seasons
and trophic groups except herbivore/detritivores in the falling-
water season, when the estimate for this source was 0.14 +0.01
(t=9.66). This slightly higher value was driven by pacu and tam-
baqui that had median contributions of 0.24 and 0.27, respec-
tively (Table S4).
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Dual-isotope biplot of fishes and baseline organisms in the Jurud River during (A) low-water and (B) falling-water. Note that C4

macrophytes are not shown on the plot for clarity but were included as a potential source in mixing models. Sample sizes for baseline organisms are

in Table 1.

4 | Discussion

We found evidence for seasonally alternating energy channels
(Rooney et al. 2006) that supported the fish community in the
Jurud River. During the falling water period, fish diets depended
more on C3 plants originating from the surrounding forest, in-
dicating enhanced consumption of these resources during flood
conditions, consistent with our hypothesis and earlier stud-
ies of seasonal effects in other tropical freshwaters (Wantzen
et al. 2002; Neves et al. 2021). These food-web results, coupled
with the low DO concentrations measured in floodwaters, in-
dicative of low primary production and/or high respiration
(Tundisi et al. 1984), suggest a role for forest resources in driving
both microbial and metazoan food webs (Marcarelli et al. 2011;
Brett et al. 2017) in this densely forested region.

Few other studies have tracked metazoan food web source pro-
portions over multiple seasons in the tropics. The shifts that we
hypothesized and observed from algal dominance in the low-
water season toward more terrestrial resources in diets during
the high-water flood season align with similar observations in
an Australian tropical floodplain river (Venarsky et al. 2020),
where the fish community dominated by invertivore/piscivores
had the highest terrestrial-carbon proportions in tissues during
the early dry season. Likewise, Wantzen et al. (2002) observed
lower 8'3C and 8N values in various species during the wet
season that suggested increased consumption of terrestrial re-
sources. In contrast, Pease et al. (2020) found limited evidence
for large seasonal shifts in diet in the fish community in the La
Venta River, Mexico. Terrestrial plants supported some species in
some locations, and this support occurred during the dry season
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in some cases (Pease et al. 2020). Cazzanelli et al. (2023) found
limited input to floodplain-lake food webs by riparian carbon
sources (<20% contribution) in the Usumacinta River, Mexico,
though they did find slightly higher contributions during the dry
season, opposite to our observations. Identifying the timing of
resource shifts is complicated by rates of isotopic turnover in re-
sponse to these shifts. While young and rapidly growing fishes
are expected to equilibrate quickly with the isotope ratios of the
new diet (Vander Zanden et al. 2015), larger adult fish, such as
those we sampled here, could exhibit long lag times that mask
seasonal variation in diet.

Dissolved oxygen concentrations in large waterbodies are driven
by three main factors: respiration, primary production, and
atmospheric exchange, and the balance of these dictates mea-
sured values. Our low DO values in the Jurua floodplain during
high water (~0 to 6 mg/L) are comparable to those reported by
Holtgrieve et al. (2013) for a flooded-forest section of the Tonle
Sap in the lower Mekong River, Cambodia. In our study system,
even areas with open canopies (oxbow lakes) had low O, con-
centrations during high water. Since rainwater is expected to be
well-oxygenated (Valappil et al. 2020), the low values suggest
that river waters that dominated water balance in flooded con-
ditions had inadequate turbulence/entrainment to replenish low
0, levels found in the hypolimnion of these lakes. Additionally,
plankton or submerged vegetation O, production rates were low

and probably could not counteract the respiration of organic
matter throughout the forested environment (Gagne-Maynard
et al. 2017). Conversely, the higher values we observed during
low water (Tundisi et al. 1984) suggest intense phytoplankton
production in the epilimnion of oxbow lakes during this phase,
with maximum daily O, concentrations as high as 12.3mg/L,
corresponding to 179% saturation, following rapid increases
during daylight. These results align with those measured in the
lower Amazon Basin, where the low-water season was charac-
terized by high O, concentrations and low CO, concentrations,
while the high-water season had low O, concentrations and
high CO, concentrations (Gagne-Maynard et al. 2017). High
CO, concentrations also occur in flooded forests of the central
Amazon (Abril et al. 2014), indicative of respiration exceeding
photosynthetic oxygen production, and can be attributed to
the combined effects of aerobic respiration and root respiration
(Amaral et al. 2020). Together, this supports our second hypoth-
esis that shifts in food webs are accompanied by changes in DO
concentrations and lends further support to the idea that these
systems alternate between aquatic and terrestrial production
and consumption phases. Further work examining rates of gross
primary production and respiration as well as algal biomass in
different seasons would help further characterize these patterns.

Multiple terrestrial organic matter sources likely contribute to
fish diets during the high-water season, including fruits/seeds,
tree leaves, and terrestrial insects (Correa and Winemiller 2014;
Bokhutlo et al. 2021). We could not isotopically differentiate feed-
ing on these different forms of terrestrial organic matter from
each other or from C3 aquatic plants. However, in the densely
forested floodplain of the Jurua River, these latter aquatic plants
are relatively uncommon, unlike expansive mats formed in
tropical floodplains elsewhere (e.g., Orinoco River, Venezuela,
Hamilton et al. 1992; Magela Creek, Australia, Pettit et al. 2011;
Ouémé River, Benin, Jackson et al. 2013). As for differentiating
among terrestrial sources, the feeding ecology of individual
species can help identify the most likely pathway. Known fru-
givores pacu and tambaqui represented a larger proportion of
the catch in the falling water season. These species have fuller
stomachs and higher fruit consumption during the high-water
season (Da Silva et al. 2000; Mateus et al. 2022) which would
explain why the C3 plant contribution was highest during this
season. They had 8'3C values (~—26%.) that were very similar
to frugivores in another Amazonian flooded forest (Correa and
Winemiller 2014). Detritivores had far more variable isotope ra-
tios indicating a range of source contributions from plankton,
periphyton, and leaves, but direct consumption of conditioned
terrestrial leaves was likely responsible for the high proportion
of C3 plants in benthic-feeding bod¢. Finally, terrestrial organic
matter could enter these food webs via dissolved organic carbon
originating from decaying leaves (Baldwin et al. 2016; Saintilan
et al. 2021), which would occur with a time lag since the leaves
were deposited. However, we were unable to test for the impor-
tance of this microbial pathway in these systems.

Use of additional tracers such as compound-specific amino acids
or fatty acids (Nielsen et al. 2018) could help further resolve if
and how detrital carbon enters the metazoan food web via fungi
or other microorganisms, as well as reveal the nutritional qual-
ity of different resources. Many of the fish muscle samples had
surprisingly high lipid content, evidenced by an oily appearance
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and texture and by high elemental C/N ratios (e.g., 43 of 85 ara-
paima samples had C/N>5 corresponding to % lipid as high
as 15%; Post et al. 2007, Logan et al. 2008). Since aquatic mi-
croalgae are a major source of long-chain omega-3 fatty acids
(Harwood 2019) and they are concentrated by zooplankton
(Brett et al. 2009), determining the concentrations and origin
of these compounds in fish muscle would reveal much about
whether the forest-litter subsidy is providing lipid resources or
whether low-water season consumption of zooplankton (or zoo-
planktivorous fishes) instead is responsible for lipid provision.
Elsewhere, zooplankton blooms occur in slow-moving water on
floodplains (Furst et al. 2014; Yanygina et al. 2024) and can pro-
vide high-quality food for fishes resulting in faster growth rates
(Holmes et al. 2021).

Variation in diet among species will also affect exposure to
mercury (Nyholt et al. 2022), which is presumed to be naturally
high in the region and could be enhanced by the annual flood
conditions (Kasper et al. 2017). For example, bodé had higher
mercury concentrations during the falling-water season after
flooding (Nyholt et al. 2022), while pacu had consistently low
mercury concentrations during both seasons (T. Jardine, unpub-
lished data). As a result, predators feeding on these herbivorous
species, including humans (Passos and Mergler 2008), will sim-
ilarly experience differential mercury exposure, and additional
shifts in trophic positions of predators (McMeans et al. 2019)
will influence their mercury concentrations across seasons
(Nyholt et al. 2022).

Predators are connected to the terrestrial organic matter
pathway by consuming prey that have directly ingested var-
ious forest resources. For example, arapaima move up an
elevation gradient into flooded forests during high water
(Castello 2008; Campos-Silva et al. 2019) where they encoun-
ter prey species that are feeding on forest resources, including
pacu (Jacobi et al. 2020). Other predators that consume an array
of herbivorous-detritivorous and omnivorous fishes and those
that consume terrestrial insects (Neves et al. 2021) will also
obtain forest-derived nutrition (and mercury) via those species.
As such, the Jurud River expresses strong seasonal variation in
food-web composition. During the low-water season, food webs
are largely driven by fast-growing plankton and are constrained
to oxbow lake habitats when arapaima exert top-down control
on resources (Campos-Silva et al. 2021). During the high-water
season, the food web drastically shifts toward a dispersed food
web during floods when forest resources are channeled from
the bottom up to top predators (Wantzen et al. 2002; McMeans
et al. 2015; Neves et al. 2021), potentially weakening density-
dependent interactions and releasing prey species from preda-
tion pressure and competitive exclusion. As such, maintaining
intact forests (de Resende et al. 2019) and hydrological connec-
tivity between the main river channel, the floodplain and the
forest (Hurd et al. 2016) will ensure the long-term sustainabil-
ity of vital fisheries resources in the region. Diversity (Correa
et al. 2025) and productivity (Castello et al. 2019) of Amazon
fisheries are intimately linked to flood pulses, and such pulses
are being increasingly threatened by upstream water resource
development (Forsberg et al. 2017).

We demonstrated evidence for forest resources in the diets
of fishes in a tropical-rainforest floodplain, but the sources of

production underpinning floodplain-forest food webs differ
from those in floodplain—savanna food webs, and patterns of
primary production and respiration may also differ. In savanna
floodplains, high nutrients and high light availability during
the flood stage trigger strong growth responses in phytoplank-
ton (Heberg et al. 2002) and periphyton (Jackson et al. 2013;
Adame et al. 2017), which can lead to their greater importance
in the food web (Jardine et al. 2012, 2013; Jackson et al. 2013).
Lower rates of organic-matter inputs in savanna systems likely
lead to reduced respiration as well. For example, Holtgrieve
et al. (2013) reported higher DO in open water versus flooded
forest in the Tonle Sap floodplain. In the savanna-dominated
Zambezi/Chobe floodplain, DO values were higher during high
water (5.7 mg/L) versus low water (4.3 mg/L). Likewise, DO con-
centrations in the savanna Mitchell River floodplain averaged
5.6mg/L (T. Jardine, unpublished data) and always exceeded
5.0mg/L, unlike the multiple instances of hypoxia we report
here. Given that rates of aquatic primary productivity in shaded
headwater streams tend to be much lower than those of open-
canopied mid reaches of rivers (Marzolf and Ardéon 2021) and
that the light environment and organic matter load both affect
ecosystem metabolism, we should expect higher ratios of pri-
mary production to respiration in open-canopied floodplain
systems with fewer organic-matter inputs from the surrounding
catchment. This hypothesis warrants testing with a broad scale
comparison among tropical biomes that takes into consider-
ation the relative proportions of flooded forest and open canopy
(Abril et al. 2014). Such an analysis would build on the results
presented here and allow greater understanding of the relative
importance of forest resources for both ecosystem metabolism
and fisheries production.
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