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ABSTRACT This study demonstrates a data-driven decision support system to aid in rectification of
prosthetic sockets aimed at improving overall comfort perceived by amputees. Prosthetic technology,
particularly in the realm of socket design, plays a pivotal role in rehabilitation for individuals with limb
amputations. Prosthetic sockets, which serve as the critical interface between the residual limb and the
artificial limb, enable amputees to walk without the need for invasive implants that connect directly to the
bone of the residual limb. This study focuses on the role of intra-socket pressure in socket performance and
its impact on optimal socket rectifications for improving comfort in transfemoral amputees. Employing thin
Force Sensing Resistor (FSR) sensors, the research measures dynamic pressure variations across individual
gait cycles. To explore the effects of altered pressure distribution on socket performance, a clinical trial
was conducted consisting of four different socket configurations across several participants, one of which
was with no pad inserted and three of which incorporated a silicone pad to modify the dynamic pressure
profiles. With data from multiple participants including specific dynamic pressure features extracted from
FSR sensors, and subjective feedback of comfort, a Multi-Layer Perceptron (MLP) model is trained to
establish predictive relationships between intra-socket pressure and appropriate rectification action. The
findings suggest that the MLP agent is more accurate at suggesting rectification actions to prosthetists when
compared to simpler classification algorithms such as Random Forest, XGBoost and Logistic regression,
laying the foundation for future advancements in prosthetic design.

INDEX TERMS Comfort assessment, Force resistive sensors, Multi-layer perceptron, Trans-femoral
prosthetic

I. INTRODUCTION

Lower-limb amputations create a problem in rehabilitation
that still remains difficult to solve. There are an estimated 40
million amputees worldwide, amongst whom an estimated
26% are transfemoral amputees [1]. Amputees usually re-
quire an interface to connect the amputated limb and artificial
limb. These interfaces act to aid in performing daily activities
such as walking, running, etc. For an interface to be reliable
and usable, it must provide a stiff coupling between the user’s

skeleton and the rest of the prosthesis in order to facilitate
control without causing pain or discomfort [2] [3] whilst
also improving factors such as functionality, ease of use,
performance and safety [4]. The most commonly used non-
intrusive prosthetic interface known as a socket, serves as
an interface between the residual limb and prosthetic limb
without the need for surgery [5]. Despite there being multiple
methods to interface the amputated limb to prosthetic limb,
the fact remains that abandonment rates can be up to 58% [6].
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With such a high incidence rate of transfemoral amputation
combined with the high rates of dissatisfaction with fitting, it
is imperative to provide a confidence inspiring prosthetic to
assist in the physical rehabilitation and social re-integration
of affected amputees. In context of transfemoral sockets, two
categories exist. Ischial containment socket (ICS) and sub-
ischial type of which Quadrilateral sub-type is most common
[5]. Ischial containment sockets extend above the ischium
which imply that the ischium is contained for support. This
provides strong medial-lateral stability along with better
femoral control and alignment and hence does not neces-
sitate a suspension mechanism. However due to the added
containment of the ischium, ICS sockets can be restrictive
and uncomfortable. Sub-ischial type sockets do not cover the
ischium and instead rely on the use of compression struts or
vacuum suspension. Due to reduced containment, sub-ischial
sockets are more comfortable with better range of motion. In
addition to the role of socket type, the proper distribution of
load on the amputated limb is also vital in determining socket
comfort. In attempts to quantify the discomfort caused by
various factors such as pressure, shear, volume fluctuations
and temperature, perceived comforts scales have been used
[7]. These scales may allow prosthetists to deduce, over
several repeated fits what works for each individual amputee.
Further, within the ICS sockets, there are different methods
to suspend and secure the limb. The most commonly known
types are vacuum-assisted and pin-lock or pin suspension
sockets [8]. This study will focus on pin-lock suspension
sockets due to the high usage rate and availability of indi-
viduals for clinical trials.

Currently, prosthetists are limited to touch and feel to
improve the comfort of prosthetic sockets. This implies that
amputees must undergo repeated fitting sessions with the
prosthetist until they arrive at an acceptable fit. In addition,
a comprehensive assessment of a prosthetic socket fit by
a prosthetist usually accounts only for on-the-day comfort
assessment. Most complications for poor fit of the socket
arise after several days or even months from fitting [9]. These
complications usually relate to changes in volume, tempera-
ture, fatigue from use, and excessive perspiration accumula-
tion within the interface. For example, high perspiration can
further lead to rashes and general discomfort. By enabling
the measurement of pressure in the socket-stump interface
and relating these physical measurements to psychophysical
measurements, it may be possible to assess the performance
and suggest improvements without the requirement of am-
putee feedback. The prospect of being able to use pressure
to quantify and modify the performance of a socket proposes
an alternative to rectification suggestions as compared to the
method of using touch and feel.

Rectification suggestions can be provided to either pros-
thetists or amputees through mediums like mobile devices,
promoting self-care and reducing strain on the healthcare sys-
tem. Alternatively, rectifications can be made autonomously
using actuators embedded in the socket-stump interface.
These actuators allow for dynamic adjustments over extended

periods, improving comfort by accommodating factors such
as volumetric fluctuations in the amputated limb [10]. To
enable such dynamic adjustments, continuous physical mea-
surements are required throughout the day. This highlights
the need for integrating measurement devices, such as force-
resistive sensors, into the socket-stump interface. These mea-
surements can then assess the prosthetic socket’s fit, and
potentially serve as input for real-time socket adjustments in
addition to offering feedback to prosthetists and amputees.

In light of these challenges and opportunities, this study
presents a comprehensive methodology for evaluating and
improving prosthetic socket performance using a machine
learning-based approach. By integrating intra-socket pres-
sure measurements with psychophysical feedback from
transfemoral amputees across multiple socket configurations,
the study aims to develop a predictive model that assists in
socket rectification decisions. The subsequent sections detail
related work in sensor technologies and psychophysical as-
sessment, followed by the proposed methodology, clinical
trial design, data analysis strategies, model development,
and validation. Through this framework, this study aims to
demonstrate the viability of data-driven rectification agents in
enhancing prosthetic comfort and supporting evidence-based
prosthetic care.

II. RELATED WORK
Psychophysical scales are invaluable in assessing perceived
effort of humans [7]. In physical rehabilitation centers, scales
such as the Visual Analogue Scale (VAS) and the Borg Scale
allow prosthetists to experiment with various independent
variables, such as the geometry of the prosthetic socket,
to observe their impact on comfort. From an amputee’s
perspective, the VAS spectrum appears continuous implying
their pain does not take discrete jumps [11]. Unlike the
VAS scale, the Borg Scale provides discrete steps such as
which amputees could relate their pain/discomfort through.
Thus, through measurable metrics related to pain and effort,
these scales may help determine which geometry best suits
individual amputees. Beyond the initial fitting sessions, psy-
chophysical scale inputs can be useful for assessing comfort
over extended periods of use.

In further fittings, it may be important to rely less on
amputee feedback and develop a system to use previous
measurements attained from monitoring dynamic conditions
such as pressure and temperature to extrapolate a relationship
between measured conditions and discomfort. However, due
to the low correlation between aforementioned monitored
conditions and psychophysical scales across different indi-
viduals, it is challenging to establish consistent associations
between the two. Machine learning may offer a compelling
solution due to its ability to create complex relationships
between its inputs and outputs. With repeated measurements
spanning across numerous individual amputees, it may be
possible to build a substantially large datasets that will train
a machine learning model to suggest rectification actions
not only within the amputees of the training set but even
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outside due to the generalizability of the model [12]. In ad-
dition to psychophysical scales, other factors such as weight,
height, residual muscle composition, and the nature of the
amputation may also play crucial roles in building these
relationships.

Development of new sockets such as the compres-
sion/release stabilization (CRS) socket focuses on the biome-
chanical properties of tissues and the improvement of liner
and socket materials to improve interface rigidness by focus-
ing on relative motion between femur and socket rather than
focusing on the highly non-homogeneous residual limb [13].
The main novelty of such a socket is the inclusion of four
longitudinal pre-compression bars and four adjacent release
regions. The release regions allow some relief for the com-
pressed tissue which improves comfort and reduces chance
of ischemia whilst maintaining sufficient compression on the
residual limb in the pre-compression bars [14]. The redis-
tribution of pressure and shear to more tolerant anatomical
regions do demonstrate an improvement in overall comfort
of the socket. This in turns proves that physical phenomena
have a significant effect on overall performance and hence ac-
ceptance of the prosthetic socket. However, research into the
exact mathematical psychophysical to physical relationships
in an attempt to quantify socket discomfort has been largely
neglected. Efforts have been made to develop psychophys-
ical relationship between pressure and discomfort [15] for
specific anatomical regions. Although these studies evaluate
the relationship of individual anatomical regions pressure
and discomfort, an overall performance indication of the
prosthetic socket has yet to be developed. However, difficulty
in recruiting a sufficiently large and representative group
of amputated individuals in combination with the lack of
sufficiently reliable dynamic data to create these relationships
has severely limited further studies.

A. INTRA-SOCKET MONITORING
The performance of a prosthetic socket is highly dependent
on the pressure distribution within the socket, making the
development of reliable pressure monitoring or estimation
systems critical. Recent advancements in computational sim-
ulations have enabled the estimation of intra-socket static
pressure and shear forces during activities such as the don-
ning procedure and static standing. Finite element analysis
(FEA) simulations have long been a viable alternative for
estimating intra-socket pressure due to their advantages in
non-necessity of clinical trials and poor performance of the
alternative ultra-thin sensors in direct measurements [16],
[17], [18]. However, accurately determining pressure distri-
butions across the socket-stump interface in different anatom-
ical regions remains challenging due to the computational
demands posed by the complex, heterogeneous composition
and hyper-elastic properties of the amputated limb.

Recent advances in ultra-thin pressure sensors have ad-
dressed these challenges, facilitating more direct and ac-
curate pressure measurements. Prosthesis monitoring tech-
niques have increasingly incorporated flexible sensors de-

signed for conformal, body-worn wearables, which can con-
vert external stimuli, such as mechanical deformation, into
measurable electrical signals [19]. A variety of sensing
mechanisms are available, including resistive, piezoelectric,
capacitive, and triboelectric technologies.

For this study, a sensor with sufficiently high resolution,
accuracy and low geometric profile is required. The high
resolution, accuracy ensure repeatability between clinical
trials. The low geometric profile ensure the thickness of
the sensor doesn’t not affect the pressure in the anatomical
region it is measuring. In addition, the hysteresis must also
be minimal to ensure accurate readings throughout the dy-
namic load cycle during the walk activity. Hence, a magnetite
quantum tunneling supersensor (QTSS) will be used. QTSS
sensors operate by tunneling electrons through insulative
barriers surrounding magnetite particles. In these sensors,
conduction only occurs at the point of stimulus, unlike most
conductive materials where conduction occurs throughout the
material [20]. When pressure is applied to QTSS materials,
they undergo a proportionate change in resistance, spanning
several orders of magnitude, transitioning from an insulator
to a metallic-like conductor. This makes them ideal for pres-
sure sensing. With a larger dynamic range than conventional
piezo-resistive pressure sensors, QTSS materials have been
screen-printed onto PET sheets to create pressure sensor
arrays for conformal pressure sensing within prosthetic sock-
ets.

Other sensor types, such as Fiber Bragg Grating (FBG)
sensors, have proven effective in transtibial sockets [21].
However, due to their pressure measurement range (up
to 35 kPa), FBG sensors are unsuitable for use in trans-
femoral sockets, where significantly higher pressure ranges
of 100–180 kPa are observed. An alternative approach in-
volves permanently modifying the socket by introducing
three-axis transducers, which allow for the dynamic measure-
ment of both pressure and shear at the intra-socket interface.
However, these studies often overlook psychophysical mea-
surements of comfort.

More recent developments include thin sensors capable of
fitting into the socket without altering its surface conformity,
thus preserving the accuracy of pressure readings. These sen-
sors enable precise pressure measurement while maintaining
socket comfort and fit [22], [23].

In addition to measurement through clinical trials directly
on the amputee, FSR sensors can also be used in a mechatron-
ics twin. The mechatronics twin replicates the geometry, ma-
terial properties of the amputee limb and socket as well as the
dynamics of the interface [24]. These dynamics are estimated
through powerful simulations [25]. It must also be noted that
having more sensors does not necessarily contribute to more
interface clarity. Redundant sensors can introduce unneces-
sary cost and complexity. Having a sparsely populated sensor
array may be crucial [26].
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B. ARTIFICIAL NEURAL NETWORKS
An Artificial Neural Network (ANN) is a biologically in-
spired computational model consisting of processing ele-
ments called neurons and connections between them and
bound through coefficients (weights) [27]. These connections
allow a defined mathematical relationship between the input
layer and targets output layer. The outputs are usually a
probability distribution of classes or regression of the input.

The multilayer perceptron (MLP) is the most known and
most frequently used artificial neural network. Fundamen-
tally, the signals are intended to be transmitted within the net-
work in one direction: from input to output [28]. This implies
that the output of a neuron does not affect the behavior of the
neuron itself. This is known as a feed-forward architecture.
The layers between the input and output layers in such a
feed-forward MLP are known as hidden layers. These hidden
layers serve to capture complex relationships between the
inputs and outputs that are commonly difficult to interpret
by humans. The choice of the size of these hidden layers is
commonly identified through trial and error in a incremental
fashion [29]. Hence, MLPs play a significant role in create
data-driven relationships in complex regression/classification
problems.

C. SOCKET COMFORT SCORE
As gait is the most frequent activity performed by amputees
in their daily lives, it is imperative to understand how to
improve comfort for this specific activity. By measuring
dynamic pressure and shear during gait in conjunction with
recording an individuals subjective feedback of comfort, an
increasingly accurate psychophysical-physical relationship
can be derived. It has been discovered that correlations exist
between physical measurements such as heart rate, and psy-
chophysical measurements such as the CR10 borg scale have
been conducted [30]. This same principle has been applied to
the measurement of socket discomfort to compare pressure to
subjective borg scale feedback [31]. However this is limited
to sensitivity in specific anatomical regions and not the socket
as an entirety.

In efforts to explain how Borg scale ratings relate to per-
formance measurements, extensive analyses must be made
into methods to effectively communicate these inferred ef-
fort/performance to the prosthetist. This can provide a better
clinical assessment and, ultimately, the rehabilitation of the
amputee [32]. Methods to provide prognoses on prosthetic
fit and comfort include assessing said comfort by producing
individual pressure maps detailing the pressure present in
different anatomical regions. The maps are then used to
generate rectification maps which may suggest fabrication a
new, more comfortable socket.

In the effort of training an MLP to predict which rectifica-
tion produces the best comfort outcome, it is crucial to have
a standardized comfort score. A simple 11 point numerical
rating scale (NRS) exists to rate the comfort of the socket
between 0 and 10 [33]. Amputees are asked to rate the com-
fort of their socket and independently report it. In a similar

fashion, prosthetists also produce the NRS independently.
The findings show that there are strong correlations between
these subjective scores and prosthetists’ ratings.

Comfort may also be characterized in terms of gait asym-
metry such as in the form of a gait asymmetry function [34].
In a healthy subject the gait asymmetry may be more indica-
tive of socket performance. For an amputee, gait compen-
sations to account for changes in weight distribution of the
amputated limb and prosthetic are difficult to quantify. When
considering pressure, socket performance can be compared
on a scale equivalent to the CR10 Borg scale from 0-10
as shown in Table 1. The scale is a very simple numerical
list. Participants are asked to rate their exertion on the scale
during activity such as level-ground walking. The higher
values indicate higher levels of physical stress and fatigue
[35]. This is usually a method used to indicate exertion
and not necessarily pain. However, for the purpose of this
study, the Borg scale is used due to its widespread use and
simplicity.

TABLE 1. CR10 Borg Scale

0 Nothing at all
0.3
0.5 Extremely weak(almost negligible)
1 Very weak
1.5
2 Weak
2.5
3 Moderate
4
5 Strong
6
7 Very strong
8
9
10 Extremely strong (almost the most)
11 The most I can bear

The CR10 is is on the same scale as the commonly used
NRS [36] .

III. THE DATA-DRIVEN RECTIFICATION FRAMEWORK
To establish a relationship between physical measurements
and socket performance, a rigorous methodology should be
ensured. Such a methodology involves key elements such as
clinical trials, participant feedback, and expert assessment.
Without the measurements gathered from real-world trials,
existing assumptions may be further expanded through the
use of less accurate methods such as FEA simulations as
mentioned in subsection II-A. By collecting data through
clinical trials and subsequently approaching interpretations
of the relationship between this collected data and socket
performance from multiple perspectives, and hence defining
a data-driven agent’s decision making capabilities, a more
comprehensive conclusion may be possible. An overview of
methodology involving the process of prosthetic assessment
and rectification is explained in Fig. 1.
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FIGURE 1. Overview of the rectification process involving measurement, clinical trials and data collection, feature engineering & data-analysis and socket optimization.

A. DATA COLLECTION
Various methods exist for extracting the dynamic distribution
of socket-stump interface pressure during gait. Although
finite element analysis exists, simulating the pressure distri-
bution in a pin-lock suspension socket proves to be difficult
due to the the different layers including socket liner, and
possibly a sock between the stump and the socket. Simulating
the pressure accurately in such a case requires precise and
accurate measurements of material properties of the socket,
liner, sock and non-homogeneous hyper-elastic properties
of the amputated limb. It also requires high definition 3-
D scans of the internal socket surface and amputated limb.
To reduce these uncertainties an intra-socket measurements
system based on Force resistive sensor are used. The system
contains several sensors which are distributed appropriately
to ensure coverage across anatomical regions.

1) Clinical Trial
For this study, a group of amputees were chosen to participate
in a clinical trial. The clinical trial contained nine participants
of which two were excluded. This resulted in seven partici-
pants in the study as shown in Table 3. The inclusion and
exclusion criteria are listed in Table 2.

Participants were recruited from the amputee rehabilita-
tion services by South Tees NHS Hospitals. Participants
records were screened initially to identify participants that
are eligible according to the inclusion and exclusion criteria.
Eligible participants were asked directly by their doctor
in consultation or contacted to participate in the study. If
participants agreed to participate, they were scheduled to
attend the biomechanics data collection in biomechanics

laboratory of Teesside University.

Participant evaluation, residual limb evaluation and an-
thropometric measures were performed under the guidance
of a standard documentations and guidelines by the same
prosthetist. Information regarding condition of the skin and
tissue, circulation, pain, joint function, and muscle strength
were recorded. The level of activity of the subjects were also
assessed. participants meeting the inclusion and exclusion
criteria after the screening visit were invited to attend the
biomechanics data collection in biomechanics laboratory of
Teesside University. Subjects included in the trial are shown
in Table 3.

Temporary socket modification during the data collection
was achieved by placing silicone pads inside the socket in
predetermined areas that are known to be pressure sensitive.
The sequence of modifications was consistent across partic-
ipants. Prior to the trials, the residual limb geometry and
socket were scanned, after which the QTSS sensors were
adhered to the socket surface as shown in Fig. 1. Sensor cal-
ibration was performed before each configuration to ensure
accuracy. Each participant underwent dynamic pressure mea-
surement under four socket configurations—one unmodified
and three with targeted pad insertions. Walking trials were
repeated with each modification. In each configuration (one
unmodified configuration and 3 modified configuration(s)),
the walking trial was repeated five times. Upon completion of
each trial in each configuration, the participant was asked to
indicate the level of comfort or discomfort experienced when
walking with each socket configuration using a validated
perceived effort scale. The various configurations achieved
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TABLE 2. Inclusion and Exclusion Criteria for Clinical Trial

Inclusion Criteria Exclusion Criteria
Participants with a trans-femoral amputation Current psychiatric disorders that compromise the safety of persons present

at the trial and/or interfere with the course of the tests
Participants who have passed the four phases of rehabilitation Alterations of the Central Nervous System (CNS) such as: dementia, brain

tumors, degenerative pathologies
Participants who have K2, K3 or K4 movement functional capability (K
levels classification)

Diagnosed addiction to alcohol or drugs

Participants with pin-lock suspension prosthetic socket Active infection and ulceration in the residual limb
Participants whose femur (of the amputated limb) is at least 15 cm in length
from the perineum, and who have a minimum of 10 cm between the end of
the residual limb and the axis of the knee joint

Major amputation in the contralateral limb

Capacity to provide informed consent Medical device implant, e.g., pacemaker, due to electronics used
Participants over 18 years of age Being on dialysis due to effects of dialysis on residuum
Use of prosthetic knee Body weight less than 45 or greater than 125 kg
– Does not give consent

TABLE 3. Relevant Subject Information.

Subject Code Age (yrs) Gender Mass (kg) Height (m) Amputation Side Age of Amputation (yrs)
UK001 76 Male 91 1.73 Left 17
UK002 65 Male 64 1.74 Left 50
UK004 57 Female 75 1.60 Left 12
UK006 69 Male 88 1.73 Right 19
UK007 51 Male 84 1.80 Left 28
UK008 52 Male 74 1.85 Right 28
UK010 56 Male 85 1.86 Left 54

by inserting silicone pads in Medial Proximal, Posterior
proximal and lateral distal anatomical regions as shown in
Fig. 2.

The locations of the pads are chosen to relieve pressure
in commonly know pressure sensitive regions such as the
Medial Edge, Femoral Relief and Posterior Gluteus Fold
[23]. This is to provide added support in the load bearing
anatomical regions that may experience less pain and have
higher rigidity. For example, residual muscle in the anterior
regions on the residual limb may indicate that it is a load
bearing region due to its higher rigidity and can hence
tolerate higher pressures. An unwrapped map provides a
more detailed understanding of how anatomical regions are
divided in Fig. 3

Socket geometry was rectified with silicone pads and trials
repeated with each modification as shown in Fig. 2. Here,
study socket is still referring to their own socket but its inner
surface geometry were temporarily modified with silicone
pads with a thickness of 10 mm. (Ossur, Iceross Pads®). To
be able to produce a sub-optimal fitting socket and create
discomfort, the pads were located at the pressure sensitive
regions, but the exact location of the pads were selected based
on the geometry of each participants’s residual limb by the
prosthetist. An example of inserted pad in the socket can be
seen in the below images. The sensor arrays were inserted
between liner and socket to measure socket-residual limb
interface pressures during the tasks. The sensors and pads
were interfaced with skin directly.

Medial View 
(No-Pad)

Posterior View 
(No-Pad)

LDPPMP

Silicone
pad

Amputated
limb

Elastomeric
liner

Socket

FIGURE 2. Various socket configurations used for clinical trial depicted on a
right-legged socket. Without pad inserted (NP), with pad inserted in the Medial
Proximal region (MP), with pad inserted in the Posterior Proximal region (PP),
and with pad inserted in the Lateral Distal region (LD).

2) Dynamic Data Collection
The participants walk for six minutes on level ground, with
six repetitions, approximately one minute per cycle. The

6 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3609566

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Pad(98mm)

Pad(38mm)

Medial edge
Medial edge

Anterior edge

Lateral edge

Posterior edge

FEMORAL 
RELIEF

MEDIAL

DISTAL

ANTERIOR 

DISTAL

ANTERO-

LATERAL
DISTAL

PROXIMAL

ANTERIOR

ANTERIOR 

DISTAL

ADDUCTOR

LONGUS

LATERAL 
DISTAL

POSTERO-
LATERAL
DISTAL

ANTERO-

LATERAL 

PROXIMAL

SCARPA’S

TRIANGLE

LATERAL 

PROXIMAL

POSTERIORDISTAL

POSTERO-
LATERAL 
PROXIMAL

POSTERIOR

GLUTEUS

FOLD

LATERAL
GLUTEAL
FOLD

POSTERIORPROXIMAL
PROXIMAL

ADDUCTORMAGNUS

MEDIAL
PROXIMAL

MEDIALDISTAL

DISTALADDUCTOR MAGNUS

ISCHIUM
RAMUS

FIGURE 3. Anatomical region map with Silicone Pad locations.

speed is the maximum safe and comfortable speed for the
participants. The first 20 steps are considered a conditioning
of the sensels and are subtracted from the analysis. Sensels
here refers to individual sensor nodes on a sensor strip
provide by the manufacturer.

The individual perceived effort in Borg Scale ratings is
collected from the experiment. For assessment of the effect of
different socket configurations across participants, the borg
scale ratings are averaged and shown in Fig. 4.

TABLE 4. Mean Borg scale ratings across anatomical regions and socket
configurations (NP = No Pad, MP = Medial Proximal, PP = Posterior Proximal,
LD = Lateral Distal).

Socket Configuration NP MP PP LD

Anterior Distal 0.17 0.17 0.17 0.17
Anterior Middle 0.17 0.17 0.17 0.17
Anterior Proximal 0.17 0.46 0.38 0.17
Posterior Distal 0.95 0.79 1.12 1.50
Posterior Middle 0.17 0.54 0.17 0.17
Posterior Proximal 0.88 1.24 1.04 0.46
Medial Distal 0.17 0.17 0.17 0.17
Medial Middle 0.17 0.17 0.17 0.17
Medial Proximal 0.91 1.12 0.17 0.59
Lateral Distal 0.95 1.30 1.12 1.12
Lateral Middle 0.17 0.17 0.17 0.17
Lateral Proximal 0.46 0.42 0.17 0.17

In addition to studying the effects of the socket config-
uration on comfort, it may be imperative to understand the
sensitivity of each anatomical region. For example, low aver-
age borg scale ratings may indicate that certain anatomical
regions are less prone to contributing towards discomfort.
The aggregated Borg scale ratings of socket performance
across all participants and all socket configurations tested in
this study is shown in Fig. 4. For each anatomical region,
the mean and standard deviation of perceived exertion were
computed by pooling ratings from every trial condition.
This bar plot therefore represents the culmination of the
entire dataset, capturing the overall distribution of discomfort
across anatomical regions, independent of individual differ-
ences or specific socket modifications. The data indicates
that Lateral Distal and Posterior Distal anatomical regions
have the highest Mean borg scale ratings. The high standard
deviation in these anatomical regions also implies that they
vary significantly between amputees and socket configu-
rations. This indicates these regions are more sensitive to

discomfort when to compared to other anatomical regions.
These sensitivities may be attributed to high weight bearing
load and/or scar tissue at amputation site.
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FIGURE 4. Mean and standard deviation of Borg scale ratings across
anatomical regions, aggregated over all participants and socket configurations.

3) Data Reformatting

It is well known that gait patterns are highly individual when
it comes to amputees. These differences can be assessed by
comparing spatiotemporal parameters such as step length,
width and time [37]. Temporal asymmetries are especially
more significant in Transfemoral amputees due to increase
instability and discomfort during the stance-phase. As a re-
sult, physical measurements such as pressure and shear may
prove to be more important to utilize in performance metrics.
The clinical trial conducted, ensured that data was recorded
along with time-stamps for various sub-phases of the stance-
phase through the use of a gait monitoring device as seen in
Table 5. The expressed time windows are used to interpolate
time-dependent pressure in terms of percentage stance phase
as seen in Fig. 5.

TABLE 5. Gait Events Summary

Event First Occurrence
(%)

Gait Monitor
Value

No-event ∼1 1
Heel-strike 5 4
Mid Stance 20 5
Toe-off 50 2
Mid-swing 82.5 3

0 10 20 30 40 50 60 70

Stance (65%)

Right heel
strike

Mid Stance Foot off Left heel
strike

FIGURE 5. Breakdown of stance phase sub-phases expressed as percentage
for a right-legged amputee.
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4) Rectification Effect
To achieve rectification of socket morphology, prosthetists
generally must create a new socket to account for subjec-
tive discomfort expressed by amputees. This requirement to
modify the prosthetic socket demands extensive time and
fabrication costs. By modeling the effect of rectification
on certain anatomical regions on pressure, prosthetists can
further understand how rectifications in one regions may also
affect pressure in other anatomical regions. In this section,
the effect of different silicone pads on dynamic pressure
profiles as compared to No-Pad configuration is shown.
Pressure is normalized to the weight of the amputee. Fig. 6
shows how pressure in each anatomical region is affected by
various socket configurations. The placement of silicone pads
is illustrated in Fig. 2.

B. SOCKET PERFORMANCE INDEX
The performance of a prosthetic socket maybe difficult to
evaluate. As explained in subsection II-C, a comfort score
may be defined based on psychophysical scale. In this study
this SCS will be referred to as performance index. Based
purely on Borg scale ratings, one may assume the overall
performance or comfort of the socket might be the mean over
Borg scale indications across all anatomical regions.

In an effort to keep the performance indicator linearly and
simplistically related to Borg Scale indications, the mean
Borg Scale rating across all anatomical regions is used and
represented in Equation 1.

PI =
1

n

n∑
i=1

Bi (1)

Where Bi denotes the Borg scale indication at anatomical
region i, where i = 1, 2, . . . , n, and n represents the total
number of anatomical regions assessed in the prosthetic
socket. The performance indicator PI is defined as the mean
Borg scale score across anatomical regions.

Applying this Performance Index equation on trial data, a
bar-plot is derived as shown in Fig. 7.

It is can be noted that there is small increase in perfor-
mance index for the rectification action of adding a pad
in the Medial Proximal region. The rectification action of
adding a pad in the Lateral Distal region shows the lowest
Performance index across clinical trial subjects.

C. RECTIFICATION ASSISTANT
In the process of assessing the performance of a socket, it
is also useful to provide a suggestion to the prosthetist to
make a rectification. The rectification can be suggested in
several ways. Use of participant specific parameters such as
weight in addition to physical measurements are know to
improve predictor performance [38]. A feed-forward MLP
classifier is used to make this prediction. In the trial pre-
sented, multiple configurations of the socket provide equally
good performance. Therefore, a one-hot representation of the

correct class may not necessarily be used. Instead soft labels
are used to represent correct predictions in the training data.

The dimensions of the input layer of the MLP for time
series sensor data is din = n ∗ m. Where, n is the number
of time steps and m is the number of sensors. A non-linear
ReLU function is used to relate the input features to pre-
output layers as shown in Equation 2.

h(l) = ReLU
(
W(l)h(l−1) + b(l)

)
, l = 1, 2, 3 (2)

where h(0) = x is the input vector, W(l) are the weights and
b(l) are the weights and biases of the l-th layer.

z(4) = W(4)h(3) + b(4) (3)

In a classification problem such as in this study, a softmax
is applied to the output layer to ensure a probability distribu-
tion which sums to unity and shown in Equation 4.

y = softmax(z(4)) (4)

The softmax function provides a single correct class i.e.
rectification as output so as to avoid confusion to the pros-
thetist. During training, loss function selection is paramount
to ensuring high prediction accuracy. A Categorical Cross-
Entropy (CCE) allows for a single output class prediction
and soft labeling on training inputs. Unlike Kullback-Leibler
divergence loss function which also accepts a probabil-
ity distribution in the training labels, CCE only involves
the difference between the training and target distributions.
Kullback-Leibler divergence involves the estimation of the
entropy of the training distribution which is given by H(p) =
−
∑

i pi log pi where p = [p1, p2, . . . , pC ] is the target
distribution (the soft label for a single training sample), and
C is the total number of classes (socket configurations).
The entropy H(p) measures the uncertainty in the target
distribution, and remains constant during training because the
dataset is fixed. This implies Kullback-Leibler divergence is
more computationally demanding without a clear advantage.
Also, Binary Cross-Entropy (BCE) is used for multi-label
classification scenarios deeming it inappropriate for the use
case of suggesting a single pad or No-PAD as rectification
action. Hence, a CCE loss function is used. For example, it
may be used to design an agent with the goal of suggesting
a combination of socket configurations (i.e. adding multiple
pads simultaneously).

In preparation for training, the socket configurations with
the least mean over borg values across anatomical regions
are indicated by a one-hot representation. For example, for
a training input sample consisting of mean borg values of
[0, 0, 0.167, 0.0412] for No-PAD, LD, MP, PP respectively,
the one-hot representation would be [1, 1, 0, 0] since No-PAD
and LD have the lowest mean borg scale values. Secondly,
they are constrained to be a minimum of 1× 10−8 to prevent
log(0) estimations in the loss function. Finally, the outputs
are normalized to sum to unity ([∼ 0.5,∼ 0.5, 1× 10−8, 1×
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FIGURE 6. Anatomical region pressure averaged across all participants and gait cycles for various socket configurations during gait.
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FIGURE 7. Distribution of Performance Index across participants, anatomical
regions, and socket configurations.

10−8] in the example). This is to ensure the output corre-
sponds to a probability distribution and not one-hot labeling.
In contrast to the training outputs, the prediction outputs will
be a single rectification suggestion predicted from pressures
and standard-deviations in pressures derived in the clinical
trial under the No-Pad configuration. This is representative
of a scenario where an amputee visits a clinic and pressure
measurements and rectifications suggestions are to be made
based solely on level-ground walking activity performed with
their current fit as previously expressed in Fig. 1. To identify
the optimal MLP configuration, a search is done including
MLPs with up to three hidden layers.

To achieve this the input layer consist of 101*12*2 inputs,

which includes dynamic pressure and standard-deviation in
pressure corresponding to each percentage of stance phase
from 12 anatomical regions. The final layer is a probability
distribution of the rectification to be or not to be made,
with each output corresponding to one socket configuration
as described in Fig. 2. Early stopping was triggered when
validation loss failed to improve by more than 1× 10−6 over
100 epochs, and the learning rate was reduced by a factor of
0.5 after 20 stagnant epochs, down to a minimum of 1×10−6.
Bayesian optimization identified the optimal configuration
as a shallow classifier, equivalent to a multinomial logistic
regression with a softmax output.

IV. RESULTS
Using a neural network based agent results in various im-
provements compared to a more simplistic model. Table 6
shows that when used to predict an optimal rectification
action, an MLP performs marginally better with 38.57% test
accuracy when compared with algorithms such as Random
Forest, XGBoost, Logistic regression. OneVsRest used in
Random Forest and Logistic Regression refers to treating
the output as a single prediction. For example, the No-Pad
configuration can be compared to "Any Pad" which includes
MP, PP and LD configurations. This is repeated for all classes
and the highest is chosen as the prediction. This is due to the
binary outputs of Random Forest and Logistic Regression
whereas there are multiple prediction classes in this study.
The improvements shown by MLP could be in part due
to the soft distribution of probabilities in training outputs.
MLP handles this better due to the use of CCE loss function
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which allows for soft probabilities as opposed to one-hot
representation in classification problems.

TABLE 6. Mean Accuracies (%) for Classification Algorithms on Rectification
Action Prediction

Algorithm Train Acc. Val. Acc. Test Acc.
MLP 62.29% 52.71% 38.57%
Random Forest
(OneVsRest)

99.97% 38.57% 36.86%

XGBoost
(MultiOutput)

58.00% 35.57% 34.14%

Logistic Reg.
(OneVsRest)

100.00% 32.43% 31.57%

Random Choice 35.71% 35.71% 35.71%

A participant-wise cross-validation strategy was employed
to ensure robust model evaluation. In each iteration, one
participant was reserved as the test set, another participant
was assigned as the validation set, and the remaining par-
ticipants were used for training. This process was repeated
so that every participant served as the test set exactly once,
resulting in seven distinct train–validation–test splits. Fur-
ther, the experiment is repeated across different seeds. The
network parameters are initialized over 100 random seeds to
ensure that the various prediction algorithms are compared
fairly. A primary random seed 42 is used to generate and
set secondary random seeds during network initialization for
all comparisons. The rectification actions produced by the
various algorithms show that MLP has a marginal advantage.
It maintains a train accuracy on par with the validation
accuracy and test accuracy. This indicates that overfitting is
not present. Whereas in Random Forest, it is observed that
the training accuracy is almost 100%. This indicates that the
algorithm is overfitting to the training set. This can also be
observed in the validation accuracy being slightly lower than
random choice.

TABLE 7. Per-Participant Test Accuracy Summary (%) for MLP in comparison
to random selection.

Participant Mean Accuracy (%) Random Accuracy (%)
001_UK1 72 50
002_UK1 11 25
004_UK1 30 25
006_UK1 81 50
007_UK1 29 25
008_UK1 34 25
010_UK1 13 25

Further comparison as shown in Table 7 reveals that the
MLP performs better than random in five out of seven par-
ticipants. The random predictions of participants 001_UK1
and 006_UK1 are higher as two socket configuration resulted
in equal comfort levels. It is also observed that participants
002_UK1 and 010_UK1 have significantly lower test accura-
cies than other participants.

V. DISCUSSION
The clinical trial provided several key insights into the ef-
fect of rectification on pressure and ultimately the socket

performance. By adjusting the socket geometry through the
introduction of silicone-pads, modifications are made to the
pressure distribution and hence overall socket comfort. Sub-
sequently, the effects of the pressure on overall comfort can
be drawn from a domain expert’s perspective using Table 4
and Fig. 6.

SOCKET ADJUSTMENTS AND THEIR EFFECTS
10 mm Thickness Reduction at Medial Proximal Area of
the Socket(MP)

• Slightly improved perceived comfort at Posterior Distal
region.

• The peak pressure was increased from 195 kPa to 215
kPa at Medial Proximal region.

10 mm Thickness Reduction at Posterior Proximal
Area of the Socket(PP)

• Slightly improved perceived comfort at Medial Proxi-
mal region.

• Slightly reduced perceived comfort at Posterior Distal
and Posterior Proximal regions.

• The peak pressure was increased from 190kPa to
219kPa at Posterior Proximal region.

10 mm Thickness Reduction at Lateral Distal Area of
the Socket(LD)

• Slightly improved perceived comfort at Posterior Proxi-
mal, Medial Proximal, and Lateral Proximal regions.

• Slightly reduced perceived comfort at Posterior Distal
and Lateral Distal regions.

• The peak pressure was significantly increased from
8kPa to 163kPa at Lateral Distal region.

Adding to domain expert’s feedback, machine learning
methods prove to be promising assessment tools despite a
lack of large number of training samples. In this study, it
is shown that Neural networks perform notably better than
methods such as random forest in regards to validation ac-
curacy and marginally better in terms of test accuracy. This
indicates that socket performance cannot be easily assessed
by observing anatomical region specific pressure across gait
cycles. In other words, a simple regression model may not
be sufficiently complex to capture the relationship between
spatial features in the subjective feedback based training
data. This further limits the explainability of such models
and hence need not be shown to the prosthetist in aims to
produce rectification suggestions. Approaching socket per-
formance as a continuous scale allows for finer comparisons
between socket configurations, simplifying the process of
distinguishing between better or worse sockets. Implying that
introducing more socket configurations into the clinical trial
may improve the model’s performance for a given amputee,
however does little to address the variability between am-
putees. Table 7 further indicates that participants 002_UK1
and 010_UK1 have less representative response to pressure
across gait cycle than other participants. This may be due to
differing sensitivity to discomfort in anatomical regions as
compared to other participants in the trial.
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VI. CONCLUSIONS
The inferred domain knowledge in complement to the MLP
shows that a data-driven agent can provide rectification sug-
gestions to a prosthetist. Prosthetists may use the rectification
agent in combination with pressure maps as seen in Fig. 3 to
assert their own solution for improving comfort. In addition,
they may also use the rectification agent when higher confi-
dence levels of prediction are presented. Based on the socket
performance evaluation of the MLP algorithm, a test accu-
racy of 38.57% is achieved. This is marginally better than all
other tested algorithms. It is to be noted, although there are
28 trials, there are four trials corresponding to each of the
seven participants in different socket configurations. Hence,
each trial participant contributes to one training sample. This
may be the cause of variations in test accuracies between
participants. With future implementations of the suggested
agent in assessing optimal rectification action in conjunction
with a study involving a larger pool of participants, the
same method may be applied to different amputations such
as transtibial or even upper-limb amputees. In addition, the
proposed approach could be enhanced by integrating it with
a fuzzy inference engine, as suggested in [39]. As the fuzzy
rules are inferred based on a domain expert’s knowledge, an
agent which combines both a data-driven inference from the
proposed MLP agent and a fuzzy inference agent may be
designed with tools such as LangChain [40].

Such agents can be used not only to assess the socket but
also to make dynamic rectifications through the usage of dy-
namically altering socket geometry. For example, when there
is considerable accumulation of sweat within the socket-
stump interface. As a remedy, an increase in pressure in
pressure-tolerant anatomical regions of an amputated limb
may produce clearances in pressure sensitive areas. These
clearances may act as passages for moisture to exit the
socket-stump interface and improve circulation, thus prevent-
ing condensation and collection of perspiration within the
socket.

REFERENCES
[1] C. Fanciullacci, Z. McKinney, V. Monaco, G. Milandri, A. Davalli, R. Sac-

chetti, M. Laffranchi, L. De Michieli, A. Baldoni, A. Mazzoni, et al.,
“Survey of transfemoral amputee experience and priorities for the user-
centered design of powered robotic transfemoral prostheses,” Journal of
neuroengineering and rehabilitation, vol. 18, pp. 1–25, 2021.

[2] R. Safari, “Lower limb prosthetic interfaces: Clinical and technological
advancement and potential future direction,” Prosthetics and orthotics
international, vol. 44, no. 6, pp. 384–401, 2020.

[3] S. Manz, R. Valette, F. Damonte, L. Avanci Gaudio, J. Gonzalez-Vargas,
M. Sartori, S. Dosen, and J. Rietman, “A review of user needs to drive the
development of lower limb prostheses,” Journal of neuroengineering and
rehabilitation, vol. 19, no. 1, p. 119, 2022.

[4] J. T. Meyer, R. Gassert, and O. Lambercy, “An analysis of usability
evaluation practices and contexts of use in wearable robotics,” Journal of
neuroengineering and rehabilitation, vol. 18, pp. 1–15, 2021.

[5] L. Paternò, M. Ibrahimi, E. Gruppioni, A. Menciassi, and L. Ricotti,
“Sockets for limb prostheses: a review of existing technologies and open
challenges,” IEEE Transactions on Biomedical Engineering, vol. 65, no. 9,
pp. 1996–2010, 2018.

[6] E. Marzoug, T. Landham, C. Dance, and A. Bamji, “Better practical
evaluation for lower limb amputees,” Disability and Rehabilitation, vol. 25,
no. 18, pp. 1071–1074, 2003.

[7] N. Williams, “The Borg Rating of Perceived Exertion (RPE) scale,”
Occupational Medicine, vol. 67, pp. 404–405, 07 2017.

[8] G. K. Klute, J. S. Berge, W. Biggs, S. Pongnumkul, Z. Popovic, and B. Cur-
less, “Vacuum-assisted socket suspension compared with pin suspension
for lower extremity amputees: effect on fit, activity, and limb volume,”
Archives of physical medicine and rehabilitation, vol. 92, no. 10, pp. 1570–
1575, 2011.

[9] C. Putz, J. Block, S. Gantz, D. Heitzmann, T. Dreher, B. Lehner, M. Al-
imusaj, S. Wolf, and S. Müller, “Structural changes in the thigh muscles
following trans-femoral amputation,” European Journal of Orthopaedic
Surgery & Traumatology, vol. 27, pp. 829–835, 2017.

[10] M. Baldock, N. Pickard, M. Prince, S. Kirkwood, A. Chadwell,
D. Howard, A. Dickinson, L. Kenney, N. Gill, and S. Curtin, “Adjustable
prosthetic sockets: a systematic review of industrial and research design
characteristics and their justifications,” Journal of neuroengineering and
rehabilitation, vol. 20, no. 1, p. 147, 2023.

[11] N. Crichton, “Visual analogue scale (vas),” J Clin Nurs, vol. 10, no. 5,
pp. 706–6, 2001.

[12] R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dudley, “Deep learning
for healthcare: review, opportunities and challenges,” Briefings in bioin-
formatics, vol. 19, no. 6, pp. 1236–1246, 2018.

[13] R. D. Alley, T. W. Williams III, M. J. Albuquerque, and D. E. Altobelli,
“Prosthetic sockets stabilized by alternating areas of tissue compression
and release.,” Journal of Rehabilitation Research & Development, vol. 48,
no. 6, 2011.

[14] Z. Meng, D. W.-C. Wong, M. Zhang, and A. K.-L. Leung, “Analysis
of compression/release stabilized transfemoral prosthetic socket by finite
element modelling method,” Medical engineering & physics, vol. 83,
pp. 123–129, 2020.

[15] E. S. Neumann, “Measurement of socket discomfort—part i: Pressure
sensation,” JPO: Journal of Prosthetics and Orthotics, vol. 13, no. 4,
pp. 99–110, 2001.

[16] D. Lacroix and J. F. Ramírez Patiño, “Finite element analysis of donning
procedure of a prosthetic transfemoral socket,” Annals of biomedical
engineering, vol. 39, pp. 2972–2983, 2011.

[17] S. C. Henao, C. Orozco, and J. Ramírez, “Influence of gait cycle loads
on stress distribution at the residual limb/socket interface of transfemoral
amputees: A finite element analysis,” Scientific Reports, vol. 10, no. 1,
p. 4985, 2020.

[18] L. Zhang, M. Zhu, L. Shen, and F. Zheng, “Finite element analysis of
the contact interface between trans-femoral stump and prosthetic socket,”
in 2013 35th annual international conference of the IEEE engineering in
medicine and biology society (Embc), pp. 1270–1273, IEEE, 2013.

[19] E. Boutwell, R. Stine, A. Hansen, K. Tucker, and S. Gard, “Effect of
prosthetic gel liner thickness on gait biomechanics and pressure distribu-
tion within the transtibial socket.,” Journal of Rehabilitation Research &
Development, vol. 49, no. 2, 2012.

[20] V. Dejke, M. P. Eng, K. Brinkfeldt, J. Charnley, D. Lussey, and C. Lussey,
“Development of prototype low-cost qtss™ wearable flexible more enviro-
friendly pressure, shear, and friction sensors for dynamic prosthetic fit
monitoring,” Sensors, vol. 21, no. 11, p. 3764, 2021.

[21] E. A. Al-Fakih, N. A. Abu Osman, A. Eshraghi, and F. R. M. Adikan,
“The capability of fiber bragg grating sensors to measure amputees’ trans-
tibial stump/socket interface pressures,” Sensors, vol. 13, no. 8, pp. 10348–
10357, 2013.

[22] F. Xu, X. Li, Y. Shi, L. Li, W. Wang, L. He, and R. Liu, “Recent
developments for flexible pressure sensors: A review,” Micromachines,
vol. 9, no. 11, 2018.

[23] S.-T. Ko, F. Asplund, and B. Zeybek, “A scoping review of pressure
measurements in prosthetic sockets of transfemoral amputees during am-
bulation: key considerations for sensor design,” Sensors, vol. 21, no. 15,
p. 5016, 2021.

[24] D. Chen, S. Ottikkutti, and K. N. Tahmasebi, “Developing a mechatronics-
twin framework for effective exploration of operational behaviors of
prosthetic sockets,” SN Computer Science, vol. 5, no. 2, p. 205, 2024.

[25] S. L. Delp, F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John,
E. Guendelman, and D. G. Thelen, “Opensim: open-source software to
create and analyze dynamic simulations of movement,” IEEE transactions
on biomedical engineering, vol. 54, no. 11, pp. 1940–1950, 2007.

[26] W. Zhu, Y. Chen, S.-T. Ko, and Z. Lu, “Redundancy reduction for sensor
deployment in prosthetic socket: A case study,” Sensors, vol. 22, no. 9,
p. 3103, 2022.

[27] S. Shanmuganathan, Artificial neural network modelling: An introduction.
Springer, 2016.

VOLUME 4, 2016 11

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3609566

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[28] M.-C. Popescu, V. E. Balas, L. Perescu-Popescu, and N. Mastorakis,
“Multilayer perceptron and neural networks,” WSEAS Transactions on
Circuits and Systems, vol. 8, no. 7, pp. 579–588, 2009.

[29] E. Bisong, “The multilayer perceptron (mlp),” in Building machine learn-
ing and deep learning models on google cloud platform: A comprehensive
guide for beginners, pp. 401–405, Springer, 2019.

[30] E. Borg and L. Kaijser, “A comparison between three rating scales for
perceived exertion and two different work tests,” Scandinavian journal of
medicine & science in sports, vol. 16, no. 1, pp. 57–69, 2006.

[31] E. S. Neumann, “Measurement of socket discomfort—part ii: signal detec-
tion,” JPO: Journal of Prosthetics and Orthotics, vol. 13, no. 4, pp. 111–
122, 2001.

[32] K. R. Kaufman, K. A. Bernhardt, and K. Symms, “Functional assessment
and satisfaction of transfemoral amputees with low mobility (fastk2):
a clinical trial of microprocessor-controlled vs. non-microprocessor-
controlled knees,” Clinical Biomechanics, vol. 58, pp. 116–122, 2018.

[33] R. Hanspal, K. Fisher, and R. Nieveen, “Prosthetic socket fit comfort
score,” Disability and rehabilitation, vol. 25, no. 22, pp. 1278–1280, 2003.

[34] S. Winiarski, A. Rutkowska-Kucharska, and M. Kowal, “Symmetry
function–an effective tool for evaluating the gait symmetry of trans-
femoral amputees,” Gait & Posture, vol. 90, pp. 9–15, 2021.

[35] N. Williams, “The borg rating of perceived exertion (rpe) scale,” Occupa-
tional medicine, vol. 67, no. 5, pp. 404–405, 2017.

[36] J. F. Ramírez-Patiño, D. F. Gutiérrez-Rôa, and A. A. Correa-Espinal,
“Comfort perception assessment in persons with transfemoral amputa-
tion,” Dyna, vol. 82, no. 191, pp. 194–202, 2015.

[37] M. J. Highsmith, B. W. Schulz, S. Hart-Hughes, G. A. Latlief, and S. L.
Phillips, “Differences in the spatiotemporal parameters of transtibial and
transfemoral amputee gait,” JPO: Journal of Prosthetics and Orthotics,
vol. 22, no. 1, pp. 26–30, 2010.

[38] G. Cicirelli, D. Impedovo, V. Dentamaro, R. Marani, G. Pirlo, and T. R.
D’Orazio, “Human gait analysis in neurodegenerative diseases: A review,”
IEEE Journal of Biomedical and Health Informatics, vol. 26, no. 1,
pp. 229–242, 2022.

[39] M. Karamousadakis, A. Porichis, S. Ottikkutti, D. Chen, and
P. Vartholomeos, “A sensor-based decision support system for
transfemoral socket rectification,” Sensors, vol. 21, no. 11, p. 3743,
2021.

[40] K.-T. Tran, D. Dao, M.-D. Nguyen, Q.-V. Pham, B. O’Sullivan, and H. D.
Nguyen, “Multi-agent collaboration mechanisms: A survey of llms,” 2025.

SURANJAN RAM OTTIKKUTTI received the
B.E. degree in Mechanical Engineering from Col-
lege of Engineering, Guindy, India, in 2018, and
the M.S. degree in Engineering Design, Track,
Mechatronics from the KTH Royal Institute of
Technology, Sweden, in 2021. He is currently pur-
suing the Ph.D. degree in with the Unit of Mecha-
tronics and Embedded Control Systems, School
of Industrial Engineering and Management, KTH
Royal Institute of Technology. His research inter-

ests include biomechanics of human movement, finite element analysis,
embedded sensor systems, assistive agents and stochastic system modeling.

POUYAN MEHRYAR received his M.E degree in
Mechanical and Medical Engineering from Uni-
versity of Hull, Kingston upon Hull, UK and his
PhD in Mechanical Engineering from University
of Leeds, West Yorkshire, UK. He is currently
Postdoctoral Research Associate in Mechanical
Engineering at Imperial College London, London,
UK. He was a Post-doctoral Research Associate at
Teesside University’s Healthcare Innovation Cen-
tre before joining Imperial College London, where

he conducted this research.

BEGUM ZEYBEK received her B.S. degree
in bioengineering from Ege University: Izmir,
Turkey, in 2012 and her M.S. degree in Ma-
terial Science and Engineering from Ege Uni-
versity: Izmir, Turkey, in 2014 and a PhD in
Mechanical, Electrical and Manufacturing Engi-
neering from Loughborough University, Leices-
tershire, UK. She is currently a Clinical Trial
Manager at NDS (Nuffield Department of Surgical
Sciences), University of Oxford, Oxford, UK. She

was a Post-doctoral Research Associate at Teesside University’s Healthcare
Innovation Centre before joining NDS, where she conducted this research.

MICHALIS KARAMOUSADAKIS received his
5-year (MSc-equivalent) degree in Electrical and
Computer Engineering from the National Techni-
cal University of Athens, in 2019 and his M.Sc.
degree in Rehabilitation Engineering from the Na-
tional Kapodistrian University of Athens, in 2023.
He is currently a Technical Project Manager at
Tech Hive Labs in Greece

ZULFIQUR ALI received a BSc (Hons) Applied
Chemistry from the University of Greenwich,
United Kingdom, in 1986 and a PhD in Instrumen-
tation and Analytical Science from the University
of Manchester, United Kingdom, in 1989. He is
currently Pro-Vice Chancellor for Research and
Knowledge Exchange at the University of Cum-
bria, United Kingdom. His research focuses on
microfabrication, microfluidics as well as trans-
ducer development and AI for sensor data. He

was the Director, Healthcare Innovation Partnership at Teesside University’s
Healthcare Innovation Centre before joining University of Cumbria, where
he conducted this research."

DEJIU CHEN is a Docent (Principal Ph.D. Su-
pervisor) and Associate Professor in Embedded
Control Systems, with KTH Royal Institute of
Technology, Sweden. He received his MSc degree
in Mechatronics from KTH in 1998 and his PhD
degree in Mechatronics from KTH in 2004. His
research focuses on developing novel strategies
and innovative industrial frameworks for advanced
situation-awareness and self-management in intel-
ligent cyber-physical systems. He has worked for

Enea Data AB, Sweden, as a senior technical instructor during 2007 2009.
Dejiu Chen has been the principal investigator for various international
research projects. He is a senior member of IEEE.

12 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3609566

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


