
Muir,  Jen,  Ravuri,  Aditya,  Meissner,  Eric,  Hawes,  Joseph  ORCID:
https://orcid.org/0000-0003-0053-2018  ,  Dufourq,  Emmanuel  ORCID:
https://orcid.org/0000-0002-6986-3408 ,  O’Mahoney,  Thomas and Dunn,  Jacob
(2025)  Detection  and  classification  of  captive  coppery  titi  monkey  calls.
Bioacoustics . 

Downloaded from: https://insight.cumbria.ac.uk/id/eprint/8860/

Usage of  any items from the University  of  Cumbria’s institutional repository ‘Insight’ must  conform to the
following fair usage guidelines.

Any item and its associated metadata held in the University of Cumbria’s institutional repository Insight (unless
stated otherwise on the metadata record) may be copied, displayed or performed, and stored in line with the JISC
fair dealing guidelines (available here) for educational and not-for-profit activities

provided that

• the authors, title and full bibliographic details of the item are cited clearly when any part
of the work is referred to verbally or in the written form 

• a hyperlink/URL to the original Insight record of that item is included in any citations of the work

• the content is not changed in any way

• all files required for usage of the item are kept together with the main item file.

You may not

• sell any part of an item

• refer to any part of an item without citation

• amend any item or contextualise it in a way that will impugn the creator’s reputation

• remove or alter the copyright statement on an item.

The full policy can be found here. 
Alternatively contact the University of Cumbria Repository Editor by emailing insight@cumbria.ac.uk.

http://www.ukoln.ac.uk/services/elib/papers/pa/fair/
mailto:insight@cumbria.ac.uk
http://insight.cumbria.ac.uk/legal.html#section5


Bioacoustics
The International Journal of Animal Sound and its Recording

ISSN: 0952-4622 (Print) 2165-0586 (Online) Journal homepage: www.tandfonline.com/journals/tbio20

Detection and classification of captive coppery titi
monkey calls

Jen Muir, Aditya Ravuri, Eric Meissner, Joseph E. Hawes, Emmanuel Dufourq,
Thomas O’Mahoney & Jacob C. Dunn

To cite this article: Jen Muir, Aditya Ravuri, Eric Meissner, Joseph E. Hawes, Emmanuel
Dufourq, Thomas O’Mahoney & Jacob C. Dunn (22 May 2025): Detection and classification of
captive coppery titi monkey calls, Bioacoustics, DOI: 10.1080/09524622.2025.2496497

To link to this article:  https://doi.org/10.1080/09524622.2025.2496497

© 2025 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

View supplementary material 

Published online: 22 May 2025.

Submit your article to this journal 

Article views: 124

View related articles 

View Crossmark data

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tbio20

https://www.tandfonline.com/journals/tbio20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/09524622.2025.2496497
https://doi.org/10.1080/09524622.2025.2496497
https://www.tandfonline.com/doi/suppl/10.1080/09524622.2025.2496497
https://www.tandfonline.com/doi/suppl/10.1080/09524622.2025.2496497
https://www.tandfonline.com/action/authorSubmission?journalCode=tbio20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=tbio20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/09524622.2025.2496497?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/09524622.2025.2496497?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/09524622.2025.2496497&domain=pdf&date_stamp=22%20May%202025
http://crossmark.crossref.org/dialog/?doi=10.1080/09524622.2025.2496497&domain=pdf&date_stamp=22%20May%202025
https://www.tandfonline.com/action/journalInformation?journalCode=tbio20


Detection and classification of captive coppery titi monkey 
calls
Jen Muira, Aditya Ravurib, Eric Meissnerb, Joseph E. Hawesc, Emmanuel Dufourq d, 
Thomas O’Mahoneya and Jacob C. Dunna,e,f*
aSchool of Life Sciences, Anglia Ruskin University, Cambridge, UK; bDepartment of Computer Science and 
Technology, University of Cambridge, Cambridge, UK; cInstitute of Science and Environment, University of 
Cumbria, Ambleside, UK; dAfrican Institute for Mathematical Sciences - Research and Innovation Centre, 
Kigali, RW, South Africa; eBiological Anthropology, University of Cambridge, Cambridge, UK; fDepartment of 
Behavioural and Cognitive Biology, University of Vienna, Vienna, Austria

ABSTRACT
Ecoacoustic monitoring has many applications in conservation and 
welfare but generates large amounts of data that are extremely time- 
intensive to manually process. This has led to an increased interest in 
the use of machine learning methods to increase efficiency and 
reduce workload. Common issues within this area include noisy, 
unbalanced and limited datasets, making it challenging to make 
effective machine learning models. This study aimed to determine 
the vocal repertoire of the coppery titi monkey, Plecturocebus 
cupreus, and develop a machine learning model that can detect, 
segment and classify calls within streaming audio using a small and 
unbalanced dataset with overlapping calls from other species. 
Acoustic data were collected across three zoo populations of 
P. cupreus using passive acoustic monitors. From this, 3302 calls 
were manually labelled to use as training data. Ten call types were 
established manually, corresponding to three groups: short calls, 
long calls and harsh calls. A Long Short-Term Memory neural network 
was created that successfully detected calls (accuracy = 0.95) and 
classified call types (accuracy = 0.97). Potential applications for the 
model include welfare monitoring in captivity and population mon
itoring of P. cupreus and related endangered species in the wild.
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Introduction

Bioacoustic research and ecoacoustic monitoring often generate large quantities of data for 
which the manual scanning and labelling of sounds of interest is time-consuming and often 
requires expert knowledge. This time-intensive process is often impractical for the datasets 
generated by passive acoustic monitoring (PAM) devices, which may include many 
months’ worth of audio data, often summing multiple terabytes. Given this, Machine 
Learning (ML) approaches are increasingly being used to automatically detect and classify 
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sounds of interest in order to mitigate the issues of processing such large datasets 
(Mcloughlin et al. 2019; Stowell 2022; Nieto-Mora et al. 2023; Kershenbaum et al. 2025).

ML encompasses a wide variety of techniques that aim to use input data to make 
predictions, each varying in complexity and suitability for a given task (Jo 2021). 
Algorithms may implement a supervised, semi-supervised or unsupervised approach. 
Supervised approaches are most common within bioacoustic research and require 
manually labelled data to train models (Bianco et al. 2019). These models can range 
from simple logistic regression (Tseng et al. 2021; Townsend and Aldstadt 2023) to more 
complex support vector machines (SVM; Noda et al. 2016; Chao et al. 2019; Clink et al.  
2019), and deep learning methods such as neural networks (NN; Bermant 2021; Gong 
et al. 2021; Morales et al. 2022), convolutional neural networks (CNN; Merchan et al.  
2020; Xu et al. 2020; Paumen et al. 2022) and recurrent neural networks (RNN; Cakir 
et al. 2017; Wang et al. 2022; Srujana et al. 2023). Model success can be assessed using 
metrics such as accuracy, precision, F-score, and recall, all of which are common within 
supervised approaches (Bianco et al. 2019). Unsupervised approaches are used to deter
mine patterns within unlabelled data by grouping items through algorithms such as 
Gaussian Mixture Models (GMM; Diep et al. 2013; Parada and Cardenal-López 2014; 
Zhao et al. 2017), autoencoders (Ibrahim et al. 2019; Alipek et al. 2023; Vamsi et al. 2023), 
hidden Markov models (HMM; Trawicki 2021; Ogundile et al. 2022), and hierarchical or 
k-means clustering (Ozanich et al. 2021; Batist et al. 2023; Jiang et al. 2024). Results can 
then be visualised using dimensionality reduction methods such as t-SNE (t-distributed 
stochastic neighbour embedding; Van der Maaten and Hinton 2008) or UMAP (uniform 
manifold approximation and projection; McInnes et al. 2018). Dimensionality reduction 
may be used alone or in combination with supervised methods. However, the lack of 
human input makes these methods difficult to assess in terms of efficacy, and so they are 
often used to initially identify patterns of interest in data before further analysis (e.g. to 
suggest call groupings within a vocal repertoire; Valente et al. 2019; Goffinet et al. 2021; 
Thomas et al. 2022). Semi-supervised approaches exist between supervised and unsu
pervised, using labelled data alongside unlabelled data for training a model. These models 
may use similar architectures (i.e. model structure) to supervised models and be assessed 
using methods designed for supervised or unsupervised models (e.g. F1 score, dimen
sionality reduction).

Common tasks that ML has been applied to within bioacoustics include the detection, 
segmentation and classification of animal calls (Stowell 2022; Oswald et al. 2022; 
Kershenbaum et al. 2025). Detection tasks simply aim to determine if a call of interest 
is present within the data, and it is often the first step before segmentation (a process in 
which the signal is isolated from the rest of the recording, usually based on given start/ 
end times or amplitude thresholds) or classification of the target call (e.g. Coffey et al.  
2019; Garcia et al. 2020; Zhong et al. 2021). Detection algorithms have been applied 
within animal conservation to identify the calls of target species and have been particu
larly effective for presence-absence surveys of cryptic species that would be difficult to 
detect otherwise (e.g. bats: Mac Aodha et al. 2018; least bittern, Ixobrychus exilis:; 
Znidersic et al. 2020; Kroombit tinker frog, Taudactylus pleione:; Xie et al. 2022). 
Others have searched for rare acoustic events, such as gunshots associated with poaching 
(Katsis et al. 2022; Somwong et al. 2023), wildfires (Huang et al. 2022; Grari et al. 2023), 
and illegal logging (Srisuphab et al. 2020). Signal detection has also been used for 
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studying animal welfare from calls, including the detection of stress-related calls (Schön 
et al. 2001Nasirahmadi et al. 2020; Mao et al. 2022), calls of positive valence (Briefer et al.  
2022), and calls that correlate with illness (Carroll et al. 2014; Shen et al. 2022) or oestrus 
(Chung et al. 2013). In many cases, the detected signal is then automatically segmented. 
Automated call segmentation has been used to isolate syllables of frog calls (Xie et al.  
2020), cetacean calls (Schröter et al. 2019) and birdsong (Koops et al. 2015; Narasimhan 
et al. 2017; Zsebők et al. 2021), as well as to annotate data (e.g. labelling call types or 
components; Steinfath et al. 2021). Classification models are designed to take segmented 
data and categorise them based on a predetermined list of labels. This may include 
species (Zualkernan et al. 2021; Akbal et al. 2022; Noumida and Rajan 2022), caller 
identity (Larranaga et al. 2015; Trapanotto et al. 2022; Phaniraj 2022), or call type 
(Oikarinen et al. 2019; Jung et al. 2021; Bergler et al. 2022).

While the use of ML can be very effective for reducing workloads and improving 
accuracy in processing bioacoustic data, there are still difficulties present in designing ML 
solutions. Data from field recordings can include background noise, making it difficult to 
isolate the calls of interest, which may also overlap with calls from other individuals or 
species (Arnaud et al. 2023). Call types within a species’ repertoire are also unlikely to be 
evenly emitted, with some call types being much more common than others, leading to 
an unbalanced dataset than can be difficult to train ML models on. Issues can also arise 
from the graded nature of some call repertoires (e.g. pigs: Tallet et al. 2013; baboons:; 
Wadewitz et al. 2015; rooks:; Martin et al. 2024), with calls existing on a continuum 
rather than as discrete categories, which can reduce accuracy when classifying call types. 
There are also limited data available on the vocalisations of many species, making the 
development of detection models problematic (Arnaud et al. 2023). These challenges 
mean that ML models need to be effective when working with small, unbalanced, and 
noisy datasets.

A good case study for testing ML models from bioacoustic datasets is the titi monkeys 
(Pitheciidae: Callicebinae), a highly vocal South American primate group for which there 
is an existing body of research concerning their vocalisations (Bezerra et al. 2017). Vocal 
repertoires have been described for the red-bellied titi monkey, Plecturocebus moloch, 
(Moynihan 1966; Robinson 1979), the collared titi monkey, Cheracebus torquatus 
(Kinzey et al. 1977), and the black-fronted titi monkey, Callicebus nigrifrons (Cäsar  
2012; Cäsar et al. 2012), detailing between six and 13 call types. Van Kuijk et al. (2023) 
have also successfully developed an ML approach to detect red titi monkey, Plecturocebus 
discolor, duets in the wild. The vocalisations of this group are ideal for testing models on 
challenging datasets due to the presence of noisy and graded calls in their repertoire, and 
unbalanced frequency of call use (Moynihan 1966; Robinson 1979). As a vocal species, 
this also enables large amounts of data to be gathered quickly.

Around 32% of titi monkey species are threatened in the wild, primarily due to habitat 
loss and fragmentation (IUCN 2024). Due to their cryptic nature and hard-to-access 
habitat, researching and monitoring their populations can be challenging (Pinto et al.  
2013; Souza-Alves et al. 2023). As titi monkey loud calls are species distinct, ML models 
for call detection could be ideal for population monitoring in the wild of at-risk titi 
monkey species that would otherwise be difficult to find (Aldrich et al. 2008). Titi 
monkeys can also be difficult to keep in captivity, as they are sensitive to stress 
(Mendoza and Mason 1997), experience high infant mortality (Veiga et al. 2013), and 
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are prone to respiratory conditions (Jones 1968; Lorenz and Mason 1971). Monitoring in 
captivity could present a non-invasive way to assess health and welfare, as well as to learn 
more about what may provoke stress in these species and to inform care. To achieve this 
an understanding of the behavioural contexts and associated stress levels accompanying 
each call type would be required to fully develop a welfare monitoring system. 
A successful detection and classification model could thus be usefully applied within 
conservation and welfare contexts.

This study focused on the vocalisations of captive coppery titi monkeys, Plecturocebus 
cupreus, within UK zoos. This species was chosen due to the challenges of housing them 
within zoos, making it a species of interest for welfare monitoring in captivity. 
Specifically, we aimed to: (i) catalogue the vocal repertoire for P. cupreus in captivity; 
(ii) develop a ML pipeline to detect and segment P. cupreus calls in streaming audio; and 
(iii) classify calls according to the vocal repertoire.

Methods

Study population

A total of 20 individuals across five groups were sampled from the three zoos. Shaldon 
Zoo had one group composed of three individuals (one adult male, two adult females), 
Banham Zoo housed a single group of five individuals (two adult males, three adult 
females), and Blackpool Zoo housed three groups, two with three individuals (one adult 
male, two adult females; three adult males) and one with five (two adult males, three adult 
females). The use of data from five separate groups was chosen to increase the generali
sability of the sample, reducing the likelihood of certain individuals contributing 
excessively.

Audio data collection

Audio data were collected via passive acoustic monitoring at Banham Zoo, Blackpool 
Zoo, and Shaldon Zoo between July 2021 and January 2023. AudioMoths (Hill et al.  
2018) were placed within indoor enclosures and set to record continuously with 
a sampling rate of 44.1 kHz from 30 minutes before sunrise to 30 minutes after sunset 
each day to capture the full titi monkey activity period. Recordings were made as a series 
of 10-minute files. A total of 100 days of data were collected; 15 days of data were 
collected from one group at Banham Zoo (July 2022), 10 days from one group at 
Shaldon Zoo (July 2021) and 25 days from each of three groups at Blackpool Zoo 
(December 2022–January 2023). This provided a total of 33,180 minutes of audio data.

Vocal repertoire

A vocal repertoire was created, comprising a comprehensive list of call types for the 
proposed model to detect and classify. Call type names were chosen in relation to 
previously published repertoires by Robinson (1979) and Moynihan (1966). The reper
toire was first determined qualitatively using a subset of the data, consisting of calls 
exclusively from Banham Zoo (N = 879). A t-SNE (Van der Maaten and Hinton 2008) 
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was then used to visually cluster calls into two-dimensional space. The repertoire was 
confirmed based on the clustering of call types found in the t-SNE. This method has 
previously been used as a tool for determining how structurally discrete calls are within 
a repertoire, and to visually assess how much call types are graded in terms of structure 
(e.g. overlaps in duration, frequency range, modulation between call types) (Valente et al.  
2019; Goffinet et al. 2021; Thomas et al. 2022). The t-SNE was conducted with the scikit- 
learn library in Python (Pedregosa et al. 2011), using 20 MFCCs (Mel Frequency Cepstral 
Coefficients) and default parameters. Only calls from Banham Zoo were used to avoid the 
influence of differing soundscapes on the clustering.

To ensure call categorisation was consistent, inter-rater reliability was tested using 
Cohen’s Kappa between two raters using 256 (30%) of the calls from the Banham dataset 
and split evenly between the call types (Landis and Koch 1977), with high agreement 
found between raters (K = 0.87, 95% CIs: 0.825–0.915, p < 0.001).

Training/testing data

From each zoo, 30 minutes of audio data were selected to use as training/testing data, 
corresponding to 90 minutes and 3,302 calls in total. Calls were defined as either target 
(i.e. calls produced by P. cupreus) or non-target (i.e. any sound produced by the 
environment or a different species). Non-target calls were also cross-referenced with 
data from the Macaulay Library (https://www.macaulaylibrary.org). These non-target 
calls were produced by a variety of species and at differing levels between zoos (e.g. 
Blackpool Zoo had very little noise from neighbouring species due to enclosure design, 
while Banham Zoo had many other species). Non-target species identified included 
Goeldi’s marmosets, Callimico goeldii, sun conures, Aratinga solstitialis, common gulls, 
Larus canus, Eurasian blackbirds, Turdus merula and human voices, all of which over
lapped with the frequency range of P. cupreus calls (Figure 1).

Each call in the training/testing dataset was manually labelled with its start/end time 
and call type in Praat (v 6.4.05; Boersma and Weenink 2024), with 3,302 calls overall 

Figure 1. View from the Dash app (Hossain et al. 2019) for a sample across 10 seconds of acoustic data 
from captive coppery titi monkeys, Plecturocebus cupreus, showing detected chirp (a) and three 
whistles (b–d) in yellow.
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labelled in the 90 mins of training data. As certain calls were found to be highly graded, 
a simplified 6-item version of the full vocal repertoire was used for model training and 
testing, combining the short and long call groups into two call categories: Chucks and 
Chirps were grouped as ‘Short Calls’ and Trills, Whistles, and Phees were grouped as 
‘Long Calls’. Jagged Trill and the Harsh Calls (Resonating Note, Sneeze, and Moan) were 
kept as independent call types. Scream calls were excluded from the ML pipeline due to 
a lack of examples (n < 10). When labelling training data, calls were labelled by these 
condensed categories as initial attempts to classify by each of the ten individual call types 
were unsuccessful. This is likely due to the spectral similarity of some call types (e.g. 
chirps and whistles share a similar frequency range and there is no clear duration 
distinction due to grading). Given this, our training data included Short Calls (N =  
1,264), Long Calls (N = 867), Jagged Trills (N = 96), Resonating Notes (N = 952), Sneezes 
(N = 23) and Moans (N = 100). Occurrences of non-target vocalisations were also labelled 
(N = 1,839).

Once the training/testing calls were labelled, a randomly selected 90:10 (training:test) 
split was used for testing the detection model, while an 80:20 split was used to test the 
classification model (Sugali et al. 2024). Calls were stratified to ensure balance between 
call types when splitting the data.

Final model architecture

Detection
For call detection a Long Short-Term Memory network (LSTM) was developed using the 
Pytorch (Paszke et al. 2019), librosa (McFee et al. 2015) and SciPy (Virtanen et al. 2020) 
libraries in Python. The LSTM works as an enhanced version of an RNN, which can 
retain long-term information, which RNN models can struggle with (Hochreiter and 
Schmidhuber 1997; Gers et al. 2000).

Prior to running the model, the audio data were converted to a short-time Fourier 
transform (STFT) representation, transformed into a Mel-Frequency Cepstral 
Coefficient representation (n = 40 MFCCs), and finally normalised. The network had 
three stacked LSTM cells, each with 16 hidden units. This was followed by a sigmoid unit. 
The proposed call detection model takes in data of the shape of [552, 40], where 552 is the 
number of time steps in an audio clip and 40 corresponds to the MFCCs. For each input, 
the network produces 552 values, representing the probability of whether a call has been 
detected in each time step. LSTMs, a type of recurrent neural network, have successfully 
been applied in bioacoustics (Islam and Valles 2020; Duan et al. 2021; Wang et al. 2022).

Classification
To classify calls, we fit a similar model, with the only difference in the architecture being 
that the last layer of the neural network performed multiclass classification (where classes 
were the six call categories, plus an additional class for ‘not call’ as opposed to ‘call’ and 
‘not call’). This was achieved by thresholding the output values by 0.5 (i.e. <0.5 = absence 
class, presence class otherwise).

Both models were fit using the labelled training dataset using a standard cross entropy 
loss function (Zhang and Sabuncu 2018; Mao et al. 2023). A Dash app (a custom made 
interactive web application; Hossain et al. 2019) was constructed to assess the model’s 
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initial performance and to choose hyperparameters by visualising call segmentation and 
classification within spectrograms (Figure 1).

Model evaluation

Four performance metrics were used to evaluate the model detection and classification 
success: precision, recall, accuracy, and F1 score (Handelman et al. 2019). These metrics 
are derived from the false positives (fp), false negatives (fp), true positives (tp), and true 
negatives (tn), given in confusion matrices. Precision measures the proportion of cor
rectly identified positive results out of all positive results, both true and false 
(Equation 1). This gives a measure of how often the model successfully predicts the 
target classes. Recall (also called sensitivity) measures the proportion of correctly identi
fied positive results out of all positively labelled samples (Equation 2). Accuracy measures 
the proportion of correctly identified samples out of all samples (Equation 3). F1 score is 
defined as the harmonic mean of the precision and recall scores (Equation 4). Both 
precision and F1 score are recommended for unbalanced datasets, where accuracy alone 
can be misleading (Lever 2016). All measures are between 0 (low performance) and 1 
(high performance). When determining at which score the model should be considered 
successful, 70% was chosen as a threshold. While there is no perfect threshold for success 
in machine learning, this was chosen as a balance between model functionally while 
considering the irregularities of acoustic data (Kershenbaum et al. 2025).

Precision = tp
tpþfp                                                                                                (1) 

Recall = tp
tpþfn                                                                                                    (2) 

Accuracy = tpþtn
tpþtnþfpþfn                                                                                        (3) 

F1 Score = 2� precision�recall
precisionþrecall                                                                                (4)

Data Availability

All audio data are available on Zenodo (https://doi.org/10.5281/zenodo.11040660). The 
code for the detection and classification models are available from: https://github.com/ 
mlatcl/cmci/blob/main/src/main.py.

Results

Vocal repertoire

Ten call types in total were determined within the repertoire, corresponding to three 
groups; short calls, long calls, and harsh calls (Figure 3). These names were derived from 
previous repertoires of other titi monkey species (P. moloch; Moynihan 1966; Robinson,  
1979):
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Short calls include chirp and chuck calls and are short and modulated (Figure 2(a,b) 
Long calls are composed of trills, jagged trills, screams, whistles and phees (Figure 2(c-g). 
These calls are the longest in the repertoire and are often modulated, either increasing or 
decreasing slightly in frequency. Phee calls are typically modulated upwards at the start 
and become more broadband at the end. Harsh calls include moan, resonating note, and 

Figure 2. Spectrograms for call groups (Short calls, Long calls, Harsh calls) and types found in the vocal 
repertoire of captive coppery titi monkeys, Plecturocebus cupreus, and non-target calls from other 
species. Short calls: a) Chirp, b) Chuck; Long calls: c) Trill, d) Jagged Trill, e) Scream, f) Phee, g) Whistle; 
Harsh calls: h) Resonating Note, i) Sneeze, j) Moan; and Non-target calls: k) common gull, Larus canus; 
l) human speech; m) Goeldi’s marmoset, Callimico goeldii; n) Eurasian blackbird, Turdus merula; and o) 
sun conure, Aratinga solstitialis.
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sneeze calls (Figure 2(h-j). All harsh calls were broadband and noisy in quality, showing 
no modulation. Sneezes are very short broadband calls and sound similar to a human 
sneeze. Moans are the lowest frequency call, often lost to background noise and graded 
with resonating notes. Resonating notes appeared as bisyllablic calls, with an inhale and 
exhale component. Sequences of these resonating notes formed the duet sequence. These 
calls showed deterministic chaos to varying degrees.

Many calls in this repertoire grade into each other. Chirps grade with chucks, 
trills and whistles, while chucks grade with resonating notes. Trills, whistles and 
phees all grade into each other (phees into whistles, phees into trill, etc.). Screams 
exist on a gradient with jagged trills and trills, with screams presenting as a more 
intense variation of jagged trills. Call groupings were confirmed by the t-SNE, 
showing distinct clustering of call types (Figure 3). The t-SNE also displays how 
call types may grade into each other (i.e. the overlap in the distribution of call 
types). Common sources of non-target sounds that are visually similar to titi 
monkey calls are noted in Figure 2(k-o).

Figure 3. Results of the t-SNE clustering for all ten call types recorded from captive coppery titi 
monkeys, Plecturocebus cupreus, at Banham Zoo.

Table 1. Precision, recall, accuracy, and F1 score metrics for call detection in 
captive coppery titi monkeys, Plecturocebus cupreus, across Banham, Shaldon, 
and Blackpool zoos. All measures are between 0 (low performance) and 1 
(high performance).

Zoo Precision Recall Accuracy F1 Score

Banham 0.98 0.96 0.95 0.97
Shaldon 0.97 0.94 0.92 0.95
Blackpool 0.99 0.98 0.98 0.99
Overall 0.98 0.96 0.96 0.97
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Detection

The model successfully detected P. cupreus calls across all three zoos (Table 1), with 
Blackpool Zoo data performing best across all metrics, while Shaldon Zoo had the lowest 
success across all metrics.

Figure 4. Confusion matrix showing overall classification accuracy across the seven combined call 
categories recorded in captive coppery titi monkeys, Plecturocebus cupreus. Not all categories were 
present at all zoos.

Table 2. Precision, recall, accuracy, and F1 score metrics for the seven condensed 
call categories recorded in captive coppery titi monkeys, Plecturocebus cupreus, 
across all zoos. All measures are between 0 (low performance) and 1 (high 
performance). The ‘Short Calls’ category includes Chirps and Chucks; the ‘Long 
Calls’ category includes Trills, Whistles and Phees, but not Jagged Trill (treated 
individually) or Scream (excluded due to small sample size); all ‘Harsh Calls’ are 
treated individually.

Call Category Precision Recall Accuracy F1 Score

No Call 0.96 0.97 0.95 0.97
Jagged Trill 0.65 0.39 0.98 0.48
Long Calls 0.82 0.80 0.96 0.81
Moan 0.58 0.73 0.99 0.65
Resonating Note 0.88 0.90 0.99 0.89
Short Calls 0.66 0.65 0.96 0.65
Sneeze 1.00 0.68 0.99 0.81
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Classification

The model was able to accurately predict Resonating Notes, Moans, Long Calls and Non- 
Target Calls (absence of target call types), and was less successful with Sneezes, Short 
Calls and Jagged Trills (Figure 4, see also Supplementary Fig A for individual confusion 
matrices by zoo). For the overall sample, precision, recall, and F1 score was high for No 
Calls, Long Calls, Resonating Notes, and low for Moans and Jagged Trills (Table 2). 
Precision was 1.0 for Sneezes; however, this is likely due to the very small sample size of 
calls in the training data (N = 23). Accuracy was high for all call types (>0.95). Long Calls, 
Short Calls, Sneezes, Jagged Trills, and Moans were most frequently misclassified as no 
calls. Short Calls and Jagged Trills were also misclassified as Long Calls, and Short Calls 
and Long Calls were misclassified as each other.

Discussion

In this study we aimed to determine the vocal repertoire of P. cupreus and create an 
algorithm for detecting and classifying calls in streaming audio. The dataset used was 
unbalanced, small, and noisy, presenting a set of challenges common in machine learning 
(Arnaud et al. 2023). This was achieved by fitting two LSTM models, one for detection 
and one for classification. These were then evaluated using a series of metrics.

A vocal repertoire of ten calls was established, suggesting a smaller repertoire size than 
that described by Moynihan (1966), p. 12 calls) and Robinson (1979; 15 calls) for 
P. moloch. The repertoire was similar between species in terms of the call types observed, 
with both displaying chirps, chucks, sneezes, whistles, trills, screams, moans and resonat
ing notes. Both species repertoires also displayed considerable gradation between calls, 
with all but sneeze calls grading with at least one other call type. Other studies of titi 
monkey calls have noted more diversity in call types, particularly in the alarm calls of 
C. nigrifrons, in which individuals used ‘A’ and ‘B calls’ in reference to different predators 
(Cäsar et al. 2013; Berthet et al. 2018). From a qualitative examination, chucks and chirps 
as used in our study of P. cupreus were most visually and descriptively similar to the ‘A 
calls’ of C. nigrifrons.

Our model was able to successfully detect and classify the simplified vocal repertoire of 
P. cupreus calls in streaming audio based on a small and unbalanced dataset with varying 
levels of noise. The detection element of the model performed similarly across all three 
zoo soundscapes but showed differing levels of effectiveness between zoos for the 
classification element. Differences between zoos may be a result of their specific sounds
capes; the enclosures at Blackpool Zoo had little background noise due to soundproofed 
glass, while the enclosures at Banham Zoo and Shaldon Zoo were shared with other 
species and were not as sheltered from outside noise. Performance metrics were also 
variable across call types/categories, likely due to the substantial gradation between call 
types leading to call misclassifications, and from lower sample sizes for rarer calls such as 
jagged trills, moans, and sneezes. Lower precision scores for the prediction of Jagged 
Trills, Moans, and Short Calls likely indicates a tendency to false positives low precision 
in the model. This could be reduced by increasing the dataset size, for Jagged Trills and 
Moans. These results are similar in performance to other models developed to detect/ 
classify common marmoset, Callithrix jacchus, calls (Phaniraj 2022), indri, Indri indri, 
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song (Ravaglia et al. 2023), and grey mouse lemur, Microcebus murinus, calls (Romero- 
Mujalli et al. 2021).

Applications

General applications for the model could include more efficient processing of any 
acoustic data from P. cupreus, reducing time dedicated to detection and labelling. 
As P. cupreus showed similar call types to P. moloch, there is potential for testing 
the model on other titi species (Callicebus spp., Cheracebus spp., and 
Plecturocebus spp.), many of which are endangered and in need of population 
monitoring and further study (IUCN 2023). Acquiring titi monkey vocal data for 
training may be difficult due to decreasing wild populations and limited avail
ability/absence in databases such as the Macaulay Library, and so being able to 
use captive P. cupreus calls would offer a potential alternative. However, when 
doing this, audio used between the two species must be similar in signal-to-noise 
ratio, sampling rate and normalisation in order to be effective (Kershenbaum 
et al. 2025).

Passive acoustic monitoring (PAM) involves the use of autonomous audio recorders 
to gather data non-invasively and has become increasingly vital to conservation opera
tions in recent years (Browning et al. 2017; Hoefer et al. 2023). It is also a method that 
generates large amounts of data and so would benefit from being used alongside ML 
solutions. PAM can be used for determining the presence or absence of a species, and 
may be particularly useful for titi species, which are often found in dense vegetation and 
can be difficult to observe visually (Kalan et al. 2015; Bezerra et al. 2017; Cole et al. 2022; 
Souza-Alves et al. 2023). Estimations of population density from PAM could also be 
processed more efficiently with ML and could provide key information on how titi 
monkey species use their habitat and respond to changes. Habitat loss and disease 
outbreaks are ongoing and time-sensitive threats for titi monkeys (Berthet et al. 2021; 
Souva-Alves et al. 2023) and require rapid processing of data to respond efficiently with 
conservation actions.

ML applications within captive populations could include monitoring of repertoire 
use as a non-invasive means of assessing welfare. Call types in P. moloch have been 
associated with distress or hostility, including screams and chucks (Moynihan 1966; 
Robinson 1979). C. nigrifrons have also been found to alter their vocal behaviour, call less 
often and change their call frequencies in response to anthropogenic noise (Duarte et al.  
2018). The model could be adapted to detect and classify calls, highlighting if certain call 
types occur over a given threshold. General advancement in the understanding of titi 
monkey behaviour, distribution, and ecology is first required for effective conservation 
and welfare actions (Souza-Alves et al. 2023).

Model improvements

The model could be improved by using data from wild populations, which would 
allow for a more complete repertoire and more authentic soundscape for the model to 
be trained on. Semi-supervised learning utilising the unlabelled data gathered 
(approx. 550 hours) could also make the model more robust by adding more training 
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data (Reddy et al. 2018; Zhu and Goldberg 2022). For example, a form of self-learning 
/pseudo-labelling in which the current model’s initial outputs are used as pseudo-data 
for a larger version of the model could be run (Yafen et al. 2022). Fine-tuning other 
existing models with our dataset, potentially using pre-trained feature extractors such 
as wav2vec2 (Baevski et al. 2020) may provide additional features other than MFCCs 
and boost model performance. Adapting one pretrained model (in this case, the 
current P. cupreus model) to fit another context (i.e. wild populations or different 
species) can, however, be challenging as the new audio data must closely resemble the 
original model’s training data (i.e. sound-to-noise ratio, sampling rates; Kershenbaum 
et al. 2025).

Future studies

One aspect in which the model could be further developed is to identify individual callers. 
Plecturocebus spp. produce pair distinct duets (Muller and Anzenberger, 2002; Lau et al.  
2020), which could be utilised in population monitoring or presence studies to distin
guish family groups and their movements over time. Moynihan (1966) suggested that 
chirps may also be individually distinct; however, this remains to be tested. More detailed 
aspects of call structure could also be considered, such as the presence of nonlinear 
phenomena (NLP), which may relate to emotional arousal and has been previously 
connected to emotional valence (Briefer et al. 2015). In this case, being able to detect 
calls with NLP would give more insight into captive welfare. Expanding the vocal 
repertoire into wild populations would also allow for the model to be more effectively 
applied within population monitoring and presence/absence studies.

Conclusions

This study determined the vocal repertoire for P. cupreus and developed an effective 
initial ML model that was designed to detect, segment, and classify calls in streaming 
audio. This used a dataset typical of bioacoustic research, with a noisy and unbalanced 
sample with interference from other species. Our LSTM based model performed effec
tively across all metrics in all three zoos, detecting a condensed set of call categories (7 
from the full repertoire of 10). This model could be applied within captive and wild 
settings, for monitoring captive and wild populations non-invasively. This would make 
data gathering and processing more feasible and efficient, which is essential with a species 
that is difficult to study in the wild and prone to illness in captive settings.
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