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carpinifolium Siebold & Zuccarini and Betula platyphylla 
Sukaczev, explaining respectively 56.5%, 19.4%, 66.3%, and 
16.7% of variation in its chemical composition. However, 
the variation also depended on canopy openness: Only in 
the forest gap was lignin aromatic C negatively associated 
with C-oxygen (C–O) bonding in polysaccharides receiv-
ing treatments containing blue light of the full spectrum of 
solar radiation. Regardless of species, the decomposition 
index of litter that explained changes in mass and lignin loss 
was driven by the relative content of C–O stretching in poly-
saccharides and lignin aromatic C. The results suggest that 
the availability of readily degradable polysaccharides pro-
duced by the reduction in lignin aromatic C most plausibly 
explains the rate of litter photodegradation. Photo-products 
of photodegradation might augment the C pool destabilized 
by the input of readily degradable organic compounds (i.e., 
polysaccharides).

Keywords Forest carbon cycling · Solar radiation · 
Photodegradation · Litter molecular structure · Fourier 
transform infrared (FTIR) spectroscopy

Introduction

Litter decomposition is a crucial ecological process for car-
bon (C) and nutrient conversion within ecosystems, driving 
plant productivity and the C balance of the soil organic mat-
ter pool across terrestrial ecosystems (Bradford et al. 2016; 
Li et al. 2023a; Zhang et al. 2024). Photodegradation driven 

Abstract Photodegradation is considered as a universal 
contributing factor to litter decomposition and carbon (C) 
cycling within the Earth’s biomes. Identifying how solar 
radiation modifies the molecular structure of litter is essen-
tial to understand the mechanism controlling its decom-
position and reaction to shifts in climatic conditions and 
land-use. In this study, we performed a spectral-attenuation 
experiment following litter decomposition in an understory 
and gap of a temperate deciduous forest. We found that 
short-wavelength visible light, especially blue light, was 
the main factor driving variation in litter molecular struc-
ture of Fagus crenata Blume, Quercus crispula Blume, Acer 
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by solar radiation has been considered to be a universal con-
tributor to litter decomposition and C cycling in terrestrial 
ecosystems (Erdenebileg et al. 2018; Barnes et al. 2023; 
Wang et al. 2023). The relative importance of solar radia-
tion to decomposition and C turnover depends on abiotic 
and biotic factors, especially initial litter traits, solar spec-
tral compositions, vegetation cover, and seasonal changes 
(Deng et al. 2023; Li et al. 2023a, 2023b; Wang et al. 2023). 
Exploring the mechanism of how solar radiation drives lit-
ter decay is crucial to predict C cycling and its associated 
feedback to climate change.

Photodegradation directly breaks down organic matter 
and promotes greenhouse gas (e.g.,  CH4 and  CO2) emissions 
through photochemical mineralization of complex macromo-
lecular compounds which absorb ultraviolet (UV) radiation 
(290–400 nm) and short-wavelength visible light [blue and 
green light (BG), 400–600 nm] (Keiser et al. 2021; Austin 
and Ballaré 2024). Non-gaseous photoproducts such as pol-
ysaccharides, organic acids, aldehydes, alcohols, and phe-
nols are soluble or readily decomposable (Day et al. 2018; 
Méndez et al. 2022). They can further accelerate microbial 
decay through photofacilitation (Berenstecher et al. 2020; 
Li et al. 2024) and leaching from litter (Day et al. 2022). In 
addition, the leachate transported belowground may regu-
late the stability of soil organic carbon (SOC) through soil 
priming effects. These processes suggest that litter chemical 
composition influences photodegradation of litter organic C 
and decomposition.

Litter chemical composition (i.e., lignin, hemicellulose, 
and cellulose) differs in light absorption coefficients, bond 
energy, as well as resistance to microbial decomposition 
(Austin and Vivanco 2006; Ranade and García-Gil 2024; 
Zhao et al. 2024). Lignin, as a complex group of aromatic 
polymers, exists in cell walls and is a photo-receptive com-
pound which is preferentially degraded due to photodeg-
radation (Austin and Ballaré 2010, 2024). Solar radiation, 
particularly UV radiation and BG light, accelerates lignin 
degradation (Wang et al. 2021). In general, a higher lignin 

concentration in the litter tends to correlate with a stronger 
photodegradation effect (Wang et al. 2021). However, lit-
ter chemical compounds are large and complex polymers. 
Quantifying how solar radiation modifies characteristics of 
the C molecular structure is essential to evaluate and predict 
litter photodegradation and its subsequent effects on SOC.

The molecular structure and abundance of organic C in 
plant litter have been explored to investigate the possible 
mechanisms of photodegradation through Fourier Trans-
form Infrared (FTIR) analysis (Soong et al. 2014). This has 
found aromatics and alkyl signals assigned to lignin to be 
less intense after two months exposure to solar radiation 
(Farnet Da Silva et al. 2023). UV radiation can reduce the 
relative abundance of aromatic C, methoxyl C, and N-alkyl 
(Yao et al. 2022). Furthermore, a change in environmental 
conditions, particularly increased moisture, means polysac-
charides from lignocellulose may further facilitate litter 
conversion (Farnet Da Silva et al. 2023) and promote subse-
quent microbial decomposition (Yao et al. 2022). However, 
these findings have only been derived from experiments in 
microcosms. The general response of organic C molecular 
structure to solar radiation and its contribution to in-situ 
decomposition (i.e., in forest ecosystems) remains unclear.

In forest ecosystems, canopy structure and phenol-
ogy determine spectral composition and irradiance inten-
sity reaching the ground throughout the year (Hartikainen 
et al. 2020; Tang et al. 2024; Xie et al. 2024). Research 
has found that, even in the understory with comparatively 
low solar radiation, photodegradation can facilitate C turno-
ver (Pieristè et al. 2019). Our recent study indicated that 
exposure to the full radiation spectrum and its blue light 
fraction can increase litter decay rates by nearly 120% and 
90%, respectively (Wang et al. 2023). However, the transfor-
mations within C molecular structure attributable to photo-
degradation through litter decomposition remain unknown. 
This information gap limits our understanding of the interac-
tive effects of solar radiation, land-use change and climate 
change on litter decomposition and forest C cycling.
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To address this issue, we evaluated the response of the C 
molecular structure of litter to solar radiation during litter 
decomposition by a factorial experiment with spectral-atten-
uation treatments in the understory and gap in a temperate 
deciduous forest. Our hypotheses were: (1) solar radiation 
would significantly modify the molecular structure of C in 
litter in the forest gap, where irradiance intensity is higher 
than in the understory; (2) short-wavelength visible light, 
especially blue light, would accelerate litter decomposition 
by reducing lignin aromatic C and increasing carbon–oxygen 
(C-O) stretching in polysaccharides.

Materials and methods

2.1 Study description

The study area was located in the Ogawa Forest Reserve 
(OFR, c. 100 ha) (36°56′ N, 140°35′ E) in northern Ibaraki 
Prefecture, central Japan, which is characterized by severe 
winters and summer monsoons with average annual pre-
cipitation and temperatures of 1750 mm and 12.4 °C. The 
mature and old-growth forests are mainly dominated by 
Fagus crenata Blume. Detailed site information is found in 
a previous study (Wang et al. 2022). A 50 m × 50 m plot was 
established in the understory of the OFR, and four blocks 
in the plot where the light environment was naturally influ-
enced by seasonal canopy changes. A similar-sized plot with 
four blocks in the gap outside the OFR approximately 5-km 
away was created less than a year before the experiment, 
which provided an ambient light environment and compara-
ble soil conditions with the understory plot. Topographical 
factors, including gradient (20°), aspect (south, 180°), and 
slope, were also similar in the two plots. Plots were protected 
against wild mammals (mainly boars) by fences.

2.2 Litter collection

Freshly fallen leaves of F. crenata Blume, Quercus crispula 
Blume, Acer carpinifolium Siebold & Zuccarini, and Betula 
platyphylla Sukaczev were collected in October, 2017. Leaf 
litter samples, without petioles, were pressed in newspapers 
with wooden frames and air-dried in a dark room at 25 °C 
before transferring them to litter-boxes.

2.3 Experimental design and measurement

Litter-boxes were prepared according to our previous design 
(Wang et al. 2022). Litter-box frames were made of sterile 
plastic straws (1.3 cm diameter, 21 cm long and 18 cm wide; 
Bihin, Japan). The tops were equipped with various spectral 
filters, including Full-spectrum (transmitting solar radia-
tion > 280 nm), No-UV-B (> 315 nm), No-UV (> 400 nm), 

No-UV/Blue (> 500 nm), No-UV/Blue-Green (No-UV/BG) 
(> 580 nm), and Dark (no light) treatments, according to 
Wang et al. (2022). We drilled 2-mm holes into the filters to 
allow air, moisture, and microbes to interact with the litter. 
A sterile 2-mm polyethylene fiber mesh was placed on the 
bottom of the litter-boxes to allow only mesofauna access to 
the litter. Leaves (2–8 per species, 1.0 g) were fixed on the 
bottom mesh with stainless steel staples.

Litter boxes were randomly laid out on the soil in four 
blocks in each plot on April 18, 2018 (before canopy flush-
ing). Plots were checked every two weeks and any debris 
on the litter-boxes were removed. Four replicate litter-boxes 
were randomly collected at 50, 110, 170 and 230 days of 
the experiment (June 7, August 6, October 5, and Decem-
ber 4, 2018), corresponding to the canopy phenology from 
canopy flush, completely closed canopy, leaf senescence, 
and autumn canopy opening, respectively.

Retrieval litter-boxes were cleaned and air-dried at 25 °C 
in a dark room to a constant weight. The experiment included 
a total of 768 litter-boxes (2 plots × 4 litter species × 6 filter-
treatments × 4 replicates × 4 collection times). The ash-free 
mass was determined with a muffle oven (550 °C for 5 h). 
Lignin content was measured by an improved acetyl-bromide 
procedure (Fukushima and Hatfield 2001). Lignin content 
of F. crenata and A. carpinifolium were 21.3% and 23.0%, 
respectively, significantly higher than those of Q. crispula 
(16.4%) and B. platyphylla (15.7%).

2.4 Fourier Transform Infrared (FTIR) spectroscopy

FTIR spectroscopy was used to detect the vibration charac-
teristics of chemical functional groups within a sample by 
measuring the absorbance versus wave number. We ground 
2.0 mg of litter in 200 mg of potassium bromide (KBr) and 
pressed the mixture into a pellet for analysis by transmission 
FTIR. FTIR spectra were measured using a Nicolet 6700 
FTIR spectrometer in absorbance mode at 4  cm–1 resolution 
and 4000–400  cm–1 wave number. The spectra consisted of 
64 scans and were corrected against the spectrum of the KBr 
pellet in ambient conditions (Lei et al. 2023).

2.5 Statistical analyses

Based on Omnic software baseline correction and normali-
zation, the characteristic peaks in FTIR spectra in different 
samples were analyzed (Lei et al. 2023). A principal com-
ponent analysis (PCA) was conducted to detect variations 
in the FTIR spectral dataset in relation to litter molecular 
structure and spectral treatments (Jolliffe 2009). Redundancy 
analysis (RAD) was assessed the comparative impacts of 
spectral irradiance (measured below filters) on chemical 
functional groups, mass loss and lignin loss using the vegan 
package with RStudio. Statistical significance was analyzed 
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through the Monte Carlo permutation methods and Bonfer-
roni’s test (permutations = 999 times, P < 0.05).

The effect of solar spectrum on lignin aromatic C and 
C-O stretching in polysaccharides was estimated as a 
change between spectral contrasts, transmitting solar radia-
tion: > 280  nm versus > Dark treatment, > 280  nm ver-
sus  > 315 nm, > 315 nm versus  > 400 nm, > 400 nm ver-
sus  > 500 nm, > 500 nm versus  > 580 nm, and > 580 nm 
versus Dark treatment, gave the Full spectrum from UV-B 
to Red light, UV-B, UV-A, Blue, Green, and Red light, 
respectively. The change in each factor was estimated as the 
ln (Napierian logarithm) ratio of 280 nm divided by Dark 
treatment, ln (> 280 nm/Dark treatment). As the RR value 
(i.e.,  RRBlue) increased above zero, more chemical functional 
groups were accumulating, attributed to a specific spectral 
region such as blue light compared with litter that did not 
receive blue light. Litter mass loss and lignin loss were cal-
culated as: T0-Ti, where T0 is the initial litter mass or lignin 
mass and Ti the remaining litter mass or lignin mass. The 
relationships between the mass loss/lignin loss and PC1 were 
examined by linear regressions. The effect of the different 
solar spectrum (i.e., blue) on the changes of lignin aromatic 
C and C–O stretching in polysaccharides was calculated by 
subtracting the measured variable under 400 nm from the 
measured variable under 500 nm. The correlation between 
polysaccharides and lignin degradation was analyzed using 
linear regression. All analysis and figures were done using 
R version 4.2.3 software with ggplot2.

Results

3.1 Molecular structures of litter

Litter spectra displayed a range of distinct peaks between 
2000 and 800   cm–1 in fingerprint region. Overall, FTIR 
spectra of different filter-treatments obtained at 230 days 
showed a degree of similarity between F. crenata, Q. 
crispula, A. carpinifolium and B. platyphylla (Fig. 1). The 
fingerprint region contained eight bands representing func-
tional groups associated with the different compounds in 
litter, with bands from 1660 to 1630  cm–1 and from 1170 to 
950  cm–1 (Fig. 1). The peak at 1050  cm–1 could be assigned 
to C–O stretching in polysaccharides or polysaccharide-like 
substances (Madari et al. 2006). It could also be assigned 
to C=O (carbonyl groups) at 1660–1630  cm–1, adsorbed 
O–H, conjugated C=O, and I-amide (Madari et al. 2006). 
Bands in the region of 1430–1422  cm–1, 1470–1450  cm–1 
and 1515–1505  cm–1 could be assigned to aromatic skeletal 
vibrations combined with C–H in-plane deform, C–H defor-
mation (methyl and methylene) in monolignols aliphatic 
C–H, and aromatic skeletal vibration of lignin, respectively; 
these bands may reflect lignin content (Faix 1991; Saparrat 

et al. 2010) (Table S1). The results of our analysis are based 
on FTIR wave numbers associated with polysaccharides and 
lignin functions listed in Table S1.

3.2 Response of litter molecular structure to spectral 
attenuation treatments during decomposition

The initial litter molecular structure from F. crenata, Q. 
crispula, A. carpinifolium and B. platyphylla was signifi-
cantly different along PC1 (explaining 70.71% of the vari-
ation) (R = 0.71, P = 0.001) (Fig. S1a). The separations on 
PC1 were principally driven by C–O stretching in polysac-
charides, aromatic skeletal vibrations combined with C–H, 
aromatic skeletal vibrations plus C=O stretching, and C=O 
stretching in unconjugated ketone carbonyl group. Compared 
to Q. crispula and B. platyphylla, F. crenata and A. carpini-
folium litter had more C–O stretching in polysaccharides 
and aromatic skeletal vibrations combined with C-H, and 
less aromatic skeletal vibrations plus C=O stretching and 
C=O stretching in unconjugated ketone carbonyl (Fig. S1b; 
Table S1). When comparing the FTIR spectra of the four 
different litter from the different filter-treatments, the deg-
radation level under No-UV/BG, No-UV/Blue and Dark 
treatments (that attenuated blue light) segregated along PC1 
(explained 44.09%–77.61% of the variation) from the other 
groups in the forest gap (F. crenata: R = 0.35, P < 0.001; 
Q. crispula: R = 0.21, P < 0.001; A. carpinifolium: R = 0.43, 
P < 0.001; B. platyphylla: R = 0.24, P < 0.001) (Fig. 2). For 
all species, wave numbers with the highest eigenvector load-
ing among Full-spectrum, No-UV-B, and No-UV treatments 
(left end of PC axis 1; Fig. 2) were 1119–1011  cm–1, sug-
gesting the dominance of C–O stretching in polysaccharides. 
In contrast, wave numbers with the highest eigenvector load-
ings among No-UV/BG, No-UV/Blue and Dark treatments 
(right end of PC axis 1; Fig. 2) were 1610–1601, 1515–1508, 
1457–1450, and 1430–1427  cm–1, suggesting the dominance 
of lignin aromatic C, whereas no similar patterns were found 
among different litter treatments in the understory (Fig. S2).

In addition, how solar radiation affected the molecular 
structure of litter during the decomposition process in the 
forest gap was investigated. After 50 days decomposition, 
different patterns along PC1 were observed between No-UV/
BG, No-UV/Blue, plus Dark treatments and Full-spectrum, 
No-UV-B, plus No-UV treatments for both F. crenata and 
A. carpinifolium (Figs. S3, S4). PC1 was explained mainly 
by C–O stretching in polysaccharides and lignin aromatic C. 
For litter of both Q. crispula and B. platyphylla, No-UV/BG, 
No-UV/Blue, and Dark treatments were differentiated from 
others according to PC1 at 50 days, 110 days, and 230 days 
in the forest gap (Figs. S5, S6). PC1 was explained mainly 
by C–O stretching in polysaccharides, C=O stretching in 
unconjugated ketone carbonyl and lignin aromatic C at 
50 days and 110 days, while PC1 was explained mainly by 
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C–O stretching in polysaccharides and lignin aromatic C at 
230 days.

3.3 Effects of spectral regions on litter molecular 
structure

Variation in the litter molecular structure of C–O stretching 
of polysaccharides and lignin aromatic C was significantly 

driven by spectral regions. For F. crenata, Q. crispula, A. 
carpinifolium and B. platyphylla, blue light was the main 
factor driving variations in litter molecular structure, 
explaining 56.5%, 19.4%, 66.3%, and 16.7% of the chemi-
cal composition variations, respectively (Fig. 3; Fig. S7; 
Table S2; Table S3). In addition, blue light had a positive 
effect on C–O stretching of polysaccharides and a nega-
tive one on lignin mass, mass loss and lignin aromatic C 

Fig. 1  Fourier Transform Infrared (FTIR) spectra of litter in the gap and understory under spectral-attenuation treatments; a Fagus crenata, b 
Quercus crispula, c Acer carpinifolium, and d Betula platyphylla. Peak labels indicate similarities among species
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(Fig. 3; Fig. S7). The relative impact of spectral regions 
on polysaccharides and lignin aromatic C at the last col-
lection was also quantified. For all species,  RRFull spectrum 
and  RRBlue consistently produced a positive response on the 
C–O stretching of polysaccharides and a negative one on 
lignin aromatic C (Fig. 4), indicating that blue light mainly 
promoted lignin aromatic C decomposition and the accumu-
lation of polysaccharides. 

3.4 Photodegradation effects on litter mass loss

Mass loss and lignin loss were compared to FTIR-PC1 
scores. For all species, FTIR-PC1 was significantly and 
negatively correlated with mass and lignin loss (Fig. 5), 
indicating that higher relative content of lignin aromatic C 
resulted in less lignin and mass loss. In contrast, with higher 
relative C–O stretching in polysaccharides, lignin and mass 
loss were greater. In addition, there was highly negative rela-
tionship between lignin aromatic C and C–O stretching in 
polysaccharides under full spectrum and blue light, but not 
under UV-A, UV-B, green, and red light (Fig. 6). Our results 
suggest that blue light may accelerate litter decomposition 
by decreasing lignin aromatic C to increase the availability 
of C–O stretching in polysaccharides when litter is exposed 
to solar radiation.

Discussion

Overall, there was evidence supporting our hypothesis that 
solar radiation promoted litter decomposition by altering lit-
ter molecular structure in temperate forests, based on our 
in-situ spectral-attenuation experiment, especially for F. 

crenata and A. carpinifolium. Photodegradation, driven by 
blue light, significantly modified litter molecular structure, 
especially lignin aromatic C and C–O stretching in polysac-
charides. Litter photodegradation is likely due to the deg-
radation of lignin aromatic C, which results in more readily 
degradable polysaccharides. The increase of photo-oxidized 
compounds derived from lignin aromatic C degradation 
might regulate soil C stability.

4.1 Photodegradation and litter molecular structure 
based on spectral composition and litter species

Solar radiation had a critical impact on the degradation and 
breakdown of litter; this process operated in the forest gap 
to a greater extent than in the forest understory (Fig. 2; Fig. 
S2). This difference may be attributed to the stronger irradi-
ance, particularly blue light, which reached the litter surface 
in forest gaps (Wang et al. 2022). It is consistent with previ-
ous findings that gap formation caused by forest regeneration 
accelerated C turnover and nutrient cycling by promoting 
litter decomposition (Ni et al. 2018). In addition, litter with 
high initial lignin (F. crenata and A. carpinifolium) was 
more prone to photodegradation by blue light than litter with 
low lignin content (Q. crispula and B. platyphylla) (Fig. 2). 
This suggests that photodegradation driven by blue light 
controls lignin decomposition, whereas canopy structure 
and phenology can modify patterns of litter C release dur-
ing decomposition because of the changes in solar radiation 
reaching the forest floor when a gap is created. Therefore, 
including the dynamics of understory solar radiation influ-
enced by canopy phenology and structure would improve 
estimates of C cycling in forests, responding to changes in 
climate and land-use (Wang et al. 2022).

Fig. 2  Principal component analysis (PCA) of FTIR spectra of litter 
in the forest gap under spectral-attenuation treatments. Biplot result-
ing from PCA of a Fagus crenata, b Quercus crispula, c Acer carpin-

ifolium, and d Betula platyphylla. e–h Line charts for loadings, the 
largest are at polysaccharides characteristics and lignin regions, being 
mainly responsible for the variation in PC1
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Fig. 3  Relationship between mass loss, lignin loss, molecular structure and spectral composition; a Fagus crenata, b Quercus crispula, c Acer 
carpinifolium, and d Betula platyphylla in the forest gap. For detailed RDA results, refer to Table S2 and S3

Fig. 4  Effect size of solar radiation on lignin aromatic C and C–O 
stretching in polysaccharides in the forest gap; a Fagus crenata, b 
Quercus crispula, c Acer carpinifolium, and d Betula platyphylla. 
Aromatic: lignin aromatic C; C–O stretching: C–O stretching in poly-

saccharides. The response ratio of solar spectrum on lignin aromatic 
C and C–O stretching in polysaccharides were estimated as a change 
between spectral contrasts. Lowercase letters denote significant differ-
ences among spectral regions (P < 0.05)
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FTIR data demonstrated that photodegradation gen-
erally altered litter molecular structure, including lignin 
aromatic C and C–O stretching in polysaccharides (Fig. 2). 
This result is in agreement with previous studies relevant 
to photochemical decomposition at the molecular level. 
After the two-month exposure in summer, lignin markers 
(both aromatic and phenol) significantly decreased, and the 
leaf chemical signature was characterized by polysaccha-
rides (Farnet Da Silva et al. 2023). Previous research has 
found that the proportion of lignin guaiacyl (G), syrin-
gyl (S), phydroxyphenyl (H), and β-aryl ether linkages 
decreases due to photodegradation (Frouz et al. 2011; Lin 
et al. 2015). An important finding of our study was the 
significance of blue light in lignin aromatic C breakdown 
(Figs. 3, 4, S7), rather than UV radiation, which was until 
now generally considered to be the primary spectral region 
driving this process (Almagro et al. 2017). Aromatic C 

breakdown occurs because lignin, as a complex phenolic 
polymer deposited in secondary cell walls, can effectively 
absorb blue light (Austin et al. 2016). In sunlight, the 
energetic contribution of blue light is greater than that 
of UV radiation (Aphalo et al. 2012), although the com-
position of spectral irradiance varies depending on den-
sity and configuration of the canopy (Wang et al. 2022). 
Thus, lignin molecular structure is greatly affected by solar 
radiation (especially blue light), which then mediates litter 
decomposition.

Nevertheless, the influence of sunlight on litter molecu-
lar structure varied considerably depending on species and 
seasons. For F. crenata and A. carpinifolium, lignin aromatic 
C and C–O stretching in polysaccharides changed signifi-
cantly in response to blue light (Figs. S3, S4). However, 
beyond polysaccharides and lignin aromatic C, C=O stretch-
ing in unconjugated ketones and carbonyl meant both Q. 
crispula and B. platyphylla were also prone to photodegra-
dation by blue light at the early stages of litter decomposi-
tion (Figs. S5, S6). The reason for this discrepancy may 
be that the initial molecular structure of the four species’ 
litter differed significantly. Q. crispula and B. platyphylla 
had more C=O stretch in unconjugated ketone and carbonyl 
than F. crenata and A. carpinifolium (Fig. S1). However, 
the increasing in C=O stretch in unconjugated ketone car-
bonyl might be a result of lignin oxidation (Wang and Ren 
2009). In addition, the polysaccharides content increased 
under photodegradation by blue light during lignin aromatic 
C degradation, confirming earlier reports that litter exposed 
to sunlight had higher polysaccharides or water-soluble 
fractions (Frouz et al. 2011; Jiang et al. 2022). Our results 
support findings that lignin aromatic C can be converted 
into polysaccharides, ketones, and aldehydes when litter is 
exposed to solar radiation (Day et al. 2018; Farnet Da Silva 
et al. 2023).

Fig. 5  Correlation between FTIR-PC1 and a Lignin loss and b Mass loss for different species in the forest gap. Solid coloured lines indicate sig-
nificant relationships (P < 0.05). If the correlation is significant, colored shading shows the 95% confidence bands of the best-fit line

Fig. 6  Relationship between change in lignin aromatic C oflitter and 
change in C–O stretching of polysaccharides
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4.2 Effects of changes in litter molecules to the mass loss 
of litter

The dynamics of litter chemical composition at the molecu-
lar level provides a comprehensive approach to analyze 
plant-derived C loss (Lammers et al. 2009; Hu et al. 2023). 
In this present study, the full spectrum of solar radiation 
and its blue-light fraction both accelerated litter decompo-
sition by decreasing lignin aromatic C and increasing the 
availability of polysaccharides (Figs. 5, 6) so that microbial 
enzymes could better access and degrade secondary cell 
wall carbohydrates (Austin et al. 2016). Our results pro-
vide in-situ evidence that photodegradation accelerates the 
breakdown of the litter molecular structure for C turnover 
in forest ecosystems (Wang et al. 2022). Moreover, consid-
ering that rainfall can also increase the leaching of small 
molecules or soluble organics generated by lignin photo-
degradation, thereby promoting mass loss (Day et al. 2022), 
helps to explain why most studies assessing the effects of 
canopy cover report more rapid litter turnover in forest gaps 
across various ecosystems, i.e., in tropical (Marinho et al. 
2020), subtropical (Song et al. 2014; Jiang et al. 2023), and 
temperate forests (Pieristè et al. 2019; Wang et al. 2021). 
These findings not only have improved our understanding 
of the molecular mechanism of litter photodegradation, but 
have also provided rational suggestions for forest manage-
ment  based on litter and soil organic C.

According to traditional biodegradation models, lignin, 
as a recalcitrant compound, was considered resistant to 
microbial decomposition (Cornwell et al. 2008). Leaching 
of soluble compounds from newly fallen litter and preferen-
tial degradation of less chemically complex C compounds 
were believed to drive early mass loss (Adair et al. 2008). 
Intriguingly, our results provide evidence that photodegra-
dation induces early loss of lignin aromatic C in litter in a 
mesic temperate forest (Figs. S3, S4, S5, S6). They suggest 
that photodegradation did not only release C from lignin, but 
also increased leaching loss and microbial degradation by 
altering the lignin C molecular structure of litter. This find-
ing is supported by research in diverse ecosystems (Austin 
and Ballaré 2010; Barnes et al. 2023). In the context of cli-
mate change and land-use, it is essential to study the molecu-
lar mechanisms and litter photodegradation to enhance the 
prediction power of decomposition models (Gliksman et al. 
2018).

4.3 Future research perspectives

This study provides an in-depth analysis of litter molecular 
structural changes during photodegradation, emphasizing 
their influence on the decomposition process. The trans-
formations of molecular structure identified during litter 
photodegradation enhance our understanding of organic 

matter degradation mechanisms in temperate forests. This 
alternative pathway explaining early lignin losses also has 
important implications for C loss and storage. If the products 
of lignin photo-mineralization are more readily assimilated 
by soil microorganisms during early decomposition, they 
may constitute an additional pool of C, destabilizing SOC 
pools (Lehmann and Kleber 2015). Hence, we should note 
the effects of litter photodegradation on SOC formation 
mechanisms.

The influence of solar radiation on litter degradation 
should be considered as a significant driver of organic matter 
turnover in terrestrial ecosystems in the context of climate 
change and land-use (Barnes et al. 2022). Extreme climate 
events, human activities, land-use changes, and natural dis-
asters can significantly modify canopy structure and open-
ness (Wan et al. 2019), which not only affects the amount of 
litter production, but more importantly changes the exposure 
of litter to sunlight (Yamada et al. 2014; Wan and He 2020), 
thereby significantly accelerating the C cycle. Therefore, 
from the perspective of minimizing C release, it is impor-
tant to enhance the management of existing forest cover by 
reducing canopy disturbances through the implementation of 
continuous cover silvicultural systems. This approach is fun-
demental both to preserving existing C stores and enhancing 
forest capacity for C sequestration.

Conclusion

This study revealed how litter C decomposition was driven 
by solar radiation. Awareness of the mechanisms involved 
allowed for more accuate prediction of chemical changes 
in litter organic C and for modelling of nutrient cycling 
processes. Solar radiation significantly altered the litter 
molecular structure, especially in the forest gap. Blue light 
photodegraded complex macromolecules (lignin aromatic 
C) into soluble organic C or to small molecules (degradable 
polysaccharides), and potentially accelerated litter decom-
position. This suggests that the ratios of C–O stretching 
in polysaccharides and lignin aromatic C would be robust 
decay indicators of decomposition rates in litter exposed to 
solar radiation, especially to blue light. Accordingly, such 
photo-products might comprise an additional C pool that 
affects the stability of soil C.
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