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Short-term cardiovascular compensatory responses to perturbations in the circulatory system caused by haemodialysis can be
investigated by the spectral analysis of heart rate variability, thus providing an important variable for categorising individual
patients’ response, leading to a more personalised treatment. (is is typically accomplished by resampling the irregular heart rate
to generate an equidistant time series prior to spectral analysis, but resampling can further distort the data series whose in-
terpretation can already be compromised by the presence of artefacts. (e Lomb–Scargle periodogram provides a more direct
method of spectral analysis as this method is specifically designed for large, irregularly sampled, and noisy datasets such as those
obtained in clinical settings. However, guidelines for preprocessing patient data have been established in combination with
equidistant time-series methods and their validity when used in combination with the Lomb–Scargle approach is missing from
literature.(is paper examines the effect of common preprocessingmethods on the Lomb–Scargle power spectral density estimate
using both real and synthetic heart rate data and will show that many common techniques for identifying and editing suspect data
points, particularly interpolation and replacement, will distort the resulting power spectrum potentially misleading clinical
interpretations of the results. Other methods are proposed and evaluated for use with the Lomb–Scargle approach leading to the
main finding that suspicious data points should be excluded rather than edited, and where required, denoising of the heart rate
signal can be reliably accomplished by empirical mode decomposition. Some additional methods were found to be particularly
helpful when used in conjunction with the Lomb–Scargle periodogram, such as the use of a false alarm probability metric to
establish whether spectral estimates are valid and help automate the assessment of valid heart rate records, potentially leading to
greater use of this powerful technique in a clinical setting.

1. Introduction

Patients receiving chronic haemodialysis (HD) as a result of
end-stage kidney disease (ESKD) are at a much higher risk of
morbidity and mortality [1]. (e prevalence of cardiac
complications in this population is (in part) because HD
causes circulatory stress leading to abnormal haemodynamic
and cardiovascular function [2]. While not fully explored, it
appears that cardiovascular regulatory mechanisms are
unable to adequately compensate for fluid removal from the
vascular compartment during HD [2]. (e strong,

bidirectional, and complex relationships between the kidney
and heart can be investigated via the analysis of heart rate
variability (HRV) in order to provide valuable insight into
physiological and pathological conditions and to enhance
risk stratification [3, 4].

Cardiac activity is controlled by the sympathetic (ac-
celerating) and parasympathetic (decelerating) arms of the
autonomic nervous system (ANS) which induce oscillations
between successive sinus beats at different rhythms. (ese
can be quantified on the electrocardiograph (ECG) as the
interval between the peak of one “QRS” complex to the peak
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of the next, referred to as the “RR” interval. Analysis of HRV
rests upon different mathematical (time-domain) and
spectral (frequency-domain) measures that have identified
significant physiological rhythms hidden in RR interval
fluctuations, oscillating at specific frequencies [3]. (ese
rhythms can be characterised by the signal energy (power)
found in a low frequency (LF) band (0.04< LF< 0.15Hz) and
a high frequency (HF) band (0.15<HF< 0.4Hz). (e power
component in the HF band is correlated with parasympa-
thetic activity [5] and corresponds to the HR variations
related to the respiratory cycle. Power in the LF band in-
volves contributions from both sympathetic and parasym-
pathetic activity, and it has been suggested that a better
approach to understanding sympathetic activity relies on
analysing the LF/HF ratio [3, 5]. As shown in previous
studies [5], the spectral parameters of HRV can describe and
categorise patients individual response to HD and could
potentially predict morbidities, for example, intradialytic
hypotension.

(e power content of the LF and HF frequency bands is
computed via the power spectral density (PSD) estimate of
the RR tachogram, most commonly using a fast Fourier
transform (FFT) [4]. While straightforward and rapid, FFT
requires artificial interpolation of the time-varying heart
rate to satisfy the axiomatic requirement of a time-in-
variant sampling rate. Resampling, in effect a nonlinear
low-pass filter, also makes an implicit assumption about the
form of underlying variation in the data series. Autore-
gressive- (AR-) based periodograms have also been
employed as they can use shorter segments of data without
losing spectral resolution [6]. However, in addition to
requiring an evenly sampled data series, AR techniques are
complex to implement and highly dependent on the choice
of model or model order [4].

With both methods, it is recommended [3] to visually
inspect ECG data and, if necessary, correct it prior to HRV
analysis to minimize any interference that may compromise
results [7]. (is is highly impractical for large datasets ob-
tained in clinical studies

(i) Which are significant in volume per patient HD
treatment, involving multiple recordings of 4 hours
in duration

(ii) Which suffer from noise from a variety of sources
such as the influence of electromagnetic interfer-
ence [8] and artefacts due to patient movement

(iii) Which have missing data due to a loss of signal (for
example, if a patient became unwell or otherwise
took a break from monitoring during treatment)

It is common for HD patients to experience a significant
number of ectopic beats (cardiac dysrhythmia) during di-
alysis [9], which further complicates the analysis.

A lesser known but more potentially more convenient
approach to spectral analysis is the Lomb–Scargle (LS)
method [10] where time-varying data are weighted on a
point-by-point basis, rather than on a per-time basis, thus
avoiding the requirement to resample data. (is method
is equivalent to AR and FFT in the case of equally-spaced

observations [6, 11], but the LS periodogram is less likely
to introduce spurious frequencies [4, 12, 13] and “jitter”
[6] to the power spectrum when noise is added to the
signal. For these reasons, the LS periodogram is poten-
tially a more robust technique for use within a clinical
setting, such as the present study application.

(is study application is the iTrend (Intelligent
Technologies for Renal Dialysis) programme, a long-term
collaborative project conducted by a multidisciplinary
research team from the Universities of Derby and Not-
tingham and the Royal Derby Hospital Renal Unit in the
UK. (e primary goal of the programme is to develop
supporting technologies to enable personalised treatment
in ESKD [14]. Adult participants were recruited from the
Renal Unit’s prevalent dialysis population and received
continuous noninvasive monitoring of heart rate via ECG
and haemodynamic parameters using pulse wave analysis
(Finapres NOVA) during entire dialysis treatments. (e
protocol was approved by the West Midlands Research
Ethics Committee and participants gave written informed
consent.

Before analysis of patient data can be attempted, it is
first necessary to understand the effects of data pro-
cessing. Most guidelines and practice [3] have been de-
veloped for equidistant time series data (e.g., FFT), and it
is unclear if these approaches are useful with LS which is
able to work on the uncorrected and irregular time series
of RR intervals. (e purpose of this paper is to establish a
reliable method of HRV analysis suitable for large
datasets such as those obtained in the clinical setting of
the iTrend project. A number of techniques commonly
used in the preprocessing of RR interval tachograms prior
to spectral analysis are evaluated in order to establish
which combination of methods is the most reliable and
most practical for use with clinical data. (is paper will
evaluate the effects of RR interval correction on a well-
defined synthetic data series and then on sample patient
data. (is work addresses a need to understand the effects
of signal processing on the interpretation of spectral
parameters in order to better discriminate between those
influenced by the patient state and those generated by the
algorithm.

2. Materials and Methods

2.1. Lomb–Scargle Power Spectral Density Estimation. (e
Lomb–Scargle approach, originally derived for astro-
physics applications, is a well-defined procedure to
generate a power spectrum to detect and characterise the
periodic components of a signal. Time-varying data are
weighted on a point-by-point basis, rather than on a per-
time basis, thus avoiding the requirement to resample
data. Previous work has shown that LS outperforms FFT
and AR methods when noise and ectopic beats are present
in the RR tachogram [12], which suggests that LS may be
more suitable for use within a clinical setting.

For the time series x [tn] which is precentred around the
mean, the normalised LS periodogram is defined as
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where x and σ2 are the mean and variance of the time series.
(e sine and cosine coefficients are normalised separately by
a frequency-dependent time delay, τ, in order to make the
transformation insensitive to time shifts in the data.

τ � tan(4πfτ) �
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􏽐
N
n�1 cos 4πftn( 􏼁

. (2)

(e shortest period over which HRV metrics should be
assessed is five minutes [3], so the lowest frequency that can be
resolved is 1/300� 0.003Hz. Guidelines [3] further specify the
upper frequency limit of the HF band is 0.4Hz. (is leads to a
constraint that the minimum (N) number of points within the
five-minute segment is 240.

(ere are some practical considerations that should be
made when analysing unevenly sampled data relating to the
choice of frequency limits and the grid spacing. (e lower limit
is well-defined as the fundamental frequency f0 of a sine wave of
period equal to the whole interval T and so it is set by the
sampling duration.(e highest frequency that can be coded at a
given sampling rate, the Nyquist frequency, is defined as
fc � 1/2ΔT. However, VanderPlas [15] shows that the sam-
pling interval for the time-varying LSmethod,ΔT � T/N, tends
to be greater than any limits on the time-invariant case, so it is
more appropriate to set a pseudo-Nyquist frequency based on
the precision of the timemeasurements asfc

′ � 1/2p where p is
the largest value such that each spacingΔti is an integermultiple
of this factor.

(e choice of how finely to sample the frequencies is less
obvious for unevenly sampled data and is a balance between
too fine a grid with long computation times and too coarse a
grid whose spacings are larger than the expected width of the
peaks. Data observed through a rectangular window of
length T will have sinc-shaped peaks of width 1/T, so in
order to ensure the grid captures each peak, equation (1)
should be implemented with some oversampling factors.
VanderPlas [15] recommends a grid size of Δf � 1/5T.

A different type of frequency limit exists where observations
consist of short-duration integrations of a continuous signal.
Each observation is effectively a convolution of the underlying
ECG signal with a rectangular function of δt. (is leads to a
“window” limit of fmax∞1/2δt, beyond which signals are at-
tenuated to zero [15]. (e constant of proportionality depends
on the shape of the window describing individual observations,
and for the RR tachogram, the windowing function is a series of
very narrow spikes. By analogy, this gives a maximum fre-
quency of

fmax �
1
T

1
2δt

�
fs

2T
. (3)

Provided that these conditions are met (the segment
must be five minutes in duration, it must contain a

minimum of 240 data points, the maximum frequency must
lie beyond 0.4Hz, and the precision of measurements must
be at most 0.625 seconds) the spectral analysis can be
performed. (e mean value of the RR series should be
subtracted to avoid the effect of high energy values distorting
the frequency of the spectrum prior to performing any
power spectral analysis. In a real (as opposed to a synthetic)
dataset, some detrending method should also be used to
suppress drifts in the underlying ECG signal.

2.2. Synthetic Data Series. In order to separate the effect of
signal processing techniques from real features of the un-
derlying data, a simple synthetic signal with well-defined
properties was generated following the method described by
Clifford [12]. An artificial tachogram was generated by
mixing two sine waves with frequencies at the centre of the
LF and HF bands (ωl � 0.095Hz, ωh � 0.275Hz) [12]. (e LF
component was given an amplitude of Al � 2 bpm, and the
HF band is given a larger amplitude Ah � 2.5 bpm (it will be
seen later that RR correction can filter the HF components,
so it was emphasised in the synthetic data series). (e av-
erage heart rate was set at HR0 � 60 bpm.

HR(t) � HR0 + Al sin ωlt( 􏼁 + Ah sin ωht( 􏼁, (4)

RR(t) �
60

HR(t)
. (5)

(e first result in the RR tachogram is defined as the first
RR interval (RR1 at t1). (e next RR interval (RR2 at t2) is
defined where the RR value equals the time difference be-
tween t2 and t1 [12]. (is is generalised as (6), and the result
is shown in Figure 1.

RRn ≥ tn − tn−1. (6)

(e synthetic signal was then distorted by adding zero-
mean white Gaussian noise to equation (4), which is thought
to be representative of the type of noise encountered in real
ECG data [16]. We did not model the effects of 50Hz power
interference as this is adequately filtered by both the
hardware and then the software processing of the ECG signal
[17]. (e superimposed noise signal was scaled to match the
standard deviation of the real biological signal (0.228) which
is described later in this paper. As the LS periodogram is
weighted on a per point basis, it has the unique property of
being able to provide a spectral estimate where a data point is
missing, and so a number of data points were discarded at
random from the RR tachogram (6). (is synthetic data
series was used to explore the limits of the LS periodogram
and to understand the effects of signal preprocessing on the
PSD estimate.
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(e distorted signal and its power spectrum are shown in
Figure 2. (e magnitude of each peak depends on the
number of observations and the signal-to-noise (SNR) ratio.
In the case of few observations and high levels of noise, the
spurious background peaks can become comparable in
magnitude to the true peaks. (is effect can be quantified by
the calculation of false alarm probability (FAP) which is the
probability that a dataset with no signal would, due to
random error, lead to peaks of a similar size. If the expected
peak width is δf � 1/T, then the number of independent
frequencies (peaks) in a range 0≤ f≤ fmax is assumed to be
Neff � fmaxT [15]. FAP is then estimated as

FAP(z) ≈ 1 − Psingle(z)􏽨 􏽩
Neff

. (7)

(is important but neglected evaluation step provides
the second opportunity to decide whether to include or
exclude PSD estimates from further analysis. Any PSD es-
timate lacking at least one peak above a FAP of 50% can be
rejected on the basis that it cannot discriminate signal from
noise.

2.3. /e Effects of RR Editing on HRV Analysis. Other than
noise, artefacts in real data would include abnormal heart
beats with unusual timing. For example, unusually short RR
intervals (ectopic beats) will introduce higher than normal
frequency components, causing an overestimation of HF
power. Missing data would emphasise longer RR intervals
and cause a bias towards LF power. Any clinical signal could
suffer from these effects, so the implication is that the signal
would require some form of preprocessing to identify and
correct doubtful points [3].

A great deal of methodological diversity is seen in the
preprocessing of data prior to analysis. Aberrant RR in-
tervals are most commonly identified in comparison to a
range of expected values based on previous RR intervals
[18–21] or by comparison with a statistical measure of the
whole RR tachogram [7, 22]. In this work, false beats are
initially detected using the approach that seems most
commonly used where a high (+32.5%) or low (−24.5%)
threshold for the relative variation in successive RR intervals
is exceeded [18, 19]. It will be shown that this approach
biases the error selection and distorts the PSD, and so a
symmetric criterion of ±10% will be proposed and tested.

(e guidance regarding which techniques are most
suitable for correcting aberrant RR intervals is also diverse.
Methods that exclude outlier values can lead to a systemic
loss of information in time-invariant data [23]. Methods to
replace outlier values with average values [24, 25] or in-
terpolation [26] can change the power of the frequency
components in spectral analysis by introducing false shapes
[27]. (e effect of any of these approaches when used in
conjunction with time-varying PSD estimation is missing
from literature. To understand the role of RR editing with
the LS periodogram more fully, comparisons were made
between five different correction methods. (ree of these
methods are commonly used with equidistant time-series
HRV data (methods 1, 2, and 3), one method has been
specifically proposed for use with the LS approach (method
4), and a final method is used with the LS periodogram here
for the first time (method 5).

2.3.1. Method 1: Exclusion of Suspect Data Points (LS
Baseline). Rather than discarding data at random, only
those intervals flagged as in error [19] (on average 15% of the
RR intervals over 100 runs) are excluded from the LS es-
timation. (is method will provide a baseline against which
other methods are compared and would be the preferred
method as no further preprocessing of the signal is required,
thus limiting the potential for spectral analysis to be dis-
torted. (is method of exclusion of suspect data points from
spectral analysis is no longer recommended for use with
equidistant time-series methods [13].

2.3.2. Method 2: Rules-Based Editing (Rules). An interval
that is identified as incorrect will be further analysed in
combination with its neighbours and retained if it can be
identified as forming part of a physiologically plausible
pattern [28]. Otherwise, the aberrant RR interval can be
corrected by

(i) Summing with one or more neighbouring intervals,
which would apply in the case of a false trigger
occurring between normal beats.

(ii) Dividing one large interval into two or more in-
tervals of acceptable size, which would apply (for
example) in the case of missed heart beats.
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Figure 1: Synthetic data series with mean frequency of 1Hz and zero phase, realized from the sum of two sinusoids via equation (4) with RR
intervals (shown as circles) generated from (5) [12]. (e resulting LS periodogram accurately locates peaks at ωl � 0.095Hz and
ωh � 0.275Hz. (a) Synthetic signal. (b) Lomb–Scargle power spectral density estimate.
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(iii) Adding two or more intervals and dividing the sum
into two or more acceptable values. (is would
occur (or example) when an ectopic beat occurs in
the place of a normal (sinus) beat.

(e selected correction would be the one that brings the
new RR interval closest to the mean average of RR intervals
as calculated from the previous minute of data [28].

2.3.3. Method 3: Replacement. All intervals identified as
being in error were removed from the HRV tachogram and
replaced. (e replacement was either by an interpolated
value (linear or cubic spline) using 3 previous and 1 fol-
lowing neighbour [8] or else by the mean average of the
previous 60 seconds of RR intervals [28].

2.3.4. Method 4: Ornstein–Uhlenbeck /ird-Order Gaussian
Process Filtering (OUGP). (e OUGP filter is a reduced
form of a Wiener filter, where a one-dimensional series of
measurements as a function of time can be solved more
efficiently as its inverse matrix via a tridiagonal system of
equations. Full details and derivation can be found in [29]
but are summarised for a series of measurements xj and time
tj, j� 1, . . ., n, as

􏽘
j

Tijuj �

x1 − x2( 􏼁

2w1
, i � 1,

xi − xi+1( 􏼁

2wi

+
xi − xi−1( 􏼁

2wi

, i � 2, . . . , n − 1,

xn − xn−1( 􏼁

2wn−1
, i � n,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

where 􏽐jTijuj is the sparse tridiagonal system convolving
the matrix T and the output of a filtered sequence u. (e
input w is complex, but the filter is taken to be the real part of
the result as

Hy � R(u),

Ly � y − R(u).
(9)

(e OUGP method is implemented here as a filter
passing frequencies in the band 0.003–0.4Hz. When applied
to an unevenly sampled RR tachogram, the OUGP filter
exhibits a stable third-order zero-phase frequency response
with explicit −3 dB points [30], leading to a recommendation
that that it would be suitable for implementation in con-
junction with LS periodogram (which motivated its inclu-
sion here).

2.3.5. Method 5: Denoising by Empirical Mode Decomposition
(EMD). It is a data-driven method to denoise nonlinear and
nonstationary multicomponent time series, x (t), by
decomposing it into a finite number of signal-dependent
semiorthogonal zero-mean basis functions called intrinsic
mode functions (IMFs) via an iterative process called
“sifting.” IMFs must satisfy two criteria: first, the number of
the extrema points (local minima and maxima) and the
number of zero crossings must be equal or differ by one at
most; second, the mean of the envelopes determined by local
extrema points should be zero. (e sifting algorithm is
executed as follows:

(i) Identify all extrema of x (t) and interpolate between
the minima em (t) and maxima eM (t) to find en-
velope of the signal.

(ii) Compute mean of the envelope, m(t) � [en(t)+

eM(t)]/2.
(iii) If m (t) satisfies the requirements, extract the first

“mode” as x (t)� x (t)−φi (t).
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(iv) Iterate on the residual r(t) until it is constant or a
trend.

Hence, the original signal can be reconstructed by the
sum of the IMDs [31] as described by equation (10) where L
is the number of IMFs.

x(t) � 􏽘

L

i�1
φi(t) + r(n). (10)

Some methods (in more traditional signal processing
applications) have proposed the Hurst coefficient as the
decision base for which IMF to include in a reconstructed
signal [31, 32], but this has specific meaning in the context of
HRV analysis [33] and could compromise the meaning of
long-range correlations that are used to predict pathological
states. Neto et. al. [34] demonstrated that the first three IMFs
are sufficient to denoise and recompose the HRV signal in
order to analyse LF, HF, and LF/HF content. Following this
approach, the RR tachogram is reassembled by summing
values from the original time location for the first three IMFs
(Figure 3).

2.4. Application in “Real” Data. A short portion (for clarity)
of data from a single “HD patient” from the iTrend study is
used here to illustrate how a different interpretation of the
PSD may arise from different preprocessing techniques.
Clinically relevant findings from the iTrend population are
presented elsewhere [35], but in summary, a total of 50 adult
participants were recruited to the study, from which 43
participants had at least one monitored HD session of 4
hours duration following a short interdialytic gap (48-
hours). (e mean age was 61.5± 16.6 years, 26 (60.5%) were
male, and 19 (44.2%) had diabetes. (e median duration
since dialysis therapy was initiated was 24 months (IQR 75),
and arteriovenous fistula was the predominant dialysis ac-
cess (83.7%). Data from ECG lead II [18] was sampled at
300Hz to avoid issues with QRS detection [4] and then
further processed offline [17]. All computer codes were
implemented inMatlab version 2020a, but it should be noted
that built-in functions for the LS Periodogram, EMD, and
band-power integrations could not be used (due to the need
to specify and test aspects of the algorithms as discussed
above). (e mean was removed from the RR tachogram
prior to application of one of the above preprocessing
methods, and the time series was recalculated to preserve
synchronicity where required.

3. Results and Discussion

3.1. Performance and Limits of Lomb–Scargle Periodogram.
In order to explore the effects of missing data on the LS
periodogram, two initial tests were performed where data
were discarded from the synthetic signal without noise
(Figure 1) and where noise was added to the signal without
discarding data. In the first test, the number of discarded
data points was increased in 1% increments until the point
where there were insufficient data points remaining to
perform a spectral analysis of the signal. (is occurred

when 64% of the RR intervals were discarded and is a
function of the grid spacing (Δf � 1/5T), i.e., data cor-
responding to a particular frequency bin is missing from
the tachogram. Figure 4 shows that as an increasing
number of data points are excluded, the maximum fre-
quency of the signal is reduced. (e upper bound of
Fmax � 0.4 Hz is reached when only 20% of the data is
discarded from a 5-minute window. (is agrees with
findings that the PSD for time-invariant data series be-
comes distorted when more than 20% of the data is in error
or corrected [27].

(e LS periodogram was more robust to increasing
amplitudes of noise and was able to successfully locate the LF
and HF peaks at a FAP of 1% even when the noise was scaled
to have four times the amplitude of the RR tachogram signal
(standard deviation of 0.896), confirming the choice of LS
for clinical settings. In combination, the maximum level of
distortion that can be applied on the fewest number of points
corresponds to a SNR ratio of 13.4 dB with 20% of data
discarded at random (Figure 2). (is maximally distorted
signal was them used in further tests to evaluate the effect of
signal processing techniques.

In order to establish some criterion against which the
effects of signal preprocessing can be compared, the
original synthetic signal of equation (4) is compared
against the maximally distorted signal in Table 1 where the
mean of 100 simulations are presented. (ese simulations
used 100 different additive, zero mean Gaussian white noise
profiles that were scaled to ensure the signal had a con-
sistent standard deviation of 0.224 ± 0.03 and SNR of
13.4 dB ± 0.5 dB, using random seeds that were generated
from the state of the computer [16]. (e addition of noise
has increased the total power of the signal by an average of
63% leading to a similar increase of power in both the LF
(69%) and HF (65%) bands, and calculation of the 3 dB
widths show that both peaks are less narrowly defined in
the noisy signal.

(e LS periodogram accurately locates both peaks within
a very noisy signal but is better able to locate the HF peak
corresponding to the sine wave with the larger (2.5 bpm)
amplitude.(is is consistent with the application of equation
(6) leading to the lower mean-average RR interval and a
greater number of shorter RR intervals (∼326) and hence a
greater emphasis of the HF band.

(e RR tachogram is an unusual signal with time
represented on both axes, so it may seem surprising that
the frequency is reliably identified but amplitude is not.
(is effect can be seen by comparing the calculation of the
LF/HF ratio against its theoretical value from the ampli-
tude of the sine waves is (Al/Ah)2 ≈ 0.64. (is value is
closely approximated in the original synthetic signal
(Figure 1), but not the distorted signal (Figure 2). (e LS
approach effectively assumes a sinusoidal model for the RR
tachogram data, and so the periodogram height at any
frequency is related to how well the model fits the data. (e
noisy periodogram is based on a more complex model
(sinusoids plus white noise, with coincidental alignment of
spurious peaks), and so the periodogram is higher at all
frequencies, not just those of interest. As a simple example,
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a calculation of LF/HF ratio of the distorted signal on the
basis of normalised units, decibels, and linear units (ms2/
Hz) results in values of 0.52 ± 0.09, 1.146 ± 1.2, and
1.15 ± 0.03, respectively. (e most consistent approach for
a signal obtained in a clinical setting that may contain
missing data is to express LF and HF in normalised units as
percentages of total power between the limits of 0.04 and
0.4 Hz [12].

FFT and AR methods are known to suffer distortion to
the resulting power spectrum by leakage due to the implicit
rectangular window, and this effect has been explored and

discussed elsewhere [12, 13, 36]. In these results, the fraction
of power in the main lobe (within± 0.01Hz) of each peak
shows some evidence that the LS periodogram exhibits a
small amount spectral leakage which predominantly occurs
in the LF band.

3.2. RR Editing with Synthetic Data Distorted by Noise. In
order to investigate the effects of signal processing, the
100 different Gaussian white noise profiles were super-
imposed onto the original synthetic signal (Figure 1)
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generating 100 different RR tachograms. RR intervals
were identified as suspect where they exceeded a specified
upper and lower threshold (+32.5% or −24.5%, respec-
tively) [28] and these suspect intervals were edited using
the five different procedures defined above. On average,
15% of the RR intervals were classified as in error (5% too
long, 10% too short). A summary of data obtained from
100 simulations is presented in Table 2, which shows that
it was not possible to fully recover the statistical prop-
erties of the original RR tachogram (Figure 1), but all
methods were able to replicate the statistical properties of
the “distorted” signal (Figure 2) with close agreement in
terms of mean RR intervals. (e range value can be
understood as describing the degree to which the original
signal has been smoothed by preprocessing methods.
(ose methods specifically derived for equidistant time-
series spectral analysis (“Rules” editing and RR re-
placement) were the least able to locate the LF and HF
peaks above a FAP of 10%, nor were these peaks located at
the correct frequency.

A common feature of all methods (except by EMD) is
that both the theoretical (Al/Ah)2 and actual LF/HF ratios
were consistently overestimated (Table 2). (is is thought to
be related to the asymmetrical basis used to identify aberrant
RR intervals. (e smaller tolerance on the lower bound
biases the identification of aberrant RR intervals, which
results in a greater number of HF components being ex-
cluding or edited from the PSD estimate. (e use of a
symmetrical basis of a similar magnitude (±10%) was tested
using the same 100 simulations, and the results (presented in
Table 3) show an improved agreement between al/ah and LF/
HF ratios. In real data, any data point is as likely as the next
to be in error and all attempts to identify aberrant RR in-
tervals are likely to induce errors. Both OUGP and EMD
apply to all data points in the time series and show a clear
advantage in this respect. On the basis of this result, a
symmetric selection criterion is recommended and will be
used throughout the rest of this paper (Figure 5).

Method 1 (“baseline”) involves the simple exclusion of
suspect RR intervals from the periodogram estimate and

Table 1: Results from 100 simulations of random noise in the “distorted” signal (Figure 2) compared against the ls periodogram estimated
for the original synthetic signal (Figure 1).

Original synthetic signal Distorted signal (mean± std)
Mean average RR interval (sec) 1.009± 0.0038 0.9196± 0.0061
Range RR intervals 0.151 0.870± 0.110
LF power (nu) 0.39 0.32± 0.04
HF power (nu) 0.61 0.62± 0.04
LF/HF 0.6357 0.52± 0.09
LF peak height (ms2/Hz) 0.1668 0.54± 0.16
HF peak height (ms2/Hz) 0.2601 0.68± 0.18
(Al/Ah)2 0.6413 0.79± 0.34
LF peak location (mHz) 95 97.4± 19.6
HF peak location (mHz) 275 275.8± 9.1
LF Δf3dB (Hz) ×10−3 3.00 3.6± 0.11
HF Δf3dB (Hz) ×10−3 2.90 3.4± 0.91
Fraction of power within± 0.01Hz of LF band 0.76 0.69± 0.21
Fraction of power within± 0.01Hz of HF band 0.75 0.86± 0.22
Total power (dB) −28.46 −17.97± 0.41
All data points in the distorted signal are used to estimate the power spectra.

Table 2: Comparison of results obtained from five different methods of RR editing (using 100 simulations with different random noise
profiles) and asymmetric selection criteria (+32.5% or −24.5%).

Method 1 Method 2 Method 3 (replacement) Method 4 Method 5
“Baseline” “Rules” Cubic spline Linear Mean OUGP EMD

Mean RR (sec) 0.94± 0.01 0.93± 0.01 0.94± 0.01 0.94± 0.01 0.94± 0.01 0.91± 0.01 0.92± 0.01
Range RR (sec) 0.64 0.72 0.74 0.73 0.73 0.59 0.81
LF (nu) 0.39± 0.04 0.41± 0.05 0.43± 0.05 0.44± 0.05 0.38± 0.04 0.43± 0.04 0.32± 0.04
HF (nu) 0.51± 0.04 0.48± 0.05 0.45± 0.04 0.43± 0.04 0.52± 0.04 0.55± 0.04 0.66± 0.04
LF/HF 0.77± 0.13 0.87± 0.18 0.97± 0.18 1.05± 0.19 0.75± 0.13 0.8± 0.13 0.48± 0.09
Total power (dB) −19.08± 0.38 −19.49± 0.45 −18.42± 0.4 −18.87± 0.4 −19.59± 0.39 −19.57± 0.47 −17.97± 0.45
LF location (mHz) 95.0± 1.52 91.8± 15.38 72.5± 30.38 68.3± 31.28 91.0± 24.4 96.0± 0.92 94.9± 0.31
HF location (mHz) 273.1± 17.96 257.2± 53.17 156.3± 81.28 140.8± 74.37 248.2± 56.28 263.1± 46.44 275.0± 0.29
(Al/Ah)2 1.15± 0.52 1.72± 0.78 1.33± 0.91 1.29± 1 1.52± 0.75 1.97± 0.89 0.75± 0.29
% of LF peak> FAP 10% 97 93 78 80 92 100 99
% of HF peak> FAP 10% 97 89 81 84 79 97 100
Data are presented as mean± std.
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Table 3: Comparison of results obtained from 5 different methods of RR editing (using 100 simulations with different random noise
profiles) and symmetrical selection criteria of ±10%.

Method 1 Method 2 Method 3 (replacement) Method 4 Method 5
“Baseline” “Rules” Cubic spline Linear Mean OUGP EMD

Mean RR (sec) 0.92± 0.01 0.92± 0.01 0.92± 0.01 0.92± 0.01 0.92± 0.01 0.91± 0.01 0.92± 0.01
Range RR (sec) 0.67 0.74 0.75 0.74 0.74 0.59 0.85
LF (nu) 0.38± 0.05 0.41± 0.04 0.41± 0.05 0.43± 0.05 0.38± 0.05 0.43± 0.04 0.32± 0.04
HF (nu) 0.52± 0.04 0.5± 0.04 0.48± 0.04 0.45± 0.04 0.53± 0.04 0.55± 0.04 0.62± 0.04
LF/HF 0.74± 0.14 0.83± 0.15 0.88± 0.17 0.96± 0.19 0.73± 0.14 0.79± 0.14 0.52± 0.09
Total power (dB) −18.07± 0.41 −19.29± 0.44 −18.08± 0.39 −18.51± 0.39 −19.21± 0.4 −19.51± 0.49 −17.64± 0.43
LF location (mHz) 96.5± 14.37 94.3± 5.18 75.4± 37.93 73.2± 36.96 92.2± 25.19 95.0± 0.36 95.0± 0.31
HF location (mHz) 273.3± 16.34 267.8± 32.14 165.9± 83.31 163.9± 85.46 249.7± 59.68 275.0± 0.28 275.0± 0.28
(Al/Ah)2 1.13± 0.57 1.68± 0.65 1.32± 0.9 1.31± 0.98 1.44± 0.76 1.21± 0.49 0.78± 0.3
% of LF peak> FAP 10% 97 93 78 80 92 100 99
% of HF peak> FAP 10% 97 89 81 84 79 97 100
Data are presented as mean± std.
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Figure 5: Continued.

Journal of Healthcare Engineering 9



results in a closer approximation of the spectral parameters
thanmethods 2 (“rules”) and 3 (replacement) that attempt to
correct information in the RR tachogram by editing and
replacing suspect values (Tables 2 and 3). (is is a signifi-
cantly different outcome to previous work based on time-
invariant methods where exclusion of RR intervals leads to a
systematic loss of information [27].

It is surprising how poorly method 2 performed given
that the rules are based on sound physiological principles.
(e HF peak exceeds a FAP of 10% in only 89% of the
simulations, which means that the largest amplitude sine
wave forming the synthetics signal was most frequently lost.
(e PSD estimate had one of the lowest total powers,
suggesting that method 2 removed a significant amount of all
data without discriminating well between noise and signal.
Closer inspection of the corrected RR interval tachogram
shows that “rules” based editing offers no improvement over
replacement methods whenever errors occur in clusters as
noise peaks were emphasised and merged with the true
peaks, resulting in an inconsistent prediction of power in the
LF and HF bands (Figure 5).

(e smoothing effect seen in method 2 (“rules”) is ap-
parent in method 3, regardless of the particular technique
used to replace RR intervals. Replacement leads to the
poorest estimation of spectral parameters; power in the HF
band is attenuated with the replacement methods acting (in
effect) as low-pass filters that emphasise local trends (Fig-
ure 5). All replacement methods are particularly poor where
aberrant RR intervals occur in clusters as the correction
becomes arbitrary. None of these approaches can be rec-
ommended in conjunction with the LS periodogram.

Method 4 (OUGP) suffered a similar loss of information
from the HF band, although it outperformed the “rules”
method in terms of accurate location of the peaks, and both
LF and HF peaks exceeded FAP of 10% in 100% and 97% of
simulations, respectively. OUGP leads to the “smoothest”
PSD with the least variation in RR intervals, which is un-
surprising in that it applies to all data points and not just
suspicious ones. It offered no improvement in estimation of
spectral parameters over the “baseline” (method 1)
approach.

EMD (method 5) outperforms all others in terms of
preserving the statistical features of the underlying signal

and was the only method able to consistently locate the HF
peak in all 100 simulations. Noise peaks never exceed the
FAP threshold of 50% suggesting that this would be the most
robust method for preprocessing clinical data. EMD applies
to all data points in the RR tachogram and is the only
method to accurately estimate the power in the LF band. It
also yields the closest prediction of LF/HF ratio. (e PSD
estimate has a higher power content than the “baseline”
(method 1), which suggests that some noise is decomposed
into the first three IMFs. It is the subject of future work to
establishmeans by which this could be refined.(e challenge
of understanding the physiological basis of each IMF (and
therefore applying more elaborate denoising approaches
[37]) also remains.

3.3. RR Editing with Synthetic Data with Physiological
Artefacts. (e previous section explores the limits of the LS
periodogram where a periodic signal is masked by noise.(e
presence of physiological artefacts leads to a different kind of
distortion to the RR tachogram and is considered separately
here. In particular, the presence of ectopic beats is known to
distort the spectral analysis leading to the guidance that five-
minute intervals containing ectopic beats should not be
analysed [3, 13]. Within a population prone to cardiac
dysrhythmia such as HD patients, this condition could result
in no five-minute segments of data being suitable for spectral
analysis, even over the course of a four-hour treatment. (is
experiment is intended to be representative of data pro-
cessing issues that occur when real patient data is used and
where it might be unclear whether the resulting PSD is valid.

Patient data obtained in a clinical setting is hard-won,
and so it is a worthwhile exercise to understand whether
limitations established for equidistant time series methods
also apply to the LS periodogram, such that data are not
excluded unnecessarily, and to establish limits on the
confidence that an investigator might have in the resulting
analysis. To this end, a series of RR intervals in the distorted
tachogram (Figure 2) were replaced with two types of false
beats that represent typical errors seen in ECG data for
patients receiving HD. (e first kind represent short beats
where an individual RR interval was replaced by one of
200ms duration (representing a false trigger, such as a tall T
wave or an ectopic beat), and the second represents missed
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Figure 5: PSD estimation via the LS periodogram using the same original data series and symmetric RR interval selection (±10%), but with
five different methods of editing dubious RR intervals. Methods 1 (“baseline”), 2 (“rules”), 4 (OUGP), and 5 (EMD) are considered
successful as they were able to identify the LF and HF peaks corresponding to the sine waves in (3). Methods where dubious RR intervals
were replaced by cubic spline interpolation, linear interpolation, or by themean average of oneminute of data are considered unsuccessful as
background peaks are emphasised and HF peaks are lost in the noise. FAP levels are indicated by the three horizontal lines on each graph,
with the top (purple) line showing a FAP of 1%, the mid (yellow) line showing a FAP of 10%, and the lower (orange) line showing a FAP of
50%. (a) Lomb–Scargle baseline. (b) Rules edited RR intervals. (c) Cubic spine interpolation. (d) Linear interpolation. (e) Mean average
replacement. (f ) OUGP. (g) EMD.
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triggers where two successive RR intervals were replaced by a
single longer RR interval of equal duration (representing a
missed trigger). (e number of false beats was incremented
until the point where the PSD estimates fail—a failure was
defined as the point where a spurious peak exceeds a FAP of
50% or else where the true peak falls below a FAP of 50%.
False beats were tested both as individual occurrences and as
part of an increasingly long error burst. Once again, suspect
RR intervals were identified by a deviation of ±10% from the
previous RR interval.

(is set of experiments is summarised in Table 4, which
compares the same five different approaches to preprocessing
the RR tachogram, with the addition of one further test where
spectral analysis is performed on all data in the RR tachogram,
including the false beats, to provide a comparison (labelled as LS
All Points). Cubic spline interpolation (CSI) was used to rep-
resent the replacement methods as it appears to be the most
commonly used in literature [8].

(e question as to whether preprocessing is necessary is
answered by considering the results of the application of the
LS method using all points in the five-minute segment. Here
the PSD estimate is better able to accommodate discrete
errors but is significantly influenced by clusters of errors to
the point where it fails when as few as 2 false beats are
combined. Its particular mode of failure is to induce spu-
rious peaks into the PSD estimate, which merge with
background noise. (ese peaks and their aliases tend to
distort the HF content of the signal and appear as strong
periodic content. By comparison, the most robust method
involves the identification and exclusion of suspect RR in-
tervals (“baseline”) resulting in a reliable PSD estimation
until the window limit was reached (a function of the
granularity of the distorted RR tachogram).

(e performance of “rules” based editing is dependent
on the particular rule in operation. Where a false beat is
detected, it is either divided or combined with neighbours or
both, and this smoothing process tends to reduce the
prominence of false beats within the tachogram, allowing the
true peaks in the PSD to be preserved. (e peaks are also
preserved when long chains of missed triggers are replaced
by an equivalent number of RR intervals with the mean
average duration, but only a maximum of 6 ectopic beats in
an error burst can be processed before failure. (e “rules”

method tends to reduce differences between RR intervals,
and this method fails when smoothing causes the HF peak to
disappear. CSI has the opposite mode of failure and in-
troduces false peaks above a FAP of 90% with the inclusion
of the first false beat. Most of the noise in the PSD appears in
the LF band which merges with the true periodic content,
and CSI emphasises this effect as false shapes.

OUGP and EMD apply to all data points in the RR
tachogram including false beats and both preprocessing
methods allow successful location of periodic signals. (e
mode of failure for both methods is that the background
noise increases in magnitude and/or true peaks decrease in
magnitude as the number of false beats increased until the
true peaks are lost below a FAP of 50%. OUGP increasingly
filters HF content, whereas EMD flattens the whole power
spectra.

Table 4 records the values of LF, HF, and LF/HF in the
final successful PSD estimation before each method fails.
While both peaks are correctly located at a magnitude
greater than a FAP of 50%, spectral parameters can be
unreliable at this point.(emethod of correction will always
bias the PSD estimated in the direction of the edited RR
interval—for example, if a large number of ectopic beats are
replaced by a smaller number of long RR intervals, HF power
will be reduced, and LF/HF will be overestimated. (is is an
important issue in analysing a time series of patient data,
where successive data segments may contain different types
of false beats and different patterns of corrections. For ex-
ample, the magnitude of the spectral parameters predicted
by the “rules” method varies greatly as false beats are in-
creased as the values depend on which rule is deployed for a
given condition.

EMD and the “baseline” method provide the most
consistent and stable values for spectral parameters as the
number of false beats increase, but the latter tends to
underpredict HF content leading to an over prediction in
LF/HF. OUGP shows a falling trend in HF power leading to
a rising trend in LF/HF calculation and is particularly poor
when missed triggers (long RR intervals) are included in the
tachogram.

All of this leads to a fairly complicated outcome; where a
signal is masked by noise, both EMD and OUGP provide a
reliable means of locating the periodic components hidden

Table 4: Location of the maximum number of false beats that can be included in a five-minute segment before failure, with LF, HF, and
LF/HF (n.u.) recorded in the final “successful” PSD estimate.

Method

Ectopic beats (individual) Ectopic beats (group) Missed trigger (individual) Missed trigger (group)
Max.
false
beats

LF/HF LF HF
Max.
false
beats

LF/HF LF HF
Max.
false
beats

LF/HF LF HF
Max.
false
beats

LF/HF LF HF

True value 0.47 0.29 0.63 0.47 0.29 0.63 0.47 0.29 0.63 0.47 0.29 0.63
“Baseline” 23 0.55 0.32 0.58 35 0.56 0.32 0.58 20 0.57 0.33 0.57 32 0.64 0.35 0.55
“Rules” edited
RR intervals 17 0.64 0.33 0.52 6 0.61 0.32 0.53 18 0.69 0.34 0.49 16 0.76 0.36 0.47

CSI 0 0.77 0.38 0.50 0 0.75 0.37 0.50 1 0.78 0.39 0.50 1 0.75 0.38 0.50
OUGP 4 0.45 0.31 0.68 4 0.64 0.37 0.58 7 0.75 0.42 0.56 2 0.89 0.45 0.51
EMD 8 0.28 0.22 0.76 4 0.50 0.32 0.65 9 0.62 0.37 0.60 4 0.45 0.29 0.66
LS (all points) 7 0.34 0.24 0.70 2 0.37 0.25 0.68 3 0.38 0.25 0.66 2 0.52 0.31 0.61
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within a signal. Where the RR tachogram is complicated by
missed triggers leading to unusually long RR intervals or
very short ectopic beats, the more reliable approach is to
simply exclude false beats from the PSD estimate. However,
neither EMD nor OUGP can operate with missing data
points, so it raises the question of whether preprocessing
methods could be combined. As EMD operates by locating
zero crossings within the RR tachogram, suspect points can
be replaced by linear interpolation between neighbouring
minima and maxima points to effectively exclude them from
the resulting IMF. It is unclear how each IMF is related to
physiological processes, and so it is unclear how editing
would change the meaning of the PSD, so it is avoided here.
As OUGP is a filter, the equivalent method to omitting a
suspect beat is to replace it with the mean average, but this
would come with the penalty of smoothing the HF content
further attenuating power in the HF band.

(e distortion of the PSD estimate will depend on the
type of distortion in the RR tachogram, the frequency of the
periodic content within the HRV signal (and the aliases of
these frequencies), the location of suspect RR intervals
within a local trend, and whether or not corrected RR in-
tervals merge with noise peaks leading to false peaks. (e
only sensible recommendation is that whatever method of
RR editing is chosen should first be tested with synthetic data
to understand its limitations and likely biases prior to
analysis of real data.

3.4. RREditingwith PatientData. HRV signals can be highly
dynamic and are further complicated by the effects of
haemodialysis [14]. (is can lead to difficulty in matching
sampling rates or processing techniques to the signal, with
the result that it is nearly impossible to establish which
features of the PSD estimate are real and which are artefacts.
To this end, an example of patient data is evaluated to
identify further issues with PSD estimate and establish a
basis for evaluating results.

Figure 6 presents results of spectral analysis from only
the first 80 minutes of an uncomplicated four-hour long HD
treatment involving a patient that is considered to be hae-
modynamically stable (at 80 minutes, this patient took a tea
break, providing a natural end point for this truncated and
illustrative example). (e SNR of this dataset is estimated to
be 10.4 dB, and the standard deviation of the signal is 0.228
over the 80-minute duration, providing a more difficult test
than the distorted signal used previously. In other words,
these data represent the most straightforward RR tachogram
that is likely to be obtained in a clinical setting. (is 80-
minute record of data could theoretically generate 16 five-
minute segments of data; however, only 11 segments met
previously defined criteria: two segments were rejected for
having fewer than 240 data points within the sample; two
segments generated PSD estimates that had no peaks above a
FAP of 50%, and so any periodic content was completely
masked by noise; the final rejected segment fell short of the
window limit where missing data caused fmax< 0.4Hz.

Within the remaining 11 segments of data, identification
of suspect RR intervals was based on the symmetric criteria

of ±10% deviation from the previous RR interval [7]. (is
identifies 8% of all RR intervals as being in error (with 7%
being too short and 1% too long). None of the individual 11
segments contained more than 10% RR intervals identified
as suspect, and as before, suspect data points were excluded
from the PSD estimate in the “baseline” case, corrected prior
to spectral analysis for “Rules” and CSI methods, and in-
cluded without correction for EMD and OUGP.

To simply exclude any five-minute segment that contains
suspect data would result in little to no information being
available for analysis. If that were done here for a well-
behaved dataset, only 2 PSD estimates would remain (these
being the fourth data point centred at 1950 seconds, and the
10th at 4350 seconds indicated by arrows in Figure 6) which
show a close but not identical estimation of spectral pa-
rameters between all methods. (ese “correct” estimates
indicate that a slight rising trend in LF/HF is observed
during the first 60 minutes of dialysis, which clearly illus-
trates a problem with the behaviour of the OUGP method.
(is approach to identify trends based only on error-free
segments can be helpful within large datasets to rapidly
screen for suspect PSD estimates.

Figure 6 also shows that the application of these different
preprocessing methods leads to considerable diversity in
estimation of LF and HF power and highlights a significant
problem that may occur when comparing results from
different studies. (e estimation of spectral parameters by
alternative methods can lead to significantly different results
even for the same dataset. (e use of a single PSD estimate
from a fixed point in dialysis, which can deviate significantly
from an overall trend, could therefore be an unreliable
indicator of patient response further complicating com-
parisons and compromising its diagnostic significance.

Given the variability in the results, any attempt to
mediate fluctuations by averaging spectral parameters is also
likely to be unreliable. Figure 7 presents the results from
averaging spectral parameters over 20-minute intervals.
OUGP shows a sharp rise in LF/HF immediately after the
start of dialysis, and CSI and “rules” methods show a sharp
fall. In clinical studies, this pattern would be associated with
different outcomes. Low LF has been associated with
intradialytic hypotension [38], and sharp falls would char-
acterise this patient as being haemodynamically unstable [5]
which they are not. OUGP tends to return higher levels of
HF power. (is behaviour could also be a serious failing in
clinical studies, where reduced HF band power is associated
with worse patient outcomes [1, 21]. In this case, the arti-
ficially high levels could mask an underlying morbidity.

Figures 6 and 7 also show that OUGP tends to follow a
different trend to the other methods and returns the most
varied results. (is suggests that using a consistent method
of evaluating results does not necessarily result in a con-
sistent output. CSI and the “rules” method are generally in
agreement but tend to apportion different levels of power to
the LF and HF bands, with CSI being much more susceptible
to the effects of ectopic beats. EMD and the “baseline,” both
previously identified as the most reliable, also show close
agreement. (ese differences are better explained with
reference to the PSD estimates presented in Figure 8.
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Figure 7: Each point represents the mean-average of spectral parameters (derived from valid PSD estimates) over a 20-minute period. It
presents the results from the first 80 minutes of a dialysis treatment, and it can be seen that different trends arise from different methods of
processing the RR tachogram. (a) 20-minute average of LF results. (b) 20-minute average of HF results. (c) 20-minute average of LF/HF
results.
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Figure 6: Comparison of spectral parameters over the first 80 minutes (a short time duration is presented for clarity) of haemodialysis. Data
points are centred within valid five-minute segments extracted from the RR interval tachogram, with the same segment being preprocessed
by five different methods (CSI and “rules” based editing methods are included for illustration as their distorting effects are less apparent with
real data). Only two PSD estimates (4th and 10th) are based on RR tachograms without any suspect data points, and these are shown by the
arrows in the lower pane. (a) LF (nu) results during HD treatment. (b) HF (nu) results during HD treatment. (c) LF/HF (nu) results during
HD treatment.
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Comparison of RR editing methods using data from a
“HD patient.” (e RR tachogram is shown in the top panes,
with suspect intervals identified by red markers for clarity.
(e same RR interval tachogram is processed by five dif-
ferent methods shown in the panes below. (ese data
correspond to the first and last time-series points in Figure 6.

(e presence of extremely short duration RR intervals in
Figure 8 has been caused by an artefact derived from the
processing the ECG signal where a portion of the signal was
masked by a short burst of noise, probably caused by patient
movement. (e “rules” method suggests that these two short
intervals in Figure 8(a) should be replaced by adding them to
the previous RR interval, while CSI replaces these beats with
a single interpolated value—both corrections are plausible,
and visual inspection of the ECG trace offers no guidance as
to which is correct. A single, discrete error leads to only a
small difference in spectral parameters and small (but vis-
ible) changes to the PSD. Figure 8(b) shows a series of
suspect RR intervals, and in this case, the “rules” method
corrects them as more, shorter duration RR intervals while
CSI corrects to fewer, longer duration intervals resulting in
noticeably different PSD estimates. As the correct correction
is uncertain, the advantage of the “baseline” approach is
evident in that these suspect data points are simply excluded
from the calculation.(e operation of EMD is similar in that
it treats the “ectopic” peak as belonging to a long period sine
wave that appears in a higher order IMF and therefore is not
used to reconstruct the signal prior to PSD estimation. (e
only difference between the two methods is scale with the

“baseline” PSD appearing as an attenuated version of EMD.
It should be noted that as the number of erroneous data
points increases, the “baseline” method is increasingly less
able to locate any peaks above a FAP of 50%.

Figure 8(a) shows something is clearly amiss with
OUGP, which helps illustrate perhaps themost crucial test of
the validity of the results—consideration of the source of the
pattern of the peaks revealed by the LS periodogram.
Multiple peaks exceeding a FAP probability of 50% can be
seen in the LF band for the other five methods, these being
LF peaks associated with rhythmic changes in vascular tone,
baroreceptor response, and respiratory sinus arrhythmia
[13, 27]. A single peak in the HF band associated with
respiration occurs just after 0.15Hz in all examples, except
for OUGP where it falls well below a FAP of 50%.(e loss of
these peaks clearly shows that the OUGP method has failed.

(e mechanism of this failure is more evident in
Figure 8(b), where a greater number of data points are in
error. (e PSD generated from OUGP identifies two sig-
nificant peaks in the LF band; the first (just before 0.1Hz) is
apparent in all of the estimates, while the second is not.
OUGP applies to all of the erroneous data points and de-
composes some of this noise into the signal prior to LS
estimation, which highlights a common mode of failure in
spectral analysis approach—the largest peaks might not be
real. Moreover, OUGP exaggerating HF components is
unexpected given the performance of this method with
synthetic data. Closer inspection of Figure 8(b) shows that
the inclusion of the “noise” leads to the OUGP filter
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Figure 8: (a) Effect of a single short beat. (b) Effect of multiple errors.
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saturating, and so m-order harmonics of the two LF peaks
appear throughout the HF band (m can be 2 or 3). Spurious
peaks could also be caused by some unexpected aliasing
effect in the window function, but there is no good way to
deconvolve the window from the signal in LS periodogram
estimation to test this effect.

In summary, OUGP is not sufficiently robust to be used
with clinical data and both CSI and “rules” based methods
lead to different PSD estimates without any clear way to
establish which is correct. (e most reliable method is to
exclude suspect points (as with the “baseline”); however, the
effect of excluding suspect data points is to attenuate the
signal and risks of true peaks being lost when HRV signals
have very low amplitudes (such as for very sick or elderly
patients). In the case of clinical data, EMD is the more
reliable method for dealing with suspect RR intervals but
with much more strict limits on the maximum number of
errors that can be included. (e experiments conducted in
the previous section suggest that a maximum 8 discrete
ectopic beats, or 4 within an error burst, can be safely
processed by EMD accommodated without distorting the
results.

4. Discussion

(e calculation and analysis of PSD for HRV studies is not
trivial. Two distinct but overlapping processes generate
highly dynamic short-term responses, these being the
complex relationship between the sympathetic and para-
sympathetic nervous system and the regulatory mechanisms
of heart rate, blood pressure, and baroreflex in response [23].
As the RR interval tachogram represents time on both axes,
it cannot discriminate between the actuation and response
effects.

Nevertheless, studies of HRV can reveal significant and
important diagnostic and prognostic information, both
about the patient as an individual [38] and as part of a
population [1]. Abnormal HRV primarily reflects the dys-
regulation between sympathetic and parasympathetic ner-
vous system and has been associated with an increased risk
of morbidity [1]. Within populations receiving HD treat-
ment, a low degree of HRV indicates impaired autonomic
function and a reducing HRV has been associated with
adverse cardiovascular outcomes [39]. Comparisons of HRV
taken before and after HD have also proved to be a useful
clinical marker in predicting overall mortality [2].

Given the significance of these findings, it is surprising
that HRV does not have greater diagnostic use.(ere may be
two reasons for this; the first would relate to the time in-
volved in manually inspecting ECG traces and RR interval
tachogram prior to analysis, and the second is in the vari-
ability of results [27] which has been shown here to arise
from the method of correcting errors in addition to any
underlying physiological basis—both of which make
interpreting the results more difficult.

(is work attempts to address both aspects by dem-
onstrating that the LS periodogram provides a reliable and
robust estimate of PSD even in clinical (as opposed to re-
search) conditions, provided that proper attention is given to

the frequency limits and sampling grid’s role in suppressing
or exaggerating spurious peaks in the PSD (this may address
criticisms regarding the overly spiky appearance of the LS
PSD estimate [13]). In summary,

(i) (e window limit (Fmax) provides a hard upper limit
and is a function of the sampling frequency. It is
more important than pseudo-Nyquist frequency
when unevenly sampled data are analysed.

(ii) Violation of the lower-limit condition leads to an
attempt to analyse power below the fundamental
frequency limit of the signal. For this reason, total
power should be calculated between 0.03Hz and
0.4Hz to avoid boundary effects (lumping) when
integrating the PSD from 0 to calculate the nor-
malised LF and HF values. (is effect cannot be
assumed to be small.

(iii) (e lowest number of points that can be analysed in
a 5-minute segment is 240, leading to a lower limit
of 48 bpm on heart rate [12].

A consistent recommendation in literature is that five-
minute segments of data containing more than 20% of
suspect or edited RR intervals should not be used for HRV
analysis [3, 23], which holds true for the LS method.
However, a four-hour HD treatment could generate 48 PSD
estimates per patient per treatment, and so the use of FAP
provides an important screening criterion to understand
whether a five-minute segment is valid for analysis. Its use
here has demonstrated that methods employed to edit the
RR tachogram via smoothing techniques are unsuitable in
conjunction with the LS periodogram. Smoothing methods
(in general) act as low-pass filters, emphasising local trends
and filtering high-frequency components of the signal. (e
different use of the RR editing method could explain some of
the contradictory results that appear in literature. Kuo et al.
[40] associated a lower LF/HF ratio with better survival for
patients receiving HD and noted that while some studies
agreed with this result [2] others found lower LF/HF ratio
had more adverse ESRD events and poorer survival [41].
Kuo et al. [40] discussed the differences in terms of study
design and clinical factors, but it is also possible that the
different methods used PSD estimation which could also
have influence the results. For example, Chen et al. [2] who
reported a positive association with lower LF/HF ratios
estimated PSD from five minute segments of data where
attempts were made to attenuate spectral leakage by using a
Hamming window. Brotman et al. [41] applied FFT to 2-
minute segments of data that were filtered and smoothed
and reported a negative association with lower LF/HF ratios.

(e investigation performed here also contradicts pre-
vious findings that the method of RR interval selection has a
greater effect on PSD than the method of RR editing [7]. (e
major issue seems to be one of bias caused when the method
of RR interval selection is asymmetric. (e results here
suggest that selection criteria should always be symmetrical
when used with the LS periodogram, whether a mean av-
erage, confidence interval, or previous RR interval provides
the basis of comparison.
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Attempts to edit RR intervals using “rules” based on
physiological plausibility is not helpful. In reality, any RR
interval is equally as likely to be in error as its comparator. If
editing is required, it should be applied to the whole time
series. (e recommendation from this work is that EMD is
the preferred technique for denoising. Where the data are
subject to artefacts— particularly missing data and ectopic
beats, the LS “baseline” method is the most robust. Suspi-
cious RR intervals should always be excluded from the LS
PSD estimate rather than edited, and the use of a synthetic
data series to probe the limits of the chosen processing
technique is valuable. (is initial test should allow PSDs
containing small number of artefacts, including ectopic
beats, to be processed without compromising the integrity of
the analysis. If this is done, then it should be noted that
overall trends in data are more reliably identified using the
PSD estimate arising from error-free segments of the RR
tachogram. PSD estimates that deviate from such trends can
then be easily identified and further investigated.

Other criticisms of HRV analysis note that spectral
parameters derived from five-minute intervals do not have
the prognostic power of time-domain measurement derived
from 24 hours of data [23], and yet spectral parameters are
used (sometimes successfully [2]) to predict long-range
outcomes. It is possible that a more deliberate approach to
PSD estimation could lead to better correlation between the
two time periods.

5. Conclusions

(e LS periodogram for spectral analysis seems to be highly
suitable for use with patient data obtained in a clinical setting
as it is more robust to noise effects than other methods and is
able to work with missing data points and artefacts including
ectopic beats. However, its application requires some de-
viation from guidelines established for the more common
time invariant methods used to estimate PSD.

When using the LS periodogram to estimate spectral pa-
rameters of heart rate variability, it is more appropriate to exclude
data points than to edit them. (e basis for the identification of
suspicious RR intervals will lead to identification of a greater or
fewer number and has no further effect provided the method is
symmetrical. Should further preprocessing be necessary, EMD is
the preferred method for denoising.

(e LS periodogram estimates can only be made when
maximum and minimum frequency limits are observed and
where the grid spacing is derived from sampling frequency
for each five-minute interval.(ese could be dynamic within
a single time series.

(e use of synthetic data to establish the limits of the
processing technique is recommended, and results should be
interpreted in light of these results. A further check of
whether the features of the PSD estimate can be related to
physiologically plausible mechanisms and effects can pro-
vide additional confidence in the results, aiding comparison
between studies.

Finally, calculation of FAP should always be performed
in deciding whether to accept the PSD estimate of five-
minute segment as valid. (is decision point can enable

greater automation and therefore greater clinical use of the
analysis.
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