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A B S T R A C T

With the predicted depletion of natural resources and alarming environmental issues, sustainable de-
velopment has become a popular as well as a much-needed concept in modern process industries. Hence,
manufacturers are quite keen on adopting novel process monitoring techniques to enhance product quality and
process efficiency while minimizing possible adverse environmental impacts. Hardware sensors are employed
in process industries to aid process monitoring and control, but they are associated with many limitations such
as disturbances to the process flow, measurement delays, frequent need for maintenance, and high capital costs.
As a result, soft sensors have become an attractive alternative for predicting quality-related parameters that are
‘hard-to-measure’ using hardware sensors. Due to their promising features over hardware counterparts, they
have been employed across different process industries. This article attempts to explore the state-of-the-art
artificial intelligence (Al)-driven soft sensors designed for process industries and their role in achieving the
goal of sustainable development. First, a general introduction is given to soft sensors, their applications in
different process industries, and their significance in achieving sustainable development goals. AI-based soft
sensing algorithms are then introduced. Next, a discussion on how AI-driven soft sensors contribute toward
different sustainable manufacturing strategies of process industries is provided. This is followed by a critical
review of the most recent state-of-the-art AI-based soft sensors reported in the literature. Here, the use of
powerful AI-based algorithms for addressing the limitations of traditional algorithms, that restrict the soft
sensor performance is discussed. Finally, the challenges and limitations associated with the current soft sensor
design, application, and maintenance aspects are discussed with possible future directions for designing more
intelligent and smart soft sensing technologies to cater the future industrial needs.
1. Introduction

Most of the modern process industries are highly energy intensive
and hence they are responsible for consuming a significant propor-
tion of the annual global energy production. Therefore, process indus-
tries significantly contribute to global warming through the excessive
burning of fossil fuels. Moreover, the waste, by-products, and toxic
gases generated by these industries lead to environmental pollution.
Consequently, global authorities have been imposing tighter environ-
mental rules and regulations over the past decade, and all process
industries across the world are expected to adhere to them. Non-
compliance to these requirements will lead to legal actions being taken
against process industries, an increase in production costs, and re-
duced consumer demand for products. These environmental concerns,
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diminishing non-renewable resources, legal requirements, high energy
costs, and consumer demand for environmentally friendly products, are
driving the modern process industries toward sustainable development
(Giret et al., 2015). The concepts of circular economy and cleaner
production have emerged as strategies that aim to achieve sustainable
development through energy conservation, emission reduction, and
improved production efficiency (Henao-Hernández et al., 2019; Hens
et al., 2018). These requirements have increased the importance of
the process monitoring aspect (and hence the demand for them as
well) in the process industries. In any industrial application, process
monitoring plays a crucial role in monitoring the process’s health to
ensure that the process functions within the desired limits (Abeykoon,
2018). This allows material wastage, environmental pollution, and
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energy consumption to be controlled while achieving a product with
the desired quality.

To enable process monitoring and control, the most common prac-
tice is to employ hardware sensors at desired locations of the process
(Kadlec et al., 2009). However, hardware sensors may not be suitable
for certain applications because of many factors including harsh/hostile
working environments which lead to frequent service requirements,
disturbances to the process flow and product quality, measurement
delays, access requirements, and high costs. This makes it difficult or
impossible to measure certain process variables directly using hard-
ware sensors. These ‘hard-to-measure’ process variables are mostly
related to product quality and due to the above-mentioned limitations,
they are normally determined by offline laboratory analyses (Warne
et al., 2004). Such offline measurements can introduce significant
measurement delays and discontinuity. Hence, it is impossible to carry
out real-time adjustments to maintain the product within the desired
quality constraints, and this may lead to increased material wastage,
excessive energy usage, environmental pollution, process degradation,
and so forth. To address these issues, some researchers have inves-
tigated the possibility of using mathematical models of processes to
estimate these ‘hard-to-measure’ quality parameters, so that hardware
sensors can be replaced by such models. This has led to the concept of
software-based sensors or soft sensors.

Early soft sensor applications utilized first-principles models or
statistical and/or traditional machine learning techniques to estimate
the ‘hard-to-measure’ quality parameters (Kadlec et al., 2009). These
traditional models were able to provide real-time predictions of the
desired parameters while addressing the limitations of their hardware
counterparts but suffered from serious limitations. For example, first-
principles models were derived based on numerous assumptions and
consequently, they failed to capture actual dynamics in industrial pro-
cesses. Traditional statistical and machine learning techniques failed
to effectively capture spatial and temporal variations in the process
data, leading to poor predictive performance. It would not be possible
to monitor the process’s health and make real-time quality control
decisions if the measurements provided by the sensors are not accurate,
and this would act as a barrier against the process industries moving
toward sustainable development. Hence, researchers were forced to
investigate more advanced state-of-the-art algorithms to be used in soft
sensor development. Consequently, with the advancements in artificial
intelligence (AI), researchers have shifted their focus from traditional
algorithms to more advanced AI algorithms to improve the predictive
performance of soft sensors to better aid process monitoring and control
in process industries.

1.1. Related literature review

First, the previous review works on soft sensor applications are
investigated. Abeykoon (2018) provided a comprehensive review of
soft sensor applications in the polymer processing industry, covering
polymer extrusion, polymerization, and a few other processes. Simi-
larly, Al-Jamimi et al. (2018) reviewed machine learning-based soft
sensing solutions for the desulfurization of oil products. However,
both studies only reviewed traditional modeling techniques and did
not discuss the latest AI-based techniques published in recent years.
Zhu et al. (2020) discussed data-driven soft sensors used in industrial
fermentation processes. Here, they reviewed some of the latest AI-based
techniques such as deep neural networks, fuzzy logic, and evolutionary
algorithms, in addition to the traditional techniques. Kadlec et al.
(2009) provided a comprehensive review of data-driven soft sensors
employed in the process industry. The authors discussed soft sensor
design aspects, applications, and algorithms. In a later study, Kadlec
et al. (2011) investigated different adaptation mechanisms reported in
the literature, for constructing adaptive soft sensors. Although these
review articles are more than a decade old, they provide valuable

insights that are still relevant to today’s process industries. However,
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they only present traditional statistical and machine learning algo-
rithms that were widely used for soft sensor construction at the time.
The reviews by Khatibisepehr et al. (2013), Souza et al. (2015), Liu
and Xie (2020), Curreri et al. (2020), and Jiang et al. (2021) mainly
discuss the advances in the soft sensor design aspects and their focus is
not on the use of the latest AI-based techniques. Kong et al. (2022)
critically analyzed the conventional as well as deep learning-based
techniques for extracting latent features from process data and pro-
posed a novel framework that combines the excellent model capacity of
the deep learning-based techniques with the model interpretability and
efficiency of the conventional techniques. However, focus of this review
is limited to latent feature extraction methods, and do not discuss other
challenges associated with soft sensor design.

Based on the investigation of previously published review articles
on soft sensors, the following key limitations or gaps can be identified,
which call for a further review to be conducted.

• The prior reviews discuss only traditional modeling techniques
and lack focus on the latest AI-based techniques.

• Some reviews only focus on applications from a single industry.
• None of the prior reviews discuss the role of soft sensors in achiev-

ing sustainable development nor the contribution of advanced
AI-based soft computing algorithms in achieving this goal.

Kadlec et al. (2009) and Souza et al. (2015) discussed some character-
istics of process data that pose challenges for soft sensor developers.
Problems such as missing data, varying sampling rates, drifting data,
and outliers adversely affect the predictive performance of soft sensors.
These reviews discussed some of the solutions in the literature to
address these challenges, but they were only limited to traditional
techniques. However, modern process industries require sensors with
high robustness and precision, and solutions based on traditional mod-
eling techniques may not be sufficient. The most recent research works
investigated various AI-based techniques to address these limitations
with the aim of producing soft sensors with high prediction accuracy.
Another limitation of some of the past reviews is that they only focus
on soft sensor applications from a single industry (Abeykoon, 2018; Al-
Jamimi et al., 2018; Zhu et al., 2020). It is quite reasonable to review
work related to only one type of process industry as soft sensors are
generally developed according to the requirements of that industry.
However, some of the problems/challenges in one industry may be
common to other industries as well. Hence, it should be useful to
investigate solutions from multiple industries. With the current trend
for achieving sustainable development, process industries need more
sophisticated process monitoring techniques. Hence, soft sensors play
a key role in implementing sustainable manufacturing strategies. The
existing studies do not investigate the involvement of soft sensors in
this aspect, and how the advanced powerful AI tools can enhance the
contribution of soft sensors toward sustainable development.

Therefore, there is a need for a critical review that looks at the
latest research on soft sensors that are based on state-of-the-art AI
algorithms, and their role in guiding the process industries toward
sustainable development. Hence, this study aims to contribute to the
existing literature by filling these gaps and providing directions for
future researchers and soft sensor designers. This paper is organized
as follows:

Section 1 of this paper discusses the importance of process monitor-
ing in achieving sustainable development goals of process industries.
Moreover, the need for a critical review is discussed followed by the
methodology followed in conducting this study. Section 2 introduces
soft sensors and the process industries that use them. In Section 3, the
commonly used classes of AI algorithms for soft sensing applications
are discussed. Section 4 discusses how modern soft sensors based on
the latest AI algorithms contribute toward sustainable development in
process industries. A critical review of the state-of-the-art AI-driven soft
sensors employed in process industries is presented in Section 5. This
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section provides an overview of some of the different classes of prob-
lems/challenges in developing soft sensors (i.e., missing data, varying
sampling rates, small datasets, dimensionality reduction, adapting to
varying process conditions, extracting temporal and spatial features,
and model interpretability). Then, the most recent AI-based solutions
for tackling these problems are discussed in detail and compared with
the existing traditional solutions. Section 6 discusses the existing chal-
lenges in soft sensor design, application, and maintenance aspects
and the future trends of soft sensor applications in process industries.
Finally, Section 7 concludes the paper with a set of conclusions drawn
from the review conducted in this study.

1.2. Method

An online search was carried out to identify the most relevant arti-
cles on state-of-the-art AI-based soft sensing solutions. Google Scholar
was used as the primary search database as it provides extensive
coverage of scholarly articles including journal articles, conference
proceedings, and dissertations. IEEE Xplore, ScienceDirect, and Wiley
Online Library were also used to ensure that the search was more
comprehensive.

Due to the large volume of articles on soft sensors available in the
literature, the scope of Section 5 of this study was restricted to soft
sensor applications from three process industries. Polymer processing,
petroleum refining, and pharmaceutical industries were chosen as they
dominate the soft sensor applications reported in the literature as evi-
dent from previous reviews (Abeykoon, 2018; Al-Jamimi et al., 2018;
Zhu et al., 2020). Hence, relevant combinations of keywords were used
to search for articles related to these industries. ‘polymer processing’ AND
‘soft sensor’, ‘oil refinery’ OR ‘petroleum refining industry’ AND ‘soft sensor’,
and ‘pharmaceutical’ AND ‘soft sensor’ constitute the different keyword
ombinations used to search for the relevant articles. Then, the final
nclusion and exclusion criteria were used to further refine the search.

• Is the year of publication within the period 2018–2022?
• Is the soft sensor designed for online prediction tasks?
• What is the AI-based technique introduced?

s per the above criteria, only the articles that were published within
he period 2018–2022 were first selected, to obtain the most recent
tate-of-the-art studies. According to Kadlec et al. (2009), soft sensing
pplications can be divided into three main categories: ‘online pre-
iction’, ‘process monitoring and process fault detection’, and ‘sensor
ault detection and reconstruction’. Among these, online prediction
an be identified as the most popular application, which involves the
eal-time estimation of quality-related parameters. Hence, articles on
nline prediction soft sensors were selected to further narrow down
he scope of this paper. Finally, the AI-based techniques introduced
n the articles were assessed using their abstracts. Articles based on
raditional algorithms were excluded and only the articles based on AI
echniques were chosen (Section 3.1 describes the classes of AI-based
lgorithms discussed in this study). Papers were chosen such that no
wo papers with the same technique were selected for each class of
roblem discussed in Section 5. This was done to enhance the diversity
f different AI-based solutions discussed in this paper.

. Soft sensors in process industries

A soft sensor is a widely used term to describe software-based
ensors, which is a technique of estimating ‘hard-to-measure’ quality-
elated parameters in industrial processes. They are also known as
irtual sensors, inferential estimators/models, (Abeykoon, 2018; For-
una et al., 2007), and observer-based sensors (Goodwin, 2000). Soft
ensors are based on mathematical or empirical models that map a
et of input process variables to a quality parameter so that ‘hard-
o-measure’ quality parameters in process industries can be accurately
stimated using a set of ‘easy-to-measure’ input process variables. Fig. 1
3

illustrates the conceptual arrangement of a soft sensor used in online
prediction applications.

There are mainly two soft sensor categories: model-driven and data-
driven soft sensors (Kadlec et al., 2009). Model-driven soft sensors are
designed using equations derived from physical or chemical principles
related to the process under consideration, hence are also known
as first-principles models or mechanistic models. Since the process
background or the internal mechanisms of the first-principles models
are known, the term ‘white-box model’ is also used. They are highly
complex in nature and they model the physical or chemical behaviors
of the processes and are mainly designed for steady-state operating
conditions. However, most of the processes in process industries have a
highly dynamic behavior and quite often they deviate from the steady
state. Hence model-driven soft sensors may not be suitable for predict-
ing parameters related to such dynamic processes. Furthermore, the
designing of model-driven soft sensors is time-consuming and requires
expert knowledge of the process.

Data-driven soft sensors, which are based on empirical models built
using real process data, provide a solution to the limitations associ-
ated with their model-driven counterparts. Since they are designed
using real process data, data-driven soft sensors are capable of accu-
rately modeling the process dynamics, which leads to better predictive
performance compared to model-driven soft sensors. However, these
data-driven models may also operate mainly within the processing
window that the data was collected to train those models and if a
process is running outside that processing window, it is difficult to
guarantee the performance of these models as well. Unlike the first-
principles models, the internal mechanisms of data-driven models are
hidden, hence they are known as ‘black-box’ models. In addition to
the model-driven and data-driven approaches, hybrid models which
combine both these components into their model structure can also
be found in the literature, and they are known as ‘gray-box’ models
(Kadlec et al., 2009). The benefits and limitations of model-driven,
data-driven, and gray-box soft sensors can be found in the work by
Lahiri (2017).

Today, soft sensors are widely being employed in process industries,
due to the various advantages that they can offer. The ability to operate
in harsh working environments where hardware sensors are unsuitable
to be employed, the ability to make accurate real-time estimations of
the quality parameters without measurement delays, the ability to be
implemented on existing hardware without any additional investments,
the ability to replace expensive hardware sensors at a less cost, and the
ease of maintenance are some of the benefits of soft sensors which make
them attractive alternatives to the conventional process monitoring
techniques used in process industries (Abeykoon, 2016b, 2018). Table 1
summarizes some of the latest works reported on a variety of soft sens-
ing applications across different process industries. The ability of soft
sensors to make accurate real-time estimations of quality parameters
allows them to be incorporated into feedback control systems to achieve
real-time quality control of the processes (see Fig. 2).

3. AI-based algorithms used in soft sensors

3.1. Introduction to soft sensing algorithms

Obviously, soft computing algorithms play a crucial part in the
soft sensor development process. The key role of such algorithms is
to establish the model associated with a soft sensor, which maps the
‘easy-to-measure’ input process variables to the ‘hard-to-measure’ qual-
ity parameters. As explained in Section 2, white-box models employ
physics-based mathematical models derived using the first-principles
knowledge about the process under consideration. In contrast, data-
driven soft sensors use a wide range of computing algorithms. This
section discusses the algorithms employed in data-driven soft sensors
with a focus on the latest AI algorithms.
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Fig. 1. Conceptual arrangement of an online prediction soft sensor.
Table 1
Soft sensor applications in process industries.

Publication Industry Application

Zhao et al. (2021) Cement industry Prediction of the content of free calcium
oxide in a cement clinker

Farahani et al. (2021) Power plant Prediction of the active power and fuel flow

Wang et al. (2019b) Steel industry Coke dry quenching operation prediction

Yan et al. (2020) Wastewater treatment plant Prediction of the total Kjeldahl nitrogen

Phatwong and Koolpiruck (2019) Pulp paper industry Kappa number prediction of a pulp digester

Sun and Ge (2019) Ammonia synthesis process Prediction of the CO2 concentration in a
CO2 absorption column

Liu et al. (2021a) Polymer processing industry Prediction of the melt flow index (MFI)
in a polypropylene polymerization
process

Guo et al. (2020b) Petrochemical industry Prediction of the butane content in a
debutanizer column of an oil refinery

Qiu et al. (2021) Pharmaceutical industry Prediction of the penicillin concentration
in a penicillin fermentation process

Meng et al. (2019) Food processing industry Prediction of the mother liquid purity
and supersaturation in a cane sugar
crystallization process
Fig. 2. A soft sensor used in a feedback control system for real-time process control.
Multiple linear regression (MLR) is a simple and useful technique
or predicting the behavior of response variables based on a set of
ndependent variables (Tobias, 1995). However, the complex nature
f the processes in process industries involves a large number of in-
ependent variables (i.e., ‘easy-to-measure’ input process variables)
4

which are highly redundant (i.e., collinear) and their relationship to
the response variables (i.e., ‘hard-to-measure’ quality parameters) may
not be well understood. MLR is not capable of handling such highly
correlated data. Furthermore, due to the limitations such as the long
measurement delays of hardware sensors that are used to measure the
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quality parameters, only a limited number of observations are made
compared to the large number of input process variables. If MLR is used
in designing soft sensors under these conditions, it is highly likely that
the predictive performance of those sensors will be poor and will lead
to overfitting problems (Tobias, 1995). Overfitting occurs when a soft
sensor makes good estimations on the data that was used to train it
but fails to make accurate predictions on a new set of data that it had
not seen before. Partial least squares (PLS) is a widely used statistical
algorithm to address the issue of collinearity. The PLS transforms the
correlated variables into a new set of variables (i.e., latent space)
that are uncorrelated or orthogonal to each other. This transformation
reduces the dimensions of the input space, without losing much of
the information in the original data. Then it constructs the mapping
between the latent spaces of both independent and dependent variables.
Today, researchers are investigating more advanced algorithms for
such regression problems to achieve better accuracy. A wide range of
state-of-the-art soft computing algorithms based on statistical methods,
machine learning, and AI techniques are used in designing soft sensors
for process industries. Algorithms such as the principal component
analysis (PCA), PLS, artificial neural network (ANN) and deep learning,
support vector machine/regression (SVM/SVR), fuzzy inference system
(FIS) and neuro fuzzy system (NFS), and evolutionary algorithms are
heavily used in soft sensor development.

As this study focuses on AI algorithms, it is important to identify
the distinction between AI algorithms and traditional machine learning
algorithms. Arthur Samuel defined machine learning as the field of
study that allows computers to learn from experience, without being
explicitly programmed (Samuel, 1959). Later, Tom Mitchell provided a
more formal definition which states that: ‘‘a machine learns with respect
to a particular task T, performance metric P, and type of experience E, if the
system reliably improves its performance P at task T, following experience
E’’. (Mitchell, 1997). In contrast, AI is considered as the ability of
a computer system to mimic human cognitive functions (Microsoft,
2022). Therefore, machine learning is generally considered as an ap-
plication or a subfield of AI (Cioffi et al., 2020). This makes it difficult
to make a clear distinction between machine learning and AI, and
consequently, these terms are used interchangeably in the literature,
which may cause some confusion.

With the rise of deep learning, more advanced machine learn-
ing algorithms have come into existence, and are increasingly being
used in AI applications. Soft sensor designers are also shifting from
traditional machine learning algorithms such as the PCA, PLS, and
SVR, to more sophisticated algorithms such as deep neural networks.
Unlike traditional algorithms, these advanced deep neural networks
can effectively mimic the cognitive functions of humans, leading to
excellent performance in a wide range of AI applications. Hence, in this
study, the focus is given to the most commonly used advanced neural
network algorithms in soft sensor applications. In addition to this,
fuzzy-based algorithms and evolutionary algorithms are also discussed
in brief as these algorithms also mimic the intelligent behaviors of
humans and animals. The aim of this section is not to provide a theoret-
ical mathematical foundation of the algorithms, but to familiarize the
reader with the different AI algorithms used in soft sensing applications
and discuss how these algorithms have succeeded in developing soft
sensors with excellent performance while addressing the challenges in
modeling industrial processes.

3.2. Neural networks

An ANN is a computing algorithm that mimics the way that the
human brain analyzes and processes information. ANNs were inspired
by the network of neurons in the human brain (Agatonovic-Kustrin and
Beresford, 2000). In an ANN, the biological neurons are modeled by a
set of processing units known as artificial neurons. The ability of ANNs
to capture nonlinear relationships present in the data has made them

an attractive solution in soft sensor design. However, despite their wide
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use, soft sensors based on ANNs suffer from several drawbacks during
the soft sensor design stage. During the training phase, ANNs tend to
get trapped in local minima, which makes the soft sensor development
process challenging. Optimization of the neural network architecture
has also been another challenge and it is usually carried out through
an ad-hoc approach. Consequently, most of the feedforward ANNs are
limited to shallow structures which limits the ability of the soft sensor
to make accurate predictions. Increasing the structure complexity can
lead to the overfitting problem, which reduces the generalization ability
of the soft sensor (Kadlec et al., 2009).

Early works on soft sensors involving ANNs were focused on shallow
feedforward architectures such as the multilayer perceptron (MLP) and
radial basis function (RBF) neural networks (Sliskovic et al., 2004).
Huang et al. (2006) introduced the extreme learning machine (ELM),
which exhibited better performance and faster learning ability using the
Moore inverse learning algorithm, compared to the traditional MLPs
based on the backpropagation algorithm. The ELM is a feedforward
neural network with a single hidden layer. The functional link neu-
ral network (FLNN) is another shallow neural network architecture,
which simplifies the structure of backpropagation neural networks
(Pao, 1989). An FLNN has no hidden layers and contains only an
input layer and an output layer. Although these traditional shallow
neural network architectures may perform poorly on industrial data,
some of their modified and improved versions have successfully been
used in recent soft sensor applications due to their computational
efficiency. He et al. (2015) used a double parallel ELM in developing
soft sensors for modeling complex processes in the chemical industry
due to its ability to provide accurate results with a fast response time,
compared to the backpropagation neural networks. Geng et al. (2017)
introduced a novel self-organizing ELM based on the biological neuron-
glia interaction principle, to improve the generalization performance
and stability of the traditional ELM, and this novel algorithm was
employed in a soft sensor for modeling a purified terephthalic acid
(PTA) process. In another work, Tian et al. (2020) introduced a soft
sensor with a regularization-based FLNN and tested its performance
on a PTA process. Considering the better generalization performance
and learning speed of the Moore inverse algorithm used in ELMs, the
authors used the same algorithm with the FLNN.

With the rise of deep learning, there has been a trend of using differ-
ent deeper neural network architectures to overcome the limitations of
shallow neural networks. Some recent works on soft sensor applications
focused on deep neural network architectures such as the recurrent
neural network (RNN) (Kataria and Singh, 2018), convolutional neural
network (CNN) (Yuan et al., 2020c), generative adversarial network
(GAN) (He et al., 2020a; Wang and Liu, 2020), and stacked autoencoder
(SAE) (Yuan et al., 2020d) can be found in the literature. RNNs are
feedforward networks with feedback connections. They are designed
to process a sequence of data that varies with time. The feedback con-
nections enable them to retain useful information from previous time
steps which are then processed with the data from the current time step.
Consequently, they can extract and learn temporal patterns from data,
which might not be highly effective with conventional feedforward
network architectures. This makes them suitable candidates for soft
sensing applications in process industries as these processes are quite
dynamic and time-dependent in nature. However, RNNs are not that
capable of handling long-term dependencies because of the problem of
vanishing or exploding gradients during training (Bengio et al., 1994).
To overcome this issue, variants of the RNN such as the long short-term
memory (LSTM) neural network, the gated recurrent unit (GRU), and
the echo state network (ESN) have been introduced.

LSTMs introduce a memory cell, which can process data with time
lags. These memory cells are composed of three gates (i.e., input,
output, and forget gates), which can control how information is re-
membered and forgotten. This mechanism, which is absent in an RNN
enables the LSTM to learn long-term dependencies. This property is
quite useful for implementing soft sensors as process data is highly
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time-dependent. For example, in industrial processes, when a process
control variable is changed, the quality parameter may not change
instantly. Instead, it may show a delayed response. An RNN may fail to
capture such dynamics due to its inability to handle long-term depen-
dencies. Hence, the LSTM networks provide a promising alternative.
Some recent research works associated with LSTM-based soft sensors
can also be found in the literature (Pisa et al., 2019; Shen et al., 2020;
Sun et al., 2021). A GRU is a simplified version of the LSTM, which
is computationally less expensive than the LSTM (Cho et al., 2014).
This high computational efficiency has been achieved by using only
two gates known as the reset gate and the update gate. The update gate
is designed by combining the forget and input gates of the LSTM. This
simpler internal structure of the GRUs compared to the LSTMs, with the
ability to learn long-term dependencies has made GRUs an attractive
solution in soft sensor applications that require faster computation (Guo
and Liu, 2021). An ESN is another variant of the RNN that consists of
an input layer, a hidden layer (i.e., a reservoir), and an output layer.
The reservoir has a nonlinear recurrent structure and has highly sparse
connections. This nonlinear recurrent structure enables the dynamic
characteristics of industrial process data to be stored in this reservoir,
and hence ESNs are a favorable candidate for soft sensor development
(He et al., 2020b). In ESNs only the weights of the output layer are
trainable, and hence they are quite fast during the training phase
compared to RNNs and LSTMs. However, hyperparameter tuning is
more challenging, as there are a large number of hyperparameters that
significantly affect the model performance (Lemos et al., 2021).

A transformer is a state-of-the-art AI algorithm, which is a novel
neural network architecture introduced recently based on an attention
mechanism (Vaswani et al., 2017) and is revolutionizing the field of
natural language processing. Transformers overcome the issue of gra-
dient vanishing of RNNs and can take advantage of graphics processing
units (GPUs) for faster computation. Hence, they have been reported in
the latest studies for the real-time modeling of complex time-varying
industrial processes (Geng et al., 2022; Wang et al., 2022).

Some soft sensor applications may require spatial information in
the process data to be effectively captured, as spatial correlations
may exist among process variables (Yuan et al., 2020c). Conventional
feedforward neural networks and other traditional machine learning
algorithms often fail to capture such information. The CNN has proven
to be quite effective in achieving this task. It is a deep learning
algorithm inspired by the network of neurons in the visual cortex of
the human brain (Lecun et al., 1998). CNNs can successfully extract
both spatial and temporal dependencies in the input data by applying
filters based on the convolution operation. Moreover, the complexity
of the CNN architecture is significantly reduced through the sharing of
parameters and pooling operations. Hence, CNNs provide excellent soft
sensing solutions for modeling industrial processes (Wang et al., 2019a;
Yuan et al., 2020c).

The GAN, which was first introduced by Goodfellow et al. (2014),
involves the training of two models simultaneously. These two models
are termed the generator and the discriminator. The generator captures
the distribution of training data and generates new data samples, while
the discriminator determines how close the generated samples are to
the real training data. The generator and the discriminator are trained
simultaneously until the generator becomes capable of generating new
data that are very close to the real data. GANs and their extensions
are quite useful in soft sensor applications with a significant amount of
missing data since the GANs can be used as a data imputation method
(Yao and Zhao, 2021). GANs can also be used as a sample generation
technique to increase the number of data samples, for industrial pro-
cesses with small datasets caused by the slow sampling rates of quality
variables (Zhu et al., 2021c).

As discussed in Section 3.1, industrial process data are typically
high-dimensional and highly correlated in nature. Traditionally, di-
mensional reduction techniques such as PCA and PLS have been used

to address the issue of collinearity (Kadlec et al., 2009). However,
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the conventional PCA and PLS algorithms can handle only the lin-
ear relationships between the variables, and hence they might fail
in effectively extracting the nonlinear relationships. Several nonlinear
extensions of the conventional PCA and PLS algorithms such as the
kernel PCA (Cui et al., 2008), nonlinear PCA (Jia et al., 2000), and
kernel PLS (Zhang et al., 2008) have been proposed in the literature to
address this limitation. However, with the development of deep learn-
ing, researchers have investigated more advanced techniques to reduce
the input space dimensions. Neural networks based on unsupervised
learning algorithms have widely been used for this purpose.

An autoencoder (AE) is an unsupervised learning algorithm with a
fully connected shallow neural network architecture. An AE consists of
two components: an encoder and a decoder. The encoder is responsible
for extracting important features from the unlabeled input data, by
mapping the input variables to a lower dimensional latent space. The
task of the decoder is to reconstruct the original data from the latent
features extracted by the encoder, such that the reconstruction loss is
minimized. Once the AE is successfully trained, the decoder part is
discarded, and the encoder can be used to map the input data to a
lower dimensional latent space. Hence, AEs can be used as an effective
means of dimensionality reduction for industrial process data (Zhu
et al., 2021a). A suitable regression algorithm can then be used to
map the latent space to the output space to make accurate predictions.
More advanced variants of the conventional AE such as the SAE (Yuan
et al., 2020d), variational autoencoder (VAE) (Zhu et al., 2021a), and
the recurrent Kalman VAE (Zhang et al., 2020) have also been widely
employed in soft sensor applications to address the shortcomings of the
traditional AE. VAEs are based on a probabilistic framework compared
to the deterministic AE algorithm. They encode the inputs as distribu-
tions instead of points, resulting in better feature extraction. The ability
of VAEs to reduce the original input space to a multivariate Gaussian
distribution has been effective in reducing the misdetection of process
faults, and hence they have widely been used in soft sensors constructed
for process monitoring and process fault detection applications (Cheng
et al., 2019; Lee et al., 2019; Zhang et al., 2019a).

A deep-belief network (DBN) is another deep learning algorithm
based on unsupervised learning. It is a multi-layer neural network con-
structed by stacking multiple individual restricted Boltzmann machines
(RBMs). Each RBM can extract nonlinear features from the data through
an unsupervised learning approach (Liu et al., 2018). After this initial
unsupervised learning phase, a supervised learning stage can be imple-
mented to map the extracted features to the output data. A Kohonen
map or a Self-Organizing Map (SOM) is another type of ANN that
deals with unsupervised learning problems. An SOM maps the input
space to a lower dimensional space, called the ‘map’ while maintaining
the underlying structure of the input space. Hence SOMs can be used
as an effective dimensional reduction technique for high-dimensional
industrial process data (Ramachandran et al., 2019).

It should be noted that the classes of ANN algorithms are not limited
to the ones discussed in this section. Only the main classes of ANN
algorithms used in soft sensor applications were discussed, and different
extensions, as well as combinations of these algorithms, can be used for
constructing powerful soft sensing solutions.

3.3. Fuzzy Inference Systems (FIS) and neuro-Fuzzy Systems (NFS)

An FIS is a knowledge-based system that involves human-like rea-
soning. Fuzzy inferencing is based on a rule base that includes a set
of IF-THEN type of rules (Deb, 2011). The ability of the FIS to repre-
sent complex processes has contributed to its wide use in soft sensor
applications in advanced industrial processes. Although the concept of
fuzzy logic-based soft sensors is not new, the most common classes of
fuzzy logic-based models are discussed in brief as they are still used in
soft sensor construction. Further details on the theory and applications
of fuzzy sets and fuzzy logic can be found in the literature (Abeykoon,

2014a, 2016a; Klir and Yuan, 1995).
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Mamdani and Takagi–Sugeno (T–S) are the most common classes
of FISs. Pani and Mohanta (2016) compared these two models with
conventional neural networks to be used for a soft sensor for pre-
dicting eight quality parameters of a cement clinker. The T–S model
showed the best performance and both T–S and Mamdani models have
exhibited better performance compared to backpropagation and RBF
neural network models in terms of generalization ability as well as
computational complexity. Angelov et al. (2008) reported a soft sensor
with an evolving Takagi–Sugeno (eTS) model, which can detect data
drifts and update its structure and parameters accordingly, to account
for those changes.

An NFS is a hybrid intelligent model which combines the low-
level learning ability of neural networks and the high-level, human-like
reasoning ability of fuzzy logic systems (Wang, 1999). The evolving ver-
sions of NFSs are suitable for process industries as they can capture the
dynamic behavior of the processes and the soft sensors based on such
models may adapt to varying process conditions easily by changing
their structure (Kadlec et al., 2009). Wu et al. (2009) developed a soft
sensor based on a fuzzy neural network (FNN) and its parameters were
optimized using a particle swarm optimization (PSO) algorithm. This
soft sensor was trained using real data from a cement factory to model
the raw material blending process. An adaptive neuro-fuzzy inference
system (ANFIS) based soft sensor was proposed for estimating the top
and bottom compositions in a benzene toluene distillation column of
an oil refinery (Jalee and Aparna, 2016). The ANFIS model was used
due to its ability to capture process nonlinearities and adapt to varying
process conditions. In another study, an ANFIS model was adopted for
estimating the fineness of cement in a cement grinding process (Pani
and Mohanta, 2014). The ANFIS model showed superior performance
compared to traditional SVR, Mamdani and, T–S models.

The FISs as well as the more advanced NFSs have shown excellent
predictive performance while adapting to data drifts in many soft
sensor applications. These models have also outperformed traditional
algorithms in many cases, and hence, the fuzzy logic-based models are
still used in soft sensor construction and process control applications in
process industries.

3.4. Evolutionary algorithms

Evolutionary algorithms are a class of algorithms that mimic the ge-
netic improvements of human beings or the natural behavior of animals
(Deb, 2011). Although there are a variety of evolutionary algorithms,
all of them are based on the concept that, when the individuals of a
population compete for a limited amount of resources, only the fittest
individuals in the population survive. This concept can be applied
to an optimization problem, where an objective function needs to be
maximized or minimized. Generally, in soft sensor design, evolutionary
algorithms are used for training and hyperparameter tuning of soft
sensor models (Jiang et al., 2012).

Earlier soft sensor applications employed popular traditional evo-
lutionary algorithms such as genetic algorithm (GA), PSO, ant colony
optimization (ACO), and differential evolution (DE) (Chen and Yu,
2005; Lahiri and Khalfe, 2009; Li and Liu, 2011; Shakil et al., 2009).
However, later studies reported several novel evolutionary algorithms
for soft sensor design. Wang and Chen (2017) used an immune evo-
lutionary algorithm (IEA) for optimizing the parameters of a least
squares SVM (LS-SVM) based soft sensor for predicting the burning
zone temperature of a rotary kiln. The cuckoo optimization algorithm
(COA) is another novel evolutionary algorithm inspired by the cuckoo’s
strategy of survival. Behnasr and Jazayeri-Rad (2015) employed the
COA for optimizing the hyperparameters of a soft sensor based on
an iteratively weighted least squares SVR model for predicting the
butane content in a debutanizer column of an oil refinery. The authors
claimed that the COA algorithm showed faster convergence and had
the ability to achieve a better global minimum compared to other

evolutionary algorithms. The Fruit-fly optimization algorithm (FOA)
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is a novel swarm intelligence algorithm developed based on the food-
finding behavior of the fruit-fly swarm. Wang and Liu (2015) developed
an adaptive extension of the FOA, called the adaptive mutation FOA
(AM-FOA), and used it to optimize an LS-SVM based soft sensor model
for predicting the MFI in a propylene polymerization process. The AM-
FOA can escape the local minima during the optimization process,
which is a possible problematic issue associated with the FOA. Beetle
Antennae Search (BAS) algorithm is another evolutionary algorithm
inspired by the searching behavior of longhorn beetles. Gao et al.
(2020b) used the BAS algorithm to optimize an Elman neural network
incorporated in a soft sensor for predicting the conversion rate of the
vinyl chloride monomer.

The evolutionary algorithms discussed in this section are some of
the most commonly used algorithms in soft sensor design. Other evo-
lutionary algorithms as well as extensions of the discussed algorithms
may also be used in constructing powerful soft sensing solutions.

It is obvious that the availability of a wide range of intelligent
algorithms has provided soft sensor designers with the flexibility to
choose the most suitable algorithm/s for a given application. Also,
the reported works suggest that these intelligent AI-based algorithms
have led to the development of soft sensors with superior performance
which was not possible with traditional machine learning algorithms.
The following section investigates in more detail, how the soft sensors
based on these powerful AI-based algorithms can contribute toward the
sustainable development of process industries.

4. The role of AI-driven soft sensors toward sustainable develop-
ment

The Brundtland Report (World Commission on Environment and
Development (WCED), 1987) introduced in 1987 defines sustainable
development as the ‘‘development that meets the needs of the present
without compromising the ability of future generations to meet their
own needs’’. The concept of sustainable development derives from
the triple bottom line concept (Elkington, 1994, 1999, 2018, 2019),
which aims to achieve a balance among the three pillars of sustainabil-
ity: namely environmental, social, and economic sustainability (Klarin,
2018). Process industries aim to achieve this goal through the im-
plementation of various sustainable manufacturing strategies. Rashid
et al. (2008) identified, compared, and contrasted four primary sus-
tainable manufacturing strategies available in the literature, namely:
waste minimization, material efficiency, resource efficiency, and eco-
efficiency. Waste minimization refers to the reduction and prevention
of waste generation, reduction of the hazardousness of the waste, and
encouragement of reuse, recycling, and recovery. Material efficiency
is closely related to the concept of dematerialization, which is the
reduction of the quantity of material used to achieve a functional
performance. Resource efficiency refers to the efficiency with which
energy and materials are used throughout the economy. Eco-efficiency
aims to prevent waste generation, improve resource efficiency, and
improve the quality of life, while ensuring minimal impact on the
environment, without exceeding the Earth’s limits. Here, waste mini-
mization and material efficiency are simpler strategies that are easier
to implement and measure, but they have a very limited scope. On the
other hand, resource efficiency and eco-efficiency are more complex
strategies, where eco-efficiency is the broadest of the four strategies,
hence more difficult to implement and measure. Different industries
may implement different strategies based on their preference and poli-
cies. The implementation of soft sensors in the process industry may
contribute to one or more of these sustainable manufacturing strategies,
depending on which strategy is implemented in a given industry. The
following example can be used to further elaborate on this. The spent
catalyst of the fluid catalytic cracking unit (FCCU) constitutes a large
proportion of the non-hazardous waste generated in an oil refinery
(González, 2015). Soft sensors can be used to predict the catalyst
saturation levels in real-time, and these predictions can then be used
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to optimize the use of the catalyst within the FCCU. This results in
a higher product yield with less catalyst consumption, which in turn
improves the efficiency of the material usage while minimizing waste
generation. Hence, in this case, the soft sensor contributes to waste
minimization, material efficiency, or eco-efficiency strategy, depending
on which of these sustainable manufacturing strategies is implemented
by the industry. This can result in an overlapping of the different
strategies, but ultimately, they all lead toward the common goal of
sustainable development.

This section looks at how the use of AI-based techniques in soft sen-
sor development contributes toward these different sustainable manu-
facturing strategies to achieve the ultimate goal of sustainable develop-
ment. A key issue in industrial polymer extrusion processes is used as a
case study to explain how state-of-the-art AI-based modeling techniques
can be used to overcome the limitations in traditional data-driven soft
sensors, to contribute toward sustainable manufacturing strategies.

In polymer extrusion, melt temperature is considered a key indicator
of melt quality. Past studies have revealed that the melt temperature
is not homogeneous across the melt flow and that a radial melt tem-
perature profile exists at the extruder discharge (i.e., at the die entry).
The thermal homogeneity (indicated by the degree of flatness of the
radial melt temperature profile) is significantly affected by the process
settings such as screw speed and barrel set temperatures (Kelly et al.,
2005, 2006, 2008). It has been shown that operating the extruder at
high screw speeds leads to poor thermal homogeneity (i.e., temperature
variations across the melt flow increases), while low screw speeds result
in better thermal homogeneity (i.e., a flatter radial melt temperature
profile). However, the specific energy consumption of single and twin-
screw extruders was found to decrease with increasing screw speed
(Abeykoon et al., 2020). This shows that there is an opposing behavior
between the melt thermal stability and the specific energy consumption
of the extruder, with the screw speed. Operating the extruder at the
optimum operating point would enable the right balance between the
melt thermal stability and the extruder-specific energy consumption to
be maintained. However, this requires precise control of the extrusion
process in real-time. To achieve this, it should be possible to monitor
the radial melt temperature profile in real-time. However, the existing
hardware sensors employed in the polymer processing industry suffer
from limitations such as the inability to detect temperature variations
across the melt flow, limited durability, and disturbances to the melt
flow (Abeykoon et al., 2012; Bur et al., 2001; Kelly et al., 2008).
Consequently, industrial polymer extrusion processes are carried out
at less-than-optimal operating conditions. This results in inefficient uti-
lization of energy, which is not sustainable. Significant energy savings
could be achieved if the extrusion process is optimized. In the absence
of suitable hardware sensing techniques, inferential approaches would
be a better alternative for monitoring the melt temperature profile in
real-time.

As a step toward this, Abeykoon et al. (2011) proposed a static
nonlinear polynomial model optimized using a fast recursive algorithm
(FRA), for monitoring the melt temperature profile in a single screw
extrusion process. This model was then used to optimize the process set-
tings (i.e., screw speed and barrel set temperatures) of the extruder. It
was reported that melt temperature variations were reduced by 3.1%–
60.9% while achieving the desired average melt temperature over
10 different process conditions. Later, Abeykoon (2014b) developed
a dynamic soft sensor to predict the radial melt temperature profile
based on a nonlinear polynomial model optimized with the FRA. This
soft sensor reported good accuracy with normalized prediction error
(NPE) values in the range of 1.33–2.89 for each radial position of the
temperature profile. It was subsequently incorporated into a process
control strategy to optimize the extruder process settings such that melt
temperature variations are minimized (Abeykoon, 2014a). To the best
of the knowledge of the authors, no other studies have been reported
in the literature for the real-time prediction of the melt temperature
profile using soft sensors. Although these models can make real-time
8

melt temperature profile predictions, their prediction accuracy is not
sufficient for an industrial setting. Furthermore, these soft sensors have
only been tested on a single material processed with a single screw type.
In industrial polymer extrusion processes, a wide range of polymeric
materials are processed using different screw geometries. Hence, it is
crucial that the soft sensor can make accurate predictions under these
varying process conditions.

To optimize extrusion processes, robust soft sensors with a high
degree of precision are required, and it is clear that the existing soft
sensors fail to meet these requirements. These soft sensors were based
on traditional data-driven modeling techniques, and no attempt has
been made to address the existing limitations using state-of-the-art
AI algorithms. Extrusion processes are highly dynamic in nature, and
hence, advanced deep learning algorithms such as RNNs and their
extensions, transformers, and CNNs (discussed in Section 3.2) could
be used to effectively extract temporal and spatial features in the
extrusion data. The soft sensors developed by Abeykoon et al. (2011)
and Abeykoon (2014b) used five input process parameters (i.e., screw
speed and four barrel set temperatures) to predict the melt temperature
profile, and this constitutes a high dimensional input space. Unsuper-
vised learning techniques such as the AE and its extensions discussed in
Section 3 could be useful in reducing the dimensions and collinearity
to enhance the predictive performance of the soft sensor. Moreover,
adaptation mechanisms based on the latest AI-driven techniques should
be useful in making the soft sensor adaptive to different polymeric
materials and screw types. The existing AI algorithms can further be
modified (as will be evident by some of the applications discussed in
Section 5) to improve the computational efficiency of the soft sensor as
well. The enhanced prediction accuracy and computational efficiency
will ensure accurate monitoring of the radial melt temperature profile
in real-time. This would enable real-time quality control strategies to be
implemented to optimize the extrusion process parameters to improve
melt thermal stability while reducing the specific energy consumption
of the extruder. The reduction in the specific energy consumption of
the extruder would contribute to the resource efficiency strategy or the
eco-efficiency strategy, depending on which sustainable manufacturing
strategy is implemented in the industry.

Similar to the case study discussed, soft sensor applications in other
process industries can also contribute toward sustainable development
through different sustainable manufacturing strategies. A few examples
are discussed here. Soft sensors can be used for predicting melt vis-
cosity, which is another key quality indicator in extrusion processes
(Deng et al., 2014; Liu et al., 2012; McAfee and Thompson, 2007).
These soft sensors can aid in reducing the production of low-quality
products by optimizing the extrusion process, preventing the generation
of waste products. The use of soft sensors for estimating the H2S
concentration in real-time has enabled oil refineries to continuously
monitor and maintain the emissions within the desired limits, and this
has a direct impact on environmental sustainability. In the pulp paper
industry, soft sensors can be designed to monitor the AOX content
in the bleaching wastewater, which contains carcinogenic compounds
(Ma et al., 2020). The use of soft sensors for predicting the chemical
oxygen demand (COD) in the pulp paper industry enables achieving a
good degree of washing of paper with less amount of chemicals leading
to economic gains and material efficiency (Soares et al., 2011). Soft
sensors used in thermal power plants and wastewater treatment plants
play a significant role in reducing harmful emissions and improving
effluent quality (Fernandez de Canete et al., 2021; Sun et al., 2019).

Fig. 3 illustrates the contribution of different soft sensor applications
toward sustainable manufacturing strategies. However, the limitations
in traditional data-driven modeling techniques hinder the potential of
soft sensors in successfully implementing these strategies. Here, the
key is to improve the prediction accuracy and the computational effi-
ciency of these soft sensors by addressing the limitations of traditional
modeling techniques. The latest AI-based algorithms have enabled soft
sensors to gain excellent prediction accuracy and computational effi-

ciency compared to traditional statistical and machine learning-based
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Fig. 3. The contribution of different soft sensor applications toward sustainable manufacturing strategies.
Fig. 4. The role of AI-driven modeling toward sustainable development of process industries.
odels. This enables more effective process monitoring and control to
e carried out resulting in less material and energy wastage, reduced
missions, and so forth. This paves the path toward achieving the
ltimate goal of sustainable development (see Fig. 4). The following
ection provides a critical review of the effectiveness of state-of-the-art
I-based modeling techniques in overcoming the limitations associated
ith traditional data-driven soft sensors to improve prediction accuracy
nd computational efficiency of soft sensors.
9

5. AI-driven soft sensor applications in process industries

This section provides a critical review of the state-of-the-art AI-
based solutions reported in the literature, for addressing some of the
common challenges faced by soft sensor designers when constructing
soft sensors for the process industry. As explained in Section 1.1,
different classes of problems (i.e., missing data, varying sampling rates,
small datasets, dimensionality reduction, adapting to varying process
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conditions, extracting temporal and spatial features, and model inter-
pretability) are identified and the latest AI-based solutions used to
tackle these problems are discussed. Although the focus is only limited
to soft sensing solutions from three process industries (i.e., polymer
processing, petroleum refining, and pharmaceutical), the problems and
solutions discussed here are applicable to other process industries as
well.

5.1. Missing data, varying sampling rates, and small datasets

Missing data is a common challenge faced by soft sensor designers.
This is mainly caused by frequent hardware sensor failures. For exam-
ple, in the polymer processing industry, harsh conditions in polymer-
ization reactors can cause hardware sensors to malfunction frequently.
Traditionally, this issue was addressed through simple solutions such
as removing data points that contained missing values or replacing the
missing values with the mean values of the affected variables. However,
these techniques were not regarded as optimal solutions as they could
affect the model performance. (Kadlec et al., 2009). For example,
removing data points with missing values could reduce the number of
usable data points for training a soft sensor model, and risk the loss of
valuable dynamic information. As a solution to this problem, Xie et al.
(2020b) presented a novel approach based on deep variational AEs
(DVAEs). Two sub-models based on DVAEs were constructed. The first
sub-model which is a supervised DVAE (SDVAE) learns the distribution
information of the latent features, and this is followed by the second
sub-model which is a modified unsupervised DVAE (MUDVAE). The soft
sensor was constructed by combining the encoder of the SDVAE with
the decoder of the MUDVAE. The performance of the soft sensor was
assessed on a simulated dataset with three levels of missing data: light,
medium, and heavy. The proposed model surpassed three conventional
missing data imputation methods (i.e., deletion, mean imputation, and
PCA imputation) for all three levels of missing data. It is the superior
data reconstruction ability of this novel extension of the AE, which
benefits from both supervised and unsupervised learning methods, that
was able to provide a viable solution to the missing data problem
compared to the traditional methods.

Varying sampling rates are another common issue in soft sensor
construction. In industrial polymerization processes, the MFI of the
polymer product is measured offline every several hours, while process
variables such as temperature and pressure can be measured online
every few seconds. In bioprocesses also, the quality variables have a
lower sampling rate than the input variables due to the slow speed of
the process. Consequently, out of all the collected data, the amount of
labeled data (i.e., contains both input and output data) represents only
a small proportion, while most of the data is unlabeled (i.e., contains
only the input data). Traditional soft sensors based on supervised
learning algorithms utilize only the labeled data, and they fail to
extract the information hidden in the unlabeled data. As a result, useful
information hidden in the unlabeled data is discarded without being
utilized, and this could adversely affect the predictive performance of
the soft sensor. Additionally, this results in a smaller dataset for training
the model.

Most of the AI-based solutions proposed to address this issue are
based on semi-supervised learning techniques designed to extract fea-
tures from unlabeled data in addition to labeled data. Liu et al. (2018)
constructed a semi-supervised soft sensor based on an ensemble deep
kernel learning model. The modeling framework incorporates a DBN
to extract useful information from unlabeled data through an unsu-
pervised learning stage. This stage is then followed by a supervised
learning stage, which utilizes a regression model based on a kernel
learning strategy to map the extracted features to the output variable.
The proposed soft sensor achieved a root mean square error (RMSE)
of 2.74, outperforming soft sensors based on SVR, PLS, and single
DBN models. Yuan et al. (2020b) proposed a pre-training strategy

based on a semi-supervised stacked autoencoder (SS-SAE). Soft sensors
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developed according to the proposed methodology were employed to
predict the final boiling point of aviation kerosene in a hydrocracking
process and the butane concentration at the bottom of a debutanizer
column. The performance of these soft sensors was compared against
soft sensors based on ANN, DBN, and basic SAE models. The ANN
model does not incorporate a pre-training strategy, hence showed the
worst performance compared to the other models. The DBN and basic
SAE models incorporate only an unsupervised pre-training strategy,
while the SS-SAE model incorporates a semi-supervised pre-training
strategy and consequently, the SS-SAE model outperformed the other
models. Gopakumar et al. (2018) used an SOM to extract features from
unlabeled data, during an unsupervised pre-training phase. This was
followed by a supervised learning phase using the backpropagation
algorithm. The soft sensor was tested on streptokinase and penicillin
fermentation processes. In terms of the RMSE, the soft sensor clearly
outperformed traditional SVR and deep neural network models trained
with supervised learning techniques only. It is clear that the semi-
supervised learning strategies based on DBN, SAE, and SOM algorithms
employed in these soft sensors were capable of extracting useful in-
formation from the unlabeled data in addition to the labeled data,
resulting in superior performance compared to traditional supervised
learning techniques.

To address the problem of small datasets, techniques such as boot-
strap aggregation and noise injection were used traditionally (Di Bella
et al., 2007; Fortuna et al., 2009; Noor and Ahmad, 2011). Moreover,
techniques such as the SVR have also been quite useful in training small
datasets (Kadlec et al., 2009). Although these traditional techniques
were able to improve the predictive performance of soft sensors trained
with small datasets, researchers have investigated better approaches
to further improve their accuracy. In an attempt to address this issue,
Zhu et al. (2021c) introduced a novel virtual sample generation (VSG)
technique to increase the size of small datasets. A conditional GAN
(CGAN), which is an improved conditional version of the traditional
GAN was proposed under this technique. The performance of the
proposed soft sensor was evaluated on a dataset from a high-density
polyethylene (HDPE) polymerization process and compared with three
other conventional VSG methods: bootstrap, mega-trend diffusion, and
tree-based trend diffusion. The CGAN soft sensor showed the lowest
RMSE value (0.4995) among all the VSG methods, indicating its su-
periority over the traditional methods. The CGAN searches for the
sparse areas of the provided small dataset and generates new virtual
data points in the sparse areas. This expands the dataset leading to
better-quality data. In another study, Chou et al. (2020) proposed a
sequence-to-sequence neural network model based on GRUs to handle
the problem of small datasets. The encoder of the model predicts the
future dynamics of the process variables. The trained encoder was then
used to train the decoder using the limited amount of data related to
the distillate impurity and the bottom product impurity of a distillation
column of an oil refinery. The proposed soft sensor outperformed a
conventional ANN in terms of prediction accuracy.

5.2. Dimensionality reduction

Data collinearity is another challenge in designing soft sensors for
the process industry (Kadlec et al., 2009). Data collinearity results in
redundant variables and this could unnecessarily increase the com-
plexity of the soft sensor model. This in turn could negatively affect
the performance of the soft sensor. Hence, dimensionality reduction
techniques are usually incorporated to eliminate redundant variables.
Traditionally, this has been achieved using algorithms such as PCA
and PLS, which transform the original high-dimensional input space,
into a low-dimensional latent space with less collinearity (Warne et al.,
2004). However, the latest studies have introduced AI-based solutions
to reduce the input space dimensions while extracting important fea-
tures into a latent space. Soft sensors developed for the debutanizer
column in oil refineries have largely benefited from these dimensional-
ity reduction techniques. Generally, seven input process variables are
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used to predict the butane content in debutanizer columns (Siddharth
et al., 2019), and this results in a high-dimensional input space. The
latest AI-based solutions have mostly been based on AEs and in most
cases, the conventional AE algorithm has been modified using different
strategies to improve its ability to extract important features. Some of
these strategies are discussed here with their impact on the predictive
performance of the soft sensors.

The standard AE uses an unsupervised learning technique that tries
to minimize the reconstruction input error. Hence, it can learn features
that are a good representation of the raw input data, but it does not
guarantee that the learned features are quality relevant. To address
this problem, a stacked quality-driven autoencoder (SQAE) network
was proposed by Yuan et al. (2020e). During the pretraining stage
of the SQAE, in each layer high-level features are learned from the
adjacent low-level features, subject to the additional constraint that
the learned features can predict the quality variables accurately. The
learned features can then be used in a regression model to predict
the quality variable. A hybrid variable-wise weighted SAE (HVW-SAE)
is another technique reported in the literature for extracting features
from the input space that are more relevant to the quality parameter
to be predicted (Yuan et al., 2020a). Pearson and Spearman correlation
coefficients were used to calculate the linear and nonlinear correlations
respectively, between each input variable and the quality variable.
Then the two coefficients were combined to create a hybrid coefficient,
which was subsequently used to construct a weighted reconstruction
objective function for each AE. This approach enabled the SAE to
extract both linear and nonlinear features that are more relevant to the
quality parameter to be predicted while minimizing the information
loss at each AE. Yuan et al. (2020d) proposed a stacked isomorphic
autoencoder (SIAE) based soft sensor for predicting the tail gas com-
position in a sulfur recovery unit (SRU). In the traditional SAE, the
reconstruction error accumulates from the lower layers to the higher
layers. Unlike the SAE, at each layer, the SIAE extracts features from
the previous layer and attempts to reconstruct the original raw input
data as accurately as possible. This ensures that the information loss is
not accumulated from one layer to the next, leading to a better latent
representation of the original raw data.

Another limitation of the standard AE is that it ignores the intrinsic
data structure information in the process data. Recent studies have
introduced more advanced variants of SAEs to address this limitations
with the aim of further enhancing the feature extraction and dimen-
sional reduction capability. Motivated by the concept of neighborhood
preserving embedding in manifold learning, Liu et al. (2021d) proposed
a stacked neighborhood preserving autoencoder (S-NPAE). This study
utilized neighborhood preserving embedding regularization to enable
the AE to learn neighborhood-preserving features in the process data.
Unlike the conventional SAE which neglects the neighboring data
structure during feature extraction, the proposed S-NPAE improves
the generalization performance by preserving the local neighborhood
structure of the process data while minimizing the reconstruction er-
ror. In another study, Liu et al. (2021b) introduced a spatiotemporal
neighborhood preserving SAE (STNP-SAE), which not only captures
the spatial neighborhood structure information, but also the temporal
neighborhood structures. This is achieved by constructing spatial and
temporal adjacent graphs. This novel algorithm was incorporated into
a soft sensor for predicting the initial and final distillation temperatures
of heavy naphtha in a hydrocracking process, and the soft sensor
reported respective RMSE values of 0.0698 and 0.1179, outperforming
the conventional SAE.

Gao et al. (2021) proposed a teacher student stacked sparse recur-
rent AE (TS-SSRAE) model for constructing a soft sensor for predicting
the penicillin concentration in a penicillin fermentation process. An
LSTM network was used for constructing the AE in order to extract
the autocorrelation and cross-correlation characteristics of the process
variables. A stacked version of this AE was proposed in order to extract
the features more effectively. Sparsity was introduced to the model with
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the aim of discarding redundant information and retaining the more im-
portant ones. This SSRAE model which was termed the ‘teacher’ model
was trained first, and then the hidden layer information of this model
was transferred to a simpler two-layer network which was termed the
‘student’ model. A knowledge distillation compression framework was
used to achieve the transfer. Finally, an output layer was added after
the hidden layer of the trained student model and its parameters were
fine-tuned. This soft sensor showed excellent predictive performance
with an RMSE of 0.032 surpassing SAE, SSAE, and a teacher student
stacked recurrent autoencoder (TS-SRAE).

The modifications to the traditional AE algorithm discussed here
such as the SQAE, HVW-SAE, and SIAE ensure that only the features
which are relevant to the quality parameter to be predicted are ex-
tracted while minimizing the reconstruction error. Moreover, S-NPAE,
STNP-SAE, and TS-SSRAE models ensure that both spatial and temporal
characteristics of process data are also considered when constructing
the latent space. Hence, these models have proven to be better in
performance compared to the standard AE.

In another study, a different technique based on a DBN has been
attempted to reduce the input space dimensions (Graziani and Xibilia,
2019). First, a set of input regressors were chosen through a cross-
correlation analysis, which was then used as the input features for the
unsupervised phase of DBN training. Next, a set of latent features were
extracted from the DBNs. Furthermore, the authors proposed a method
for estimating the measurement delay, which involved performing a
cross-correlation between the extracted latent features and the plant
output. Finally, fine-tuning of the DBNs was carried out after selecting
the target plant output values based on the estimated measurement
delay.

In the work by Hikosaka et al. (2020), the authors proposed a novel
feature and dynamics selection method for designing soft sensors. The
GA-based process variables and dynamics selection (GAVDS) method
introduced in the study attempts to identify both the important process
variables as well as their time delays simultaneously. The GAVDS is
an extension of the GA-based variable selection combined with PLS.
The authors extended the GAVDS to an ensemble GAVDS (EGAVDS),
which attempts to minimize the uncertainty caused by using a single
dataset in GAVDS, by splitting the training data into several subsets and
then determining the variables and time delays from these subsets. The
proposed method was used in predicting the tail gas composition in an
SRU as well as the butane content in the bottom flow of a debutanizer
column. Here, the use of an evolutionary algorithm was the key to
selecting the most relevant process variables and their time delays, and
this has resulted in a soft sensor with enhanced performance, surpassing
a conventional PLS model.

5.3. Adapting to varying process conditions

After the implementation of a soft sensor in the process industry,
its performance can deteriorate during long-term use, due to drifts in
the process data. These drifts can occur due to internal or external
changes in the process operating conditions. Performance deterioration
due to changes in external environmental conditions such as weather
or seasonal variations is a critical issue in certain industries such as
oil refineries (Zhang et al., 2019b) and these variations cannot be
predicted at the soft sensor design stage. Historical data used to train
soft sensors do not represent all possible future states and consequently,
the soft sensor performance deteriorates as data drifts occur. Once the
performance reaches an unacceptable level, the soft sensor needs to be
re-trained or re-developed from scratch. A solution to this is provided
by equipping the soft sensor with adaptive capabilities. Such sensors
are known as adaptive soft sensors.

Kadlec et al. (2011) reviewed the commonly used traditional adap-
tive mechanisms for soft sensors. The authors categorized these adap-
tation mechanisms into three categories: moving window-based, recur-
sive, and ensemble-based methods. Traditional adaptive soft sensors
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were mostly based on PCA and PLS algorithms as they can easily
be combined with window-based and recursive adaptation techniques.
Consequently, the Recursive PCA, Moving Window PCA, Recursive PLS,
and Moving Window PLS algorithms have been quite popular among
soft sensor designers (He and Yang, 2008; Liu et al., 2010; Qin et al.,
1999; Wang et al., 2003). Recursive techniques update related models
by adding new samples without discarding the old ones resulting in
an increasing dataset. This offers efficient computation but at the
expense of the speed of adaptation. On the other hand, moving window-
based techniques create a new process model by adding the newest
sample while discarding the oldest one. It provides a constant speed of
adaptation. With small window sizes, increased speeds of computation
can be achieved, but the temporal variations in process data may not be
effectively captured. To overcome these limitations, researchers have
investigated more advanced algorithms based on AI techniques.

In recent studies, local models based on a Just-In-Time Learning
(JITL) strategy, have widely been used over global models for devel-
oping adaptive soft sensors, due to the inability of the global models
to adapt to varying process conditions. Liu et al. (2020) proposed a
JITL framework with local models for developing a soft sensor. In the
proposed framework, a local dataset is selected from the feature space,
by evaluating the similarity of an incoming query sample to that of
each historical sample in the database. The Euclidean distance was
used to measure the similarity. Then, a nonlinear local model training
algorithm called nonlinear Bayesian weighted regression (NBWR) was
used to construct a local model to map the selected local dataset to
the output space. One of the benefits of using the NBWR approach is
that it develops probabilistic local models that can handle uncertainties,
unlike deterministic models. The proposed soft sensor was employed to
predict the butane content at the bottom of the debutanizer column of
an oil refinery. As the JITL strategy ensures that the closest samples to
the query sample are selected from the historical dataset, the sensor can
effectively adapt to varying process conditions. It reported an RMSE
of 0.0405 on an unseen dataset, showing superior performance than
soft sensors based on global models including PLS, least squares SVR,
Deep ELM, and a few other machine learning algorithms. In another
study, Zheng et al. (2021) introduced a Mahalanobis distance-based
JITL soft sensing solution, to solve the multiphase issue of the penicillin
fermentation process. Three operating phases can be identified in the
penicillin fermentation process, which can cause global soft sensor
models to perform poorly. A multiway Mahalanobis distance-based
metric learning was introduced as the similarity measurement method
in this JITL-based local modeling approach. The proposed solution
allows data samples from different operating phases to be identified
without an additional phase identification step. Based on the similarity
measurements, the most relevant data from the historical dataset is
selected for creating a local LSTM model to predict the penicillin
concentration.

The use of an appropriate similarity measurement technique is
another important aspect of JITL model construction. Distance-based
metrics such as the Euclidean distance and Mahalanobis distance have
widely been used in the reported literature (Liu et al., 2020; Shen
et al., 2020; Zheng et al., 2021). Guo et al. (2020b) claimed that
traditional deterministic similarity measurement techniques such as
distance-based, angle-based, and correlation-based techniques, do not
consider the uncertainties in the query samples of JITL models. Hence,
Kullback–Leibler (KL) divergence and symmetric KL divergence meth-
ods were proposed by Guo et al. (2020a,b), to measure the similarity
between the historical samples and the query sample.

Transfer learning is another effective adaptation technique that can
be used to share useful information extracted from data belonging to
one operating mode with other operating modes that have limited data.
Due to the advancements in deep learning, transfer learning-based tech-
niques are increasingly being used in developing adaptive soft sensors
for the process industry (Curreri et al., 2021). In the polymer processing
industry, grade changeovers take place frequently which shifts the
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process from one operating mode to another. Soft sensors are generally
trained on data gathered under a single operating mode and they fail
to perform with the same level of accuracy when the operating mode
is shifted. As a solution to this problem, Liu et al. (2019) proposed a
domain adaptive transfer learning soft sensor. The authors employed a
domain adaptation ELM (DAELM) as a transfer learning method and the
soft sensor was evaluated on three different grades. The performance
of the DAELM approach was found to be superior to that of a regular-
ized ELM (RELM) model, in terms of the relative prediction error. In
another study, Zhu et al. (2021d) developed a transfer learning-based
adaptive soft sensor to predict the Pichia pastoris cell concentration
in a fermentation process with multiple operating conditions. The
authors compared three different transfer learning methods: transfer
component analysis, joint distributed adaptation (JDA), and balanced
distributed adaptation (BDA). The difference in the three methods is
related to how the marginal and conditional probability distribution
between the source and target domains are adapted. As JDA and
BDA are applied to classification problems, the authors introduced an
improved JDA, and an improved BDA (IBDA) integrated with fuzzy sets
to make them suitable for the regression problem under consideration.
The three transfer learning methods were combined with a RELM.
Out of the three transfer learning methods, the IBDA showed the best
predictive performance.

In addition to the widely used JITL and transfer learning-based
adaptation techniques, a few other novel approaches reported in the
literature are discussed here. Liu et al. (2021c) introduced a novel
adaptive soft sensor based on a stacked multi-manifold autoencoder (S-
MMAE) to estimate the final distillation temperature of heavy naphtha
and aviation kerosene in a hydrocracking process of an oil refinery.
This novel soft sensor was capable of extracting features within each
operating condition (i.e., manifold) as well as the interconnections
among different operating conditions. This was achieved by combining
a within-manifold adjacent graph and a between-manifold adjacent
graph to construct a multi-manifold regularization method, which was
in turn used to train an SAE at the pre-training stage. The effectiveness
of the proposed soft sensor was evaluated by comparing its performance
against ANN, SAE, and Laplacian regularization AE (LAE) models. The
soft sensor outperformed all the other models with RMSE values of
0.0721 and 0.0626 for predicting the distillation temperature of heavy
naphtha and aviation kerosene respectively.

Sun et al. (2020) developed an adaptive soft sensor based on an out-
put recursive wavelet neural network (ORWNN) and Gaussian process
regression (GPR) to predict the total sugar content in a chlortetracycline
fermentation process. This adaptive soft sensor was based on an online
learning technique, where a cumulative update training method was
used to update the historical dataset with new input and output data,
each time a prediction is made. The GPR model could make accurate
predictions during the early stages of online learning where only a
small amount of data was available for training, while the ORWNN
improved the accuracy as the training data accumulated. Hence, the
ORWNN-GPR model exhibited good predictive performance at both the
initial and latter stages of online learning, compared to the individual
models.

5.4. Extracting temporal and spatial features

Industrial processes are highly time-dependent in nature. Tradi-
tional static models such as SVR and PLS cannot extract useful dynamic
information from the process data. Hence, as discussed in Section 3.2,
dynamic neural network models such as RNNs and their variants have
widely been used in the most recent AI-based soft sensing solutions,
to extract temporal features in the process data effectively. Similarly,
CNNs have been employed to extract both temporal and spatial fea-
tures. Recent studies have attempted to modify the structure of some of
these dynamic neural networks to further enhance their performance by
addressing their shortcomings or limitations. For example, a GRU was
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modified by developing a two-stream 𝜆 GRU algorithm to overcome
the issue of the linear coupling constraint that exists in the basic GRU
algorithm (Xie et al., 2020a). The modified algorithm outperformed
soft sensors based on SVR, PLS, SAE, and LSTM algorithms. He et al.
(2020b) used singular value decomposition (SVD) to calculate the
weights between the reserve and output layers to tackle the collinearity
issue in the outputs of the reserve layer of the basic ESN algorithm.
In another study, an Orthogonal ESN (OESN) was developed to elim-
inate the issue of collinearity, and the parameters of this model were
optimized using an improved DE algorithm (Zhang et al., 2021).

Zhu et al. (2021b) used a bidirectional LSTM (BiLSTM) instead
of the traditional unidirectional LSTM, to better exploit the dynamic
information in the process data by processing the data in both for-
ward and backward directions. Furthermore, the authors modified the
LSTM structure by replacing the forget gates and the output gates
with converted input gates, and the resulting model was named a
converted gates LSTM (CG-LSTM). This modification was introduced to
reduce the computational complexity of the traditional LSTM model.
An eXtreme Gradient Boosting (Xgboost) algorithm was implemented
for input variable selection and the selected input variables were fed to
the Bidirectional CG-LSTM (BiCG-LSTM) model. A Self-attention (SEA)
strategy was also introduced to reduce the overfitting of the model.
This novel soft sensor showed superior performance compared to state-
of-the-art models based on two-stream 𝜆 GRU and SAE as well as
traditional PLS and SVR models.

Zhang et al. (2019b) introduced a deep Weighted Auto Regressive
LSTM (WAR-LSTM) model that can extract high-level representations
from multivariables in the spatial domain. The soft sensor reported
a mean square error (MSE) of 0.80 ± 0.08, outperforming a conven-
tional deep LSTM model. Increasing the number of feedback outputs
of the WAR-LSTM structure resulted in improved performance but
at the expense of the model simplicity. The use of a scaling factor
normalization instead of the conventional min–max normalization for
data pre-processing and a recurrent denoising AE for feature extraction,
which can retain temporal dependence of the extracted features unlike
the basic denoising AE, further contributed to the superior performance
of the deep WAR-LSTM based soft sensor.

Yi et al. (2020) developed a soft sensor based on an ensemble
deep-learning strategy for the online estimation of the fraction yields
of crude oil. A CNN and a nearest neighbor regression (NNR) model
were used as component learners, while a random vector functional
link (RVFL) network was used as a meta-learner to combine the two
component learners. Nuclear magnetic resonance spectrum data, which
were transformed into 2D form to feed the CNN, were used as the
input data to estimate the fraction yield. According to the results, the
model reported an RMSE value of 0.2524, outperforming PLS, MLP
neural network, DBN, and NNR models. A study by Wu et al. (2021)
introduced a Dilated CNN (DCNN) to predict the melt index of a PP
production process. The dilated convolution increases the receptive
field of the soft sensor without losing the feature resolution, which
improves the predictive performance of the model. The DCNN model
exhibited an RMSE of 0.0289, outperforming a traditional CNN model
and an ELM model.

Hu et al. (2021) proposed a novel spatio-temporal attention network
(STAN), which incorporates a temporal attention module and a spatial
attention module to extract temporal and spatial features in the data,
respectively. The extracted features are then merged using a spatio-
temporal fusion module. Moreover, a highway network is implemented
to make the model give more weight to the current state of the
input variables. The merged spatio-temporal features and the highway
features are then fed to the output layer. The STAN model showed
an RMSE of 0.0661, surpassing ELM, backpropagation neural network,
LSTM, and convolutional LSTM (CNN + LSTM) models.
13
5.5. Model interpretation

As discussed in Section 2, one of the main limitations of data-
driven soft sensors is the inability to interpret the model due to the
black-box nature of the model. Although first-principles models are
easily interpretable, they suffer from poor predictive performance due
to the numerous assumptions made when deriving them. Gray-box
modeling techniques have been introduced to obtain interpretable mod-
els with good predictive performance. Ahmad et al. (2020) provide
a comprehensive review of the design aspects and applications of
recent gray-box soft sensors. Here, the gray-box soft sensors were
classified into three categories: serial, parallel, and combined gray-box
models. These categories were defined based on the role of the data-
driven component in the gray-box model. In serial gray-box models,
the data-driven component is used to estimate unknown parameters
of the first-principles model, while in the parallel gray-box models,
the data-driven component is used to compensate for the error of the
first-principles model. The combined gray-box soft sensors combine
both serial and parallel configurations into their model structure. Since
the focus of this study is only on data-driven soft sensors, gray-box
models are not extensively discussed here. However, a recent study that
attempted to improve the model interpretability of a data-driven model
is reviewed due to its state-of-the-art nature.

To integrate process knowledge into model construction and to
enable the development of interpretable models for predicting the
butane content in debutanizer columns, Chen and Ge (2021) introduced
a novel soft sensor framework called Graph mining, convolution, and
explanation stacked target-related autoencoder (GMCE-STAE) In this
approach a spatial self-attention mechanism was used to extract process
knowledge based on available historical data. Then, the extracted
knowledge along with the human experience was used to extract fea-
tures using a graph convolution layer. These extracted features were
then input into the soft sensor model to predict the butane content.
An SAE was used as the soft sensor model, which was trained by two
phases: layer-wise pre-training and fine-tuning. Finally, a graph neural
network explainer was used to explain how the process knowledge was
utilized by the model for predicting the butane content. Moreover, it
was shown that the knowledge discovered by the spatial self-attention
mechanism was consistent with prior knowledge. However, the prior
knowledge consideration has slightly increased the computational com-
plexity of the model as well. This state-of-the-art approach in soft sensor
construction has opened a new avenue for soft sensor designers to
develop data-driven soft sensors by incorporating process knowledge
as well as to interpret the model predictions.

The AI-based techniques for solving the problems discussed in this
section have proven to be highly effective, compared to traditional
methods. The enhanced performance of the soft sensors can be observed
through reduced prediction errors and computational times. This has
mainly been achieved by combining two or more AI-based algorithms
together or modifying the internal architecture of the basic AI-based al-
gorithms. The enhanced predictive performance is the key to accurately
monitoring industrial processes in real-time which enables maintaining
the process within desired limits. This ultimately helps in reducing
waste generation, optimizing material and energy utilization, reducing
harmful emissions, and so forth.

6. Discussion

Over the years, soft sensors have been used in a wide range of
process industries to replace or to work in parallel with hardware
sensors. This paper discussed the state-of-the-art AI-based algorithms
employed in modern soft sensors, their contribution toward sustainable
development, and their latest applications in the process industry. The
key limitations presented in Section 1.1, which were identified from
previously published review articles on soft sensors were addressed,
effectively bridging the existing research gaps. Unlike the previous
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Fig. 5. Driving factors for soft sensors of the future (a) CRISP-DM framework for developing data-driven models (Fisher et al., 2020) (b) Current and future states of soft sensors
(Kadlec and Gabrys, 2009) (c) Relationships among key elements in big data analytics and smart factories (Gao et al., 2020a) (d) Model development architecture for future soft
sensors proposed by Kadlec and Gabrys (2009).
reviews, this study entirely focused on AI-based soft sensing algorithms,
instead of traditional modeling techniques. Instead of reviewing studies
related to a single industrial process, this paper investigated soft sens-
ing solutions provided across multiple industries, which enabled the
identification of a wide range of solutions provided to address a given
problem/challenge. Moreover, this study discussed the role of the latest
AI-based soft sensors in achieving sustainable development goals and
provided a critical review of some of the latest works that investigated
these AI-based techniques for addressing common challenges associated
with soft sensor development.

A summary of the AI-driven soft sensors reviewed in Section 5 is
provided in Table 2. This should be useful for the readers to compare
the performance of advanced AI-based soft sensors with traditional soft
sensing solutions. Table 3 presents a summary of suitable soft sensing
solutions for addressing the problems/challenges discussed in Section 5.
It can be used as a guide by soft sensor designers to select the most
favorable option, out of the wide range of soft computing algorithms.
However, it should be noted that the soft sensing solutions provided in
Table 3 are not exhaustive.

6.1. Current challenges in soft sensor design, application, and maintenance

As explained in Section 4, the prediction accuracy and compu-
tational efficiency of soft sensors play a key role in ensuring the
sustainability of the process under consideration. Problems/challenges
that occur during different stages of the life cycle of a soft sensor can
inhibit their prediction accuracy as well as computational efficiency,
and this could hinder the implementation of sustainable manufacturing
strategies in process industries. Hence, it is important to identify these
challenges and investigate solutions to address them. Some of the
current challenges in soft sensor design, application, and maintenance
stages are discussed here.
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Soft sensors are mainly developed based on the historical data col-
lected from hardware sensors installed in process industries. Therefore,
the quality of data collected by these hardware sensors plays a key
role in the soft sensor development process, as the final predictive
performance of the soft sensor is directly dependent upon the data
used in developing the soft sensor. Data quality or veracity is one of
the key aspects that constitute the 5Vs (i.e., volume, velocity, variety,
veracity, and value) of the big data paradigm (see Fig. 5(c)) (Gao et al.,
2020a). The use of high-quality hardware sensors for data collection is
a key requirement for ensuring the veracity of the data used for training
and validating soft sensors. Abeykoon (2018) recommended using high-
quality hardware sensors instead of using filtering techniques to remove
noise from data. Filtering might treat fluctuations in data caused by
temporal variations as noise and filter them out, and this could hurt
the ability of the soft sensor to predict such fluctuations. Furthermore,
hardware sensors must be properly calibrated from time to time and
their functionality should be monitored regularly.

Capturing a set of data that is representative of the entire range
of operating conditions in which the manufacturing system operates,
is another challenge faced by soft sensor developers. Manufacturing
processes are highly dynamic in nature and show numerous temporal
variations; hence there could be fluctuations in the collected data that
show deviations from the steady-state behavior of the process. If these
variations are not captured in the dataset, the predictive performance of
the soft sensor would be adversely affected. Therefore, data collection
should be carried out for a sufficient period of time, such that the
temporal variations in the system are captured.

As discussed in Section 1.1, characteristics of process data such as
missing values, outliers, collinearity, and varying sampling rates also
have a direct impact on the veracity of data (Kadlec et al., 2009; Souza
et al., 2015). It is crucial to address these issues using appropriate data

pre-processing techniques, to obtain an accurate dataset before training
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Table 2
A summary of the soft sensor applications reviewed in this study.

Publication Year Industry Models/ Algorithms Used Application Accuracy/Performance/Comments

Xie et al.
(2020a)

2020 Polymer Processing Two-stream 𝜆 GRU Estimating the MFI in a polyester polymerization
process

Reported an MSE of 0.00238 on an unseen dataset, outperforming
soft sensors based on SVR, PLS, SAE and LSTM, with respective
MSE values of 0.00890, 0.08, 0.00972, and 0.00887.

Xie et al.
(2020b) 2020 Polymer Processing DVAEs Estimating the MFI in a polyester polymerization

process

Reported an MSE of 0.0319 on an unseen dataset, outperforming
soft sensors based on MLP neural network, AE, and VAE, with
respective MSE values of 0.1262, 0.0821, and 0.0683. The model
showed superior data reconstruction ability compared to the
traditional deletion, mean imputation, and PCA imputation methods.

He et al.
(2020b)

2020 Polymer Processing SVD-ESN Estimating the melt density index in an HDPE
polymerization process

Reported an RMSE of 0.0599 on an unseen dataset, outperforming
ESN, ELM, and LSTM models with respective RMSE values of
0.2311, 0.1539, and 0.2600.

Wu et al.
(2021)

2021 Polymer Processing DCNN Estimating the melt index in a propylene
polymerization process

Reported an RMSE of 0.0289, surpassing CNN and ELM models
with respective RMSE values of 0.0865 and 0.0945.

Zhu et al.
(2021c)

2021 Polymer Processing CGAN Estimating the MFI in an HDPE polymerization
process

Reported an RMSE of 0.4995, surpassing conventional VSG methods
based on bootstrap, mega trend diffusion, and tree-based trend
diffusion, with respective RMSE values of 0.5298, 0.5574, and
0.6217.

Zhang et al.
(2021)

2021 Polymer Processing OESN Estimating the melt index in a propylene
polymerization process

Reported an RMSE of 0.0060.

Hu et al.
(2021)

2021 Polymer Processing STAN Estimating the melt index in a propylene
polymerization process

Reported an RMSE of 0.0661, surpassing ELM, backpropagation
neural network, LSTM, and convolutional LSTM models with
respective RMSE values of 0.1437, 0.1449, 0.1380, and 0.1132.

Liu et al.
(2018)

2018 Polymer Processing Ensemble Deep Kernel Learning Estimating the MFI in a polyethylene
polymerization process

Reported an RMSE of 2.74, outperforming SVR, PLS, and single
DBN models with RMSE values of 4.70, 5.91, and 3.51.

Zhu et al.
(2021b)

2021 Polymer Processing Xgboost-BiCG-LSTM-SEA Estimating the melt intrinsic viscosity of a
polyester polymerization process.

Reported an MSE of 0.0018, outperforming soft sensor models
based on two-stream 𝜆 GRU, SAE, PLS, and SVR, with respective
MSE values of 0.00401, 0.0091, 0.0112, and 0.0098.

Liu et al.
(2019)

2019 Polymer Processing DAELM Estimating the MFI in a polyethylene
polymerization process

Reported lower relative prediction errors compared to an RELM for
three different material grades. The model is adaptive to the grade
changeovers.

Zhang et al.
(2021)

2021 Polymer Processing GOESN Estimating the MFI in a polypropylene
polymerization process

Reported an RMSE of 0.0077, outperforming orthogonal ESN and
conventional ESN models with RMSE values of 0.0079 and 0.2132.

Yuan et al.
(2020e)

2020 Petroleum Refining SQAE Estimating the butane content in a debutanizer
column

Reported an RMSE of 0.0303, outperforming SAE, SDAE, and SSAE
models with respective RMSE values of 0.0438, 0.0427, and 0.0412.

Yuan et al.
(2020a)

2020 Petroleum Refining HVW-SAE Estimating the butane content in a debutanizer
column

Reported an RMSE of 0.0308, outperforming MLP neural network,
SAE, and variable-wise weighted SAE (using only the Pearson
correlation coefficient) models with respective RMSE values of
0.0542, 0.0450, and 0.0389.

Liu et al.
(2021d)

2021 Petroleum Refining S-NPAE Estimating the initial and final distillation
temperatures of heavy naphtha in a hydrocracking
process

Reported RMSE values of 0.0905 and 0.0782 for predicting initial
and final distillation temperatures respectively, outperforming an
SAE model with respective RMSE values of 0.1373 and 0.1099.

Liu et al.
(2021b)

2021 Petroleum Refining STNP-SAE Estimating the initial and final distillation
temperatures of heavy naphtha in a hydrocracking
process

Reported RMSE values of 0.0698 and 0.1179 for predicting initial
and final distillation temperatures respectively, outperforming an
SAE model with respective RMSE values of 0.0838 and 0.1451.

Liu et al.
(2020)

2020 Petroleum Refining AE + NBWR Estimating the butane content in a debutanizer
column

Reported an RMSE of 0.0405, outperforming PLS, least squares
SVR, and Deep ELM models with RMSE values of 0.1414, 0.0591,
and 0.0565 respectively. The model is adaptive to varying process
conditions.

(continued on next page)
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Table 2 (continued).
Guo et al.
(2020b)

2020 Petroleum Refining VAE + GPR Estimating the butane content in a debutanizer
column

Reported an RMSE of 0.1014, while reducing the input variables to
three latent variables. The model is adaptive to varying process
conditions.

Guo et al.
(2020a)

2020 Petroleum Refining VAE + GPR Estimating the butane content in a debutanizer
column

Reported RMSE values in the range 0.0779-0.1195 for different
missing data levels between 10% and 50%. The model is adaptive
to varying process conditions and able to handle missing data.

Chen and Ge
(2021) 2021 Petroleum Refining GMCE-STAE Estimating the butane content in a debutanizer

column

Reported an RMSE of 0.021 ± 0.007, outperforming soft sensors
based on deep neural network, SAE, stacked target AE, variable-wise
weighted SAE, dynamic CNN, and supervised LSTM with respective
RMSE values of 0.033 ± 0.005, 0.028 ± 0.010, 0.027 ± 0.002,
0.025 ± 0.010, 0.050 ± 0.011, and 0.049 ± 0.008. The model is
interpretable but is not adaptive to varying process conditions.

Graziani and
Xibilia (2019)

2019 Petroleum Refining DBN Estimating the butane content in a debutanizer
column

An RMSE of 2.07 and a correlation coefficient of 0.74 were
reported.

Yuan et al.
(2020d)

2020 Petroleum Refining SIAE Estimating the SO2 concentration in the tail gas of
an SRU

Reported an RMSE of 0.0279, outperforming SAE, MLP neural
network, and shallow two-layer neural network models with
respective RMSE values of 0.0290, 0.0297, and 0.0340.

Hikosaka et al.
(2020)

2020 Petroleum Refining EGAVDS Estimating the H2S concentration in the tail gas of
an SRU and the butane content in a debutanizer
column.

Reported an RMSE of 0.031 and 0.102 for the SRU and the
debutanizer column respectively.

Chou et al.
(2020)

2020 Petroleum Refining GRU Estimating the distillate impurity and bottom
product impurity of a distillation column.

The soft sensor outperformed a conventional ANN in terms of
prediction accuracy as well as consistent physical interpretations.

Liu et al.
(2021c)

2021 Petroleum Refining S-MMAE Estimating the final distillation temperature of
heavy naphtha and aviation kerosene in a
hydrocracking process.

Reported RMSE values of 0.0721 and 0.0626 for predicting the
distillation temperature of heavy naphtha and aviation kerosene
respectively. Outperformed ANN, SAE, and LAE models with
respective RMSE values of 0.1111, 0.0946, and 0.0854 for heavy
naphtha, and 0.1001, 0.0960, and 0.0824 for aviation kerosene.

Zhang et al.
(2019b)

2019 Petroleum Refining WAR-LSTM Estimating the product flowrate and the product
yields of an FCCU.

Reported an MSE of 0.80 ± 0.08, outperforming a deep LSTM with
an MSE value of 1.58 ± 0.47.

Yi et al. (2020) 2020 Petroleum Refining CNN+NNR+RVFL Estimating the fraction yields of crude oil A multiple ensemble of the proposed model reported an RMSE of
0.2524, outperforming a single ensemble of the proposed model, a
PLS, an MLP neural network, a DBN, and an NNR with RMSE
values of 0.2618, 0.8412, 0.8930, 0.5470, and 0.7209 respectively.

Yuan et al.
(2020b)

2020 Petroleum Refining SS-SAE Estimating the final boiling point of aviation
kerosene in a hydrocracking process and the
butane content in a debutanizer column.

The soft sensor outperformed ANN, DBN and SAE models in the
presence of different levels of unlabeled data.

Zhu et al.
(2021d)

2021 Pharmaceutical IBDA-RELM Estimating the Pichia pastoris cell concentration in
a fermentation process.

Reported RMSE values in the range 1.4932-2.3803 under different
operating conditions. The model is adaptive to multiple operating
conditions.

Gopakumar
et al. (2018) 2018 Pharmaceutical SOM

Estimating the streptokinase and biomass
concentrations in a streptokinase fermentation
process.

Reported RMSE values of 0.0565 and 0.0091 for streptokinase and
biomass concentration prediction respectively, outperforming SVR
and supervised deep neural network models.

Estimating the penicillin, biomass, and substrate
concentrations in a penicillin fermentation process.

Reported RMSE values of 0.0274, 0.0069, and 0.00063 for
predicting the penicillin, biomass, and substrate concentrations
respectively, outperforming SVR and supervised deep neural
network models. Performance increased significantly when the
number of unlabeled datapoints increased.

(continued on next page)
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Table 2 (continued).
Sun et al.
(2020)

2020 Pharmaceutical ORWNN-GPR Estimating the total sugar content in a
chlortetracycline fermentation process.

The model showed good predictive performance throughout the
online learning process with respective RMSE values of 0.22 and
0.21 at 50% and 100% training data due to the integration of
ORWNN and GPR models. The soft sensor has adaptive capabilities
due to the online learning technique used.

Gao et al.
(2021)

2021 Pharmaceutical TS-SSRAE Estimating the penicillin concentration in a
penicillin fermentation process.

Reported an RMSE of 0.032, outperforming SAE, SSAE, and
TS-SRAE models with respective RMSE values of 0.042, 0.039, and
0.035.

Zheng et al.
(2021)

2021 Pharmaceutical JITL-LSTM Estimating the penicillin concentration in a
penicillin fermentation process.

Reported an RMSE of 0.0820. The model is adaptive to different
operating phases in the penicillin fermentation process but is not
applicable when the batch lengths are not even.
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Table 3
Suitable AI-driven soft sensing solutions for different classes of problems (based on the works reviewed in this study).

Class of problems Comments

Addressing the issue of missing
data

GANs, AEs, and their extensions can be used. These
algorithms possess superior data reconstruction ability, which
is ideal for handling missing data. Hence, they outperform
traditional missing data treatment techniques such as
deletion and mean imputation.

Utilizing unlabeled data to
improve prediction accuracy
(addressing the issue of varying
sampling rates)

Unsupervised and semi-supervised learning techniques can be
used. AE and its extensions, SOM, and DBN models have
widely been used for predicting quality variables with low
sampling rates. These techniques utilize both labeled and
unlabeled data, resulting in improved predictive performance
compared to the traditional supervised learning techniques
that utilize labeled data only.

Improving the predictive
performance of models trained
using small datasets

VSG techniques based on the GAN and its extensions can be
used. They create virtual data points in the sparse areas of
the dataset to expand the dataset size. This approach has the
potential to provide better results compared to more
traditional techniques such as bootstrap aggregation and
noise injection

Input regressor selection and
dimensionality reduction

Unsupervised and semi-supervised learning techniques can be
used. AEs and DBNs can extract nonlinear features from the
input data while reducing the dimensions of the input space.
Extensions of the traditional AE algorithm can extract only
the features that are relevant to the quality parameter to be
predicted while reducing the dimensions. This results in
improved predictive performance.

Addressing the issue of process
drifts (i.e., varying process
conditions)

JITL methods, transfer learning, and online learning
techniques can be used.

Extracting temporal and spatial
features

RNNs and their extensions such as the LSTM, GRU, and ESN
as well as CNN and its extensions have widely been used.

Model interpretation Gray-box modeling approaches are widely used

Model structure optimization The use of evolutionary algorithms is less time consuming
and less tedious than the trial-and-error based approaches
and almost always produce better results.

Soft sensing solutions with faster
computation

ELM, GRU, and ESN algorithms generally provide faster
computation due to the simpler architecture and less
trainable parameters.
the soft sensor. Some of the latest solutions proposed for addressing
some of these issues have been discussed in Section 5.

In addition to the difficulties associated with collecting a high-
quality dataset, data pre-processing, model selection, validation, and
maintenance aspects of soft sensors present various challenges due to
the ad-hoc manner in which these tasks are carried out. Kadlec and
Gabrys (2009) predicted that these stages of soft sensor development
would be more automated in the future (see Fig. 5(b)). However, even
after a decade since their study, data pre-processing, model selection,
and validation are still mostly carried out manually. Performing these
tasks manually takes up a lot of time and effort and may not result
in an optimum solution. However, due to the increased use of AI-
based modeling techniques, the model maintenance aspect has become
slightly more automated at present. JITL models, online learning, and
transfer learning techniques have become more popular in constructing
adaptive soft sensors, and these sensors can adapt to varying process
conditions without needing to be retrained manually (Liu et al., 2019;
Sun et al., 2020; Zheng et al., 2021) However, most of the soft sensing
solutions reported in the literature are still limited in terms of adaptive
capabilities.

The current challenges associated with soft sensor design, applica-
tion, and maintenance hinder the development of high-performance ro-
bust soft sensors for process industries. Hence, these challenges should
be addressed with a systematic approach, so that future process in-
dustries could benefit from increased soft sensor applications and their
contribution toward sustainability. In the following section, the means
by which the future soft sensors can be improved are discussed in detail.
18
6.2. Soft sensors in future process industries

In the past, applications of data-driven models were limited by the
lack of data availability and lack of computational power (Ge, 2017).
Today, computers are equipped with high-performance processors and
GPUs that are capable of processing large amounts of data in less time.
Furthermore, the use of cloud computing has given process industries
access to high processing power. The adoption of the concept of the
internet of things (IoT) has led to increased availability and easy access
to large quantities of data (Fisher et al., 2020). This has fueled the
use of data-driven soft sensors in current process industries. With the
advancement of AI technologies, cloud computing, IoT, and Industry
4.0, the use of data-driven soft sensors is expected to grow in number
in the future.

It is expected that the development of future soft sensors will be fo-
cused on overcoming the current challenges associated with the design,
application, and maintenance aspects. Fisher et al. (2020) identified
poor generalization and overfitting as the main sources of error in
data-driven models. In soft sensor development, these can be caused
by the difficulties associated with capturing high-quality process data.
Due to measurement delays and missing data, the amount of available
data may be limited. Captured data may not represent the temporal
variations associated with the process dynamics. Fisher et al. (2020)
suggested adhering to a structured methodology when developing data-
driven models which enable the developers to avoid such mistakes that
lead to poor generalization and overfitting. They recommended the
Cross-Industry Standard Process for Data Mining (CRISP-DM) (Shearer,
2000) methodology as it is the most widely used methodology for
developing data-driven models (see Fig. 5(a)).
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As discussed in Section 6.1, during the design stage of soft sensors,
data pre-processing, model selection, validation, and maintenance steps
are performed manually. Kadlec and Gabrys (2009) proposed a frame-
work for automating the soft sensor development process through a
systematic approach. The proposed framework has an architecture of
three hierarchical levels of information processing which incorporate
local learning and meta-learning concepts into the soft sensor devel-
opment process (see Fig. 5(d)). Furthermore, this framework allows
the incorporation of expert knowledge and adaptive capabilities at all
three hierarchical levels. Although this study is more than a decade old,
the proposed framework is still relevant today, and an increase in the
incorporation of expert knowledge and adaptive capabilities in the most
recent studies can be observed. Future soft sensor designers can use it as
a guide for automating different stages of the soft sensor development
process with the aid of powerful AI-based algorithms available.

The lack of model interpretability is one of the major limitations
in data-driven soft sensors, due to the black-box nature of the model
structure. This affects the reliability of the features extracted by the
soft sensor and its final output. As discussed in Section 5.5, gray-box
models that combine the benefits of both first-principles and black-box
models have widely been used to address this issue (Ahmad et al.,
2020). Despite the increase in the use of gray-box models, model
interpretability still remains a challenge in the soft sensor development
process. One of the most recent studies investigated a deep neural
network based on attention mechanisms to address this issue (Guo
et al., 2022). Here, the weight coefficients calculated by the attention
mechanisms were used to interpret the soft sensor data selection. It
is clear that future soft sensors will be heavily based on such novel
AI-based approaches with the aim of making them more robust and
reliable.

The digital twin technology is an emerging concept in the IoT era.
A digital twin is a digital representation of a physical system. Digital
twins can be employed to simulate manufacturing processes, where the
twin simulates the physical system in real-time, based on the inputs
gathered from sensors (He et al., 2019). Digital twins are a promising
approach for data-driven modeling and in the future, soft sensors will
be used as digital twins in process industries.

Web-based sensor networks equipped with communication units
and measurement devices (Fukatsu et al., 2011) are another flexible
data processing approach, from which future soft sensors can benefit.
Despite the numerous advantages they offer such as the possibility of
remote access and control, and increased flexibility, several risks could
also be involved due to the use of the internet. With the increased
use of big data, concerns regarding data security should be properly
addressed. The risks involved with the use of big data could prevent
the manufacturers from utilizing them in soft sensor applications. Tra-
ditional approaches such as encryption, network segmentation, and
virtual local area networks as well as state-of-the-art technologies such
as cryptographic hashing and digital certificates can be incorporated
within the manufacturing facility to ensure data security (Gao et al.,
2020a).

Finally, it should be noted that most of the soft sensing solutions
reported in the literature have been limited to laboratory-scale exper-
iments. In many cases, data collection and soft sensor testing have
been carried out through simulation, and the implementation of soft
sensors in a real industrial setting for process monitoring and control
is also limited. Hence, future soft sensor designers should consider
scaling up the soft sensor development process from the laboratory
to actual industrial scenarios and should develop control systems that
incorporate these soft sensors for real-time quality control mechanisms.

7. Conclusions

The current trend toward sustainable development drives process
industries to adopt energy conservation and emission reduction strate-

gies to reduce the global carbon footprint and adverse environmental

19
issues. Consequently, process monitoring has become vital to ensure
that the processes operate within their desired boundaries, via ad-
vanced process optimization and control strategies, so that material
and energy wastage and environmental pollution can be minimized
while improving production efficiency. Today, soft sensors are widely
used across process industries for online prediction, process monitoring,
and fault detection applications with the aim of achieving the said
goals. The rise in IoT, Industry 4.0, AI, and big data concepts as
well as the increased processing power enabled by cloud computing
technologies, have fueled the growth of soft sensors and the numerous
benefits that they can offer have led them to be suitable candidates
even to replace some hardware sensors. The latest AI-based modeling
techniques have the potential to enhance the prediction accuracy and
the computational efficiency of soft sensors which enables accurate
and continuous monitoring of industrial processes. Furthermore, with
the recent advancements in mechatronics, soft sensors can be incorpo-
rated into feedback control systems, which enables the implementation
of real-time low-cost quality control strategies. These robust process
monitoring and control strategies ultimately help in achieving the
sustainable development goals of process industries.

Despite their advantages, the design, application, and maintenance
of soft sensors present numerous challenges. All stages of soft sen-
sor development, comprising the collection of process data, data pre-
processing, model selection and validation, and soft sensor mainte-
nance are associated with various limitations and challenges which
inhibit the growth of soft sensor applications in process industries. The
goal of the next generation soft sensor development should be to adopt
more automated strategies rather than manual methods during the soft
sensor design and application stages and their long-term predictive
performance should be ensured by equipping them with adaptive capa-
bilities. This goal should be achieved using more systematic approaches
through the incorporation of data-driven modeling and soft sensor de-
velopment frameworks. Implementation of these future directions will
allow the soft sensor developers to overcome the current challenges as-
sociated with soft sensor applications and the future process industries
will thrive on more advanced applications of soft sensors. Eventually,
these approaches should be invaluable in enabling a sustainable energy
future with a cleaner/greener environment for the future generation.

Abbreviations

ACO Ant Colony Optimization

AE Autoencoder

AI Artificial Intelligence

AM-FOA Adaptive Mutation Fruit-fly Optimization Algorithm

ANFIS Adaptive Neuro-Fuzzy Inference System

ANN Artificial Neural Network

BAS Beetle Antennae Search

BDA Balanced Distributed Adaptation

BiCG-LSTM Bidirectional Converted Gates Long Short-Term Memory

BiLSTM Bidirectional Long Short-Term Memory

CGAN Conditional Generative Adversarial Network

CG-LSTM Converted Gates Long Short-Term Memory

CNN Convolutional Neural Network

COA Cuckoo Optimization Algorithm
COD Chemical Oxygen Demand
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ELM Extreme Learning Machine

ESN Echo State Network
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FIS Fuzzy Inference System

FLNN Functional Link Neural Network

FNN Fuzzy Neural Network

FOA Fruit-fly Optimization Algorithm

FRA Fast Recursive Algorithm

GA Genetic Algorithm
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GAVDS Genetic Algorithm-based process Variables and Dynamics Se-
lection

GMCE-STAE Graph Mining, Convolution, and Explanation Stacked
Target-related Autoencoder

GPR Gaussian Process Regression

GPU Graphics Processing Unit

GRU Gated Recurrent Unit

HDPE High-Density Polyethylene

HVW-SAE Hybrid Variable-wise Weighted Stacked Autoencoder

IBDA Improved Balanced Distributed Adaptation

IEA Immune Evolutionary Algorithm

IoT Internet of Things

JDA Joint Distributed Adaptation

JITL Just-In-Time Learning

KL Kullback–Leibler

LAE Laplacian Regularization Autoencoder

LS-SVM Least Squares Support Vector Machine

LSTM Long Short-Term Memory

MFI Melt Flow Index

MLP Multilayer Perceptron
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MLR Multiple Linear Regression

MSE Mean Squre Error

MUDVAE Modified Unsupervised Deep Variational Autoencoder

NBWR Nonlinear Bayesian Weighted Regression

NFS Neuro Fuzzy System

NNR Nearest Neighbor Regression

NPE Normalized Prediction Error

OESN Orthogonal Echo State Network

ORWNN Output Recursive Wavelet Neural Network

PCA Principal Component Analysis
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PSO Particle Swarm Optimization
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RBM Restricted Boltzmann Machine
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RMSE Root Mean Square Error
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SEA Self-Attention
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SOM Self-Organizing Map

SQAE Stacked Quality-driven Autoencoder

SRU Sulfur Recovery Unit
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STAN Spatio-Temporal Attention Network

STNP-SAE Spatiotemporal Neighborhood Preserving Stacked Autoen-
coder

VD Singular Value Decomposition

VM/SVR Support Vector Machine/Regression

S-SRAE Teacher Student Stacked Recurrent Autoencoder

S-SSRAE Teacher Student Stacked Sparse Recurrent Autoencoder
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AE Variational Autoencoder

SG Virtual Sample Generation

AR-LSTM Weighted Auto Regressive Long Short-Term Memory

gboost eXtreme Gradient Boosting
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