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A B S T R A C T   

Subsurface structures and especially the interactions between pores, roots and other organic matter elements 
have a strong impact on ecosystem functioning. Yet despite recent progress in the application of X-ray Computed 
Microtomography (µCT) to soil structure in agricultural science, applications to the more complex and hetero-
geneous substrates found in natural soils, specifically wetland soils, remain sparse. We apply X-ray µCT to a 
complex heterogenous soil and develop a robust segmentation method to quantify the pores, live roots and 
necromass. This approach significantly improves the detection of the organic matter elements, and gives us 
unprecedented detail and resolution in the segmentation of pores, live roots and necromass at a high spatial 
resolution (62.5 µm in this study). We identify several situations where pores and organic matter interact in the 
soil, including the disconnected air spaces (aerenchyma) that run within the Spartina stem and roots, tubular- 
shaped pores left behind by decaying roots, and lateral roots deploying within structural fragilities in the 
sediment. The capacity of X-ray µCT to distinguish the connected live root system from the necromass opens 
possibilities for applications to determine key wetland soil functions such as soil cohesivity, soil nutrient ex-
changes and soil carbon dynamics.   

1. Introduction 

Soils and sediments, formed respectively from the in-situ weathering 
of a bedrock in association with biogeochemical processes (Lin, 2010) 
and from the layered deposition of imported particles (Dyer, 1995), both 
play a critical role for the ecosystems they support. They are a place of 
exchange of water, gases and other resources, while providing structural 
support and shelter for dwelling organisms (Rabot et al., 2018). The 
structure of these subsurface environments, defined as the three- 
dimensional spatial arrangement of solids regardless of chemical het-
erogeneity (Rabot et al., 2018; Xiong et al., 2019), results from the 
unique pedological (soil) and hydrodynamic (sediment) history of each 
habitat and is dynamic over multiple spatial and temporal scales. 
Because of this heterogeneity, structural properties (e.g. the measurable 
components of the soil structure, such as total porosity) are difficult to 
describe, yet doing so can greatly improve our understanding of 
ecosystem functions. Structure conditions geomorphological, 

pedological and ecological functioning (Corenblit et al., 2011; Lin, 2010; 
Rabot et al., 2018) and soil/sediment mechanics (Fonseca et al., 2013; 
Keller et al., 2013; Menzies et al., 2016; Phillips et al., 2018; Spagnolo 
et al., 2016). Structure notably controls the soils’ interactions with the 
surface by providing pathways for gas, water and solute fluxes (Ball, 
2013; Dale et al., 2019; Gharedaghloo et al., 2018; Pedersen et al., 2015; 
Spencer et al., 2017; Swanson et al., 2017). Live roots also provide 
pathways of gas and nutrient exchanges, and play an important role in 
soil carbon dynamics (Bardgett et al., 2014; Blagodatsky & Smith, 2012; 
Smith et al., 2003). Due to these combined functions, structure exerts a 
critical control over soil/sediment fertility and agricultural potential 
(Naveed et al., 2016; Pöhlitz et al., 2018; Rogers et al., 2016). 

Because of the complexity of soil and sediment structure, its influ-
ence on ecosystem processes cannot be accurately predicted by one- 
dimensional parameters measured from traditional methods in the 
field or in the lab (Bradley & Morris, 1990). 3D X-ray Computed To-
mography (CT) utilizes the penetrating capacity and attenuation of X- 
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ray energy to image the 3D internal structure and relative densities of 
materials (‘phases’) in a non-destructive manner (Cnudde & Boone, 
2013). The technique, developed for medical applications in the 1970s, 
soon led to the higher resolution method X-ray Computed Micro-
tomography (µCT) in the 1980s and to the study of microstructures in 
the geological and soil sciences (Ketcham and Carlson, 2001; Ketcham, 
2005; Carlson, 2006; Taina et al., 2008; Cnudde and Boone, 2013). In 
soil sciences, the application of µCT has largely focused on agricultural 
soils (Helliwell et al., 2013; Keller et al., 2013; Menon et al., 2020; 
Mooney, 2002; Rogers & Benfey, 2015; Wildenschild & Sheppard, 

2013). By contrast, lacustrine, estuarine, glacial, fluvial and marine 
sediments and associated soils typically represent multiple sediment 
sources, with mixing and superposition of different minerogenic and 
biogenic components with variable water content (Bendle et al., 2015; 
Dale et al., 2019; Griggs et al., 2015; Spagnolo et al., 2016; Spencer 
et al., 2017; Tarplee et al., 2011; Voepel et al., 2019). This leads to 
significant textural and structural heterogeneities in samples, which 
challenges the data acquisition and analysis approaches developed for 
the examination of more homogenous agricultural soils. Here, we have 
focused on heterogeneous, tidally flooded saltmarshes which retain both 
sedimentary (e.g. laminations) and pedological (e.g., vegetation) fea-
tures and are commonly referred to as soils. Therefore, for simplicity, we 
use the term soils to include also unconsolidated and/or vegetated 
sediments deposited in aquatic environments with minerogenic and 
biogenic components, as they present characteristics of both sediments 
and soils. 

The acquisition and interpretation of µCT imagery of heterogeneous 
soils pose technical challenges. Firstly, such soils are often unconsoli-
dated and saturated, and therefore easily disturbed, making recovery of 
‘undisturbed’ samples very difficult, particularly at depth (Carr et al., 
2020). Secondly, samples with significant physical heterogeneity are 
challenging to ‘segment’ into relevant phases based on X-ray attenuation 
coefficient alone. The segmentation process is further complicated 
where there is a significant component of fine-grained sediments below 
the spatial resolution of the scanning system (e.g. < 60 µm in this study), 
whereby an individual voxel in the reconstructed 3D volume represents 
the mean attenuation coefficient of all elements present within. The 
intermediate grayscale value resulting from that mix of phases is called 
the partial volume effect (Ketcham & Carlson, 2001); the more heter-
ogenous and fine-grained the material, the harder it becomes to isolate 
key phases based on their grayscale values alone using global thresh-
olding (Cnudde & Boone, 2013; Helliwell et al., 2013). Thirdly, most 
soils, particularly those formed in aquatic environments such as wetland 
soils, contain variable amounts of pore-water, meaning that the pore 
phase itself will be heterogeneous, with pores being air-filled, water- 
filled, and often a combination of these states. Vegetated environments 
such as coastal wetlands and saltmarshes also have significant hetero-
geneity in the belowground organic phase: the structure and 3D 
deployment of roots within the soil vary depending on the vegetation 
type. Furthermore, the roots’ internal structure and density depend on 
their stage of decay, which complicates the differentiation of live roots, 
necromass and pore space. 

Significant advancements have been made to address the challenge 
of µCT image segmentation applied to heterogenous substrates, using 
more sophisticated “local adaptive” image processing approaches such 
as gradient analysis and local-adaptive thresholding (Houston et al., 
2013; Ngom et al., 2011; Pot et al., 2020; Schlüter et al., 2010; Tarplee 
et al., 2011). Automated root tracking algorithms have been developed 
to limit detection errors linked to the partial volume effect (Mairhofer 
et al., 2012); however, they only detect root systems connected to the 
surface by user-specified seed points, and might therefore miss buried 
root systems, which is a problem for soil carbon studies. Another 
approach is to detect phase elements based on their 3D shapes rather 
than their grayscale value, such as the tubular shape of roots using a 
Frangi filter (Frangi et al., 1998; Gao et al., 2019; Schulz et al., 2013). 
These recent root detection methods give promising results, but have so 
far been tested on sieved and repacked soils (Gao et al., 2019; Lucas 
et al., 2019), thus eliminating the structural complexity of in situ soil 
systems and limiting our insight into soil functions. 

This study presents and evaluates a workflow for segmenting pores 
and organic phases in complex heterogeneous, saturated sediment such 
as those found in coastal saltmarshes. Our segmentation approach al-
lows the user to quantify the interactions and complexity of both pores 
and organic matter elements, and to distinguish the surface-connected 
live roots from the necromass in order to get a complete picture of 
material interactions in heterogeneous soils. We will discuss the 

Fig. 1. Data acquisition and processing workflow. The overall processing time 
from scanning to obtention of output parameters is about four days on a high 
performance computing suite. 
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potential applications of this approach to the study of key soil functions, 
such as soil–plant interactions, soil structural stability against eroding 
forces, and soil carbon dynamics. 

2. Methods 

2.1. Study site 

The site chosen to conduct this study, a saltmarsh in Tillingham, 
Blackwater Estuary, Essex, UK, is representative of the heterogenous 
environments described above. Saltmarsh sediments are typically 
formed of mixed fine-grained sediments (clays to medium sands) and 
biogenic material, which makes them easily compacted and deformed 
during extraction. While saltmarshes have a low vegetation diversity 
compared to nearby non-saline environments (Teixeira et al., 2014), 
they are highly complex: tidal hydrology and strong vertical physico-
chemical gradients mean that water content, plant survival rates, root to 
shoot ratio and biomass accumulation vary in space and time (Moffett 
et al., 2012; Pezeshki & DeLaune, 2012). In addition, the saltmarsh 
subsurface structure depends on tidally controlled sediment deposition, 
but also on post-deposition processes such as autocompaction, bio-
turbation and root growth (De Battisti et al., 2019; French, 2006; Turner, 
2004). These characteristics mean that saltmarsh soils are excellent 
candidates to test the robustness of our µCT segmentation methods on 
challenging, highly heterogeneous samples. 

An upper saltmarsh sediment core (15 cm depth and 15 cm diameter) 

was collected in July 2018. The vegetation cover at the sample location 
is dominated by Atriplex portulacoides (sea purslane), Puccinellia 
maritima and Spartina anglica (Ford et al., 2016). The sediment type is 
clay-dominated with a mean grain size of 69 µm, with 71% of its ma-
terial below 63 µm. The sediment core was collected using the advanced 
trimming method initially developed by Hvorslev (1949): in brief, a 
plastic tube is placed on the soil surface; a trench is cut around the tube, 
then carved into the shape of the core while the tube is lowered around 
the sample, applying gentle constant pressure to limit edge drag and 
avoid compression and torque rotation. Large roots are cut with scissors 
rather than a knife to avoid jostling, impact, twisting or other defor-
mation to the sediment inside the core. Fine fibrous roots are sawed 
through with a serrated knife to avoid crushing and displacing the 
sediment around them. Further details and justifications for the sam-
pling method are provided by Carr et al. (2020). After extraction, the 
core was stored upright in a cooling box filled with bubble wrap to 
minimize disturbance during transport, and stored at 4 ◦C until required. 

The core was scanned using a Nikon Metrology XT H 225 X-ray 
Computed Tomography (µCT) system at 205 kV and 46µA (9.4 W). The 
exposure time was 500 ms at 36 dB gain. A Cu 1 mm copper filter was 
used to reduce beam hardening artefacts. 4486 projections were ac-
quired with 4 frames per projection, for a scan time of 4.5 h. The 
effective voxel size is 61.79 µm. The voxel grid was then downscaled to 
62.5 µm during volume reconstruction. The total volume contains 
2801*2783*2793 voxels. Fig. 1 summarizes the various steps applied to 
the scanned volume. The different steps following scanning are detailed 

Fig. 2. Correction of the residual beam hardening using a quadratic interpolation to remove the overall trend of darker values at the center of the sample. The density 
variations that remain in the detrended grayscale range correspond to actual density variations in the sample. 
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Fig. 3. Removal of the autocompaction effect on grayscales using a downcore linear fit. The correction factor at each z-slice is given by subtracting the linear fit from 
the uncorrected mean grayscale then adding the mean grayscale of the whole core. The method does not remove the logarithmic trend at the top of the sample so as to 
not excessively distort the grayscale values of the pores and organic matter. 
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in the subsections below. 

2.2. Reconstruction and signal processing 

The volume reconstruction step was undertaken using Nikon’s in- 
house software CT-Pro 3D (Ray, 2011): the software finds the center 
of rotation of the raw X-ray projections and converts the 2D radial slices 
into a 3D volumetric model defined by co-registered z-slices. The soft-
ware also partially corrects the z-slices for beam hardening using a 
polynomial fit: this imaging artefact occurs when the X-ray beam be-
comes progressively attenuated as it penetrates from the edge to the 
center of the sample, leading to an apparent darkening of the center and 
a brightening of the edges (Ketcham & Carlson, 2001). This type of 
correction works when the overall matrix can reasonably be assumed to 
have a consistent density throughout the sample (Ketcham & Carlson, 
2001), which should be the case for our clay-dominated material. Re-
sidual beam hardening can still affect the segmentation phase, even 
when invisible to the naked eye. To minimize its impact while removing 
edge disturbances during field sampling, an 8.75*8.75 cm square mask 
was selected in the center of each z-slice as an area of interest and 
applied throughout the volume (Fig. 1). A quadratic correction was then 
applied to the mean radial grayscale, the grayscale value averaged 
vertically across the core and plotted against the radial distance from the 
center (Fig. 2). 

Compared to other soils where the material density is consistent 
throughout, another challenge of clay-dominated coastal sediment is 
that they are highly compressible and may have rapid sedimentation 
rates due to material brought in by the tide (French, 2006), leading to 
autocompaction and to a downcore increase in the density of the inor-
ganic phase. In our sample, a linear trend in grayscale values is found 
with an R2 value of 0.75 (Fig. 3); a lack of a similar trend in the PVC tube 
around the sample (not shown) confirms that this trend is due to auto-
compaction rather than an artefact of scanning. In order to more 
consistently distinguish the mineral phase from the porosity and organic 
matter, this downcore trend is removed using a linear interpolation 
(Fig. 3). In practice, this means smoothing out the microporosity 
through the sample, which decreases with depth and affects the gray-
scale value of inorganic voxels due to the partial volume effect. A shift 
remains at the top few centimeters of the sample, where the trend is 
closer to a logarithmic fit in accordance with autocompaction patterns 
measured in silty saltmarsh clay (Bartholdy et al., 2010). However, 
applying a logarithmic correction to the topmost centimeters of the 
sample would excessively distort the grayscale value of the pores and 

organic matter, which we can expect to find in greater quantity near the 
surface. This step improves the segmentation of pores and roots in 
compressible sediment and soils, which is the focus of this paper; 
however, analysis of the sediment phase should use the unmodified 
grayscale values. 

Finally, in order to reduce noise in the grayscale values while pre-
serving the edges of the pores and organic features, different smoothing 
algorithms were tested using image filtering tools on Matlab, including 
Gaussian 3D filtering, 3D median filtering, guided image filtering and 
anisotropic diffusion (quadratic and exponential). The quadratic aniso-
tropic diffusion tool imdiffusefilt was found to be best suited for filtering 
out noise without losing the signal: the method enhances the contrast 
between matrix and darker elements by using strong gradients in the 
image as barriers to the smoothing effect and thus preserving the edges 
(Kaestner et al., 2006). 

2.3. Segmentation 

As stated in the introduction, µCT data applied to heterogeneous fine 
grained susbtrates are challenging to segment into their constituting 
phases because the partial volume effect blurs the limit between phases 
(Cnudde and Boone, 2013), and are better served by a combination of 
local adaptive thresholding methods. We first applied a method called 
hysteresis thresholding to distinguish the high-density inorganics from 
pores and organic matter. This method considers two thresholds: voxels 
below the low threshold have a high likelihood of being part of a pore or 
organic element and are systematically segmented, while voxels below 
the high threshold are only segmented if they are connected to the low 
threshold elements. A Frangi filter was then used to enhance tubular 
shapes within the sample by applying the Matlab function FrangiFilter3D 
(Kroon, 2010). The Frangi method uses the orientation patterns (ei-
genvalues) of the Hessian to distinguish tubular structures from plate- 
like or blob-like structures (Frangi et al., 1998). The output binary 
masks from hysteresis thresholding and Frangi tubular shape enhance-
ment were combined, adopting a single threshold to separate pores from 
organic matter. 

Additional steps were then added to improve the signal to noise ratio, 
including morphological closing and the removal of partial volume ef-
fect artefacts, which can lead to the detection of organic “halos” around 
pore elements. The outer edges of organic matter elements were 
removed, then a dilation was performed to restore the remaining organic 
features to their original size (Fig. 4). Finally, in the same way that root 
elements can have a low contrast with the surrounding inorganic matrix 

Fig. 4. Schematic diagram illustrating partial volume effect reduction using contour removal (Matlab tool bwmorph3) followed by dilation (Matlab tool imdilate). 
Grey: Organic matter elements. Black: Pores. A: Initial segmentation of pores and organic matter elements; the partial volume effect causes organic “halos” to be 
detected around the pore elements. B: Remove edges of the organic phase to erase “halos” from partial volume effect. C: Dilate remaining organic matter elements 
back to their original size. 
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but a characteristic tubular shape, thin cracks in the sediment can have 
an intermediate grayscale value due to the partial volume effect, but a 
visible jagged edge. To capture these remaining pore elements, we used 
a canny edge detection that detects both strong edges and weak edges 
connected to strong edges (Canny, 1986) (Fig. 5). 

In order to remove the noise detected by these various methods, we 
tested two noise thresholds: 2,500 voxels (0.61 mm3) and 5,000 voxels 
(1.22 mm3) (FF2500 and FF5000 respectively). FF2500 contains 7,066 
organic matter elements compared to 4,106 for FF5000 according to the 
Matlab volumetric image processing function bwconncomp; this will 
significantly increase the computational intensity of the quantification 
phase. Through visual comparison of the 3D volumes for FF5000 and 
FF2500, and quantitative comparison of the percentages of pore and 
organic fractions with depth, we tested whether this lower threshold 
significantly improves signal detection, or whether the additional ~ 
3,000 elements detected are noise elements with little impact on the 
structure of the organic matter phase. We also tested whether the 
application of a Frangi filter, which takes several hours to run, signifi-
cantly changes the detection of the live roots and necromass. To that 
end, a third version of the dataset NFF5000 was produced, using all the 
previous steps except for the Frangi filter, and using a noise removal 
threshold of 5,000 voxels. 

Traditional methods for distinguishing live from dead roots are based 
on color, shape and plasticity (Persson, 2012). However, color and 
plasticity are not visible in µCT images, and while live roots tend to be 
larger and better branched than dead roots, densely grouped dead roots 
may be detected as one large, complex connected system; using these 
traditional definitions would therefore be prone to errors. Instead, in the 
binary masks NFF5000 and FF5000, we defined the live root system as 
all elements connected to the surface layer, approximated by the top 80 
voxels (=5mm) of the sample. The remaining, unconnected elements 
were classified as necromass. 

2.4. Quantification and ground referencing 

The 3D binary masks NFF5000, FF5000 and FF2500 were used for a 
detailed topological analysis of the pores and organic matter elements 
using the automated software plugin BoneJ for ImageJ (Doube et al., 
2010; Schindelin et al., 2012). Morphological parameters (Table 1) were 
extracted to determine how the different segmentation approaches 
affect the volume, length and structural complexity of the pore and 
organic phases. 

The 3D architecture of the sample was visualized using the volume 
rendering software Drishti (Limaye, 2012). In order to compare this 3D 
rendering with the actual sample, and check that the root and pore el-
ements visible to the naked eye are correctly identified, the core was cut 
open with a serrated knife along a pre-marked section one day after 
scanning. Using a prior marking (either an incision in the PVC tube or a 
piece of metal, both of which will be visible in the X-ray attenuation 
coefficients), the equivalent vertical section was located in the 
segmented volume and overlain with a high-resolution photograph of 
the cut-off face. While there is no infallible way of cutting open a core 
without causing disturbance, the cohesive nature of the clay means that 
the largest pore structures and the position of the roots are likely to be 
preserved. 

3. Results 

3.1. Quality control of the segmentation method 

Observation of the segmented horizontal slices provides insight into 
the different types of pores and organic matter elements detected by our 
segmentation method (Fig. 6). The larger organic elements have a 
complex inner structure with a hollow center and multiple other internal 
voids: these air spaces within roots and stems (aerenchyma) are an 
adaptation strategy of coastal wetland plants such as Spartina to anoxic 
conditions (Mitsch & Gosselink, 1986). The smaller, tubular root ele-
ments visible in the Z-slice correspond either to lateral roots branching 
off from the main Spartina root system, or to the roots of other plant 
species present on site such as Atriplex or Puccinellia. The porosity ele-
ments appear either as tubular features, corresponding to inner voids 
within roots and voids left behind by decaying roots, or as patches with 
no organic origin. 

Fig. 5. Application of a Canny edge filter to refine pore detection in the sample. 
A: Original grayscale values. B: Pore segmentation without the Canny edge 
detection. C: Canny edge detection applied to find the edges of pore elements 
(Young, 2014); notice how the canny edges do not always connect with the 
features from B and add internal complexity to the pore phase. D: Morpho-
logical closing applied to reconnect the pore features to their edges (Matlab 
tool imclose). 

Table 1 
List of morphological parameters considered.  

Parameter Unit Definition 

Total phase fraction % Fraction of the number of voxels belonging to 
a phase by the total number of voxels in each 
Z-slice and represented as depth profiles. The 
surface of the sample is automatically 
detected as the Z-slice wherein the proportion 
of matrix to void, segmented using an Otsu 
global thresholding, first reaches 75%. 

Total volume mm3 Total volume of the studied phase 
Total skeleton length mm Total length of the skeleton, obtained by 

shrinking a volume to a 1-voxel thick median 
structure, composed of nodes and branches 
that preserve the topological complexity of the 
initial volume. 

Connectedness % Volume of the largest connected element 
divided by the total volume of the studied 
phase 

Maximum Euler- 
Poincare characteristic 

No 
unit 

Topological invariant that describes the shape 
or structure of a topological space. In BoneJ, it 
is calculated as the number of objects minus 
the number of handles (hole that goes through 
an object) plus the number of cavities (holes 
enclosed within the object). It is used as a 
proxy for complexity and connectedness: 
negative values correspond to a well- 
connected complex system.  
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Adding the Frangi filter had no visible effect on the detection of pore 
elements, but considerably increased the size, extent and complexity of 
the organic matter phase (Fig. 7). At NFF5000 the organic matter phase 
is limited to areas connected to large pores: because of the hysteresis 
thresholding applied, medium grayscale voxels are only segmented if 
they are connected to a low grayscale voxel. Therefore the Frangi filter is 
particularly efficient at detecting thin unconnected root elements with 
no internal voids. By contrast, changing the noise removal threshold 
from 5,000 to 2,500 voxels had little visible impact on the 3D volumes of 
either the pore or the organic matter phases (Fig. 7). 

Ground referencing shows that the segmentation method proposed 
successfully distinguishes areas dominated by roots from areas domi-
nated by pores (Fig. 8). On the high resolution photograph, the top half 
of the cut face (0–6 cm) is pockmarked by small roots, though individual 
roots are difficult to visualize except for a few of the larger Spartina 
roots. The section between 6 and 12 cm contains more and larger 
porosity elements; the structure and distribution of these pores are also 
similar to what is observed on the segmented volume. 

3.2. Quantification and distinction between live roots and necromass 

The segmented pore phase can be separated into three regions: 0–6 
cm, 6–10 cm and 10–14 cm. The first region at 0–6 cm is characterized 
by a low pore fraction and bulk volume, a low connectivity, but a peak in 
both the pores and organic matter’ skeleton length (Figs. 9-10). This is 
due to the influence of the Spartina stem and roots, which contain 
several transport pathways and unconnected hollow chambers that add 
to the length of the overall pore system. The second region at 6–10 cm 
sees a peak in the pore fraction (Fig. 9) and in the connectedness and 
complexity of the pore system (Fig. 10). This region coincides with the 
branching off of the main Spartina root into lateral roots at about 8 cm, 
and with a horizontal crack visible in the rendered volume (Fig. 7). The 
root system may have preferentially developed within an area of 
structural fragility and lesser density, as has been observed in previous 
studies (Lucas et al., 2019). The third region sees a slight decrease in the 
bulk volume, connectedness and complexity of the pore system (Figs. 9- 
10). 

The organic matter phase is dense throughout the 15 cm sample 
(Fig. 7), which is to be expected as we are still within the root zone of a 
biologically diverse upper saltmarsh: the saltmarsh root zone extends 
from 15 to 50 cm depending on plant species and environmental con-
ditions (De Baets et al., 2008). The organic phase is denser in the first 5 
cm then starts to decrease downcore (Fig. 9). Adding the Frangi filter 
leads to the detection of a larger and more complex organic matter phase 
overall, with a higher fraction, bulk volume and total skeleton length 

detected at all depths (Figs. 9-10). Adding the Frangi filter also high-
lights the downcore decrease of the organic fraction (Fig. 9), notably by 
detecting a higher number of elements not connected to the main root 
system: in the first 5 cm of the sample, 25% of all segmented elements 
are connected to the main root feature in FF5000 and FF2500, against 
50% for NFF5000 (Fig. 10). 

Fig. 11 shows the potential of the Frangi filter to detect the necro-
mass as well as the surface-connected live root system. The live root 
phase highlights one large Spartina root that branches out into smaller 
horizontal roots at about 80 mm depth. The live root system detected 
using the Frangi filter is larger and more complex, with a greater bulk 
volume and number of branches in the skeleton, and reaches 2.5 cm 
deeper. A number of thin lateral roots also becomes apparent. Without 
the Frangi filter, by contrast, the live root system appears fragmented, 
and very little of the necromass is detected. 

4. Discussion 

The use of µCT in soil sciences allows us to visualize and quantify 
crucial structures and processes in the subsurface environment, but this 
technology presents ongoing challenges: sampling procedures to mini-
mize sediment disturbance remain time-consuming, access to specialist 
X-ray µCT scanning equipment is still not widespread in the soil science 
community, and the large datasets can create issues with processing and 
data storage. Finally, until standard segmentation methods are widely 
agreed upon, interpretation of the µCT volumes will require specific 
expertise in 3D signal processing and image analysis. Therefore multi-
disciplinary methodology papers are necessary to disseminate novel 
image processing techniques and encourage the wider use of µCT by soil 
scientists. 

The approach outlined in this paper has multiple potential applica-
tions for soil science. The three-phase segmentation (pores, organic 
matter elements, sediment matrix) allows the study of pore-root in-
teractions, something which has so far only been attempted in simplified 
conditions such as sieved and repacked soil columns (Lucas et al., 2019). 
These interactions are expected to play an important role in natural soil 
structure because of the high trait plasticity of roots: their growth de-
pends on the distribution of water, nutrients and of the areas of least 
resistance marked by the porosity elements (Bardgett et al., 2014). At a 
higher resolution, the method could be used to study the internal 
structure of plants and roots to visualize internal air spaces and infer 
nutrient and fluid exchanges between the surface and subsurface: the 
presence of aerenchyma has been an obstacle in previous segmentation 
attempts using a visual tracking algorithm (Zappala et al., 2013). In 
addition, the capacity of our method to distinguish live roots from the 

Fig. 6. Segmentation example, showing the pore phase in red and the organic matter phase in green overlain over the remaining inorganic phase. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 7. Segmented volume visualization using different segmentation methods and noise thresholds. Grey = pores; green = organic matter; brown = inorganic 
matter. Volumes obtained using Drishti (Limaye, 2012). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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necromass opens the door for µCT applications to the study of soil 
structural stability. Indeed, roots can have either a weakening or a sta-
bilizing effect on the soil depending on their structure, connectedness 
and state of decay (Brooks et al., 2020). Coarse roots can dislodge 
sediment and contribute to cliff-face erosion (Feagin et al., 2009), while 
thinner and denser root meshes hold the soil together and provide a 
physical barrier between the sediment and the water (Brooks et al., 
2020; Gedan et al., 2011). Decaying unconnected roots also contribute 
to making the soil less dense and more cohesive (Brooks et al., 2020; 
Feagin et al., 2009). 

Finally, the proposed method opens the door to the study of soil 
carbon dynamics and greenhouse gas exchanges in various types of soils. 
The potential of µCT to model gas exchanges within 3D macropore 
structures is already known (van Marcke et al., 2010). Our approach can 
further the state of knowledge by providing a robust way of estimating 
root biomass. This should improve the estimation of carbon stocks since 
root systems and particularly the fine-root mass contribute dispropor-
tionately to soil carbon sequestration compared to the aboveground part 
of the plant (He et al., 2018). Root biomass estimation still lacks a 
methodological consensus (Addo-Danso et al., 2016), and traditional 
methods of belowground biomass estimation rely on labor-intensive and 
time-consuming destructive sampling protocols, as highlighted by 
Valiela (2015): “This project became legendary as the most tedious task 

in our labs, tolerated only by everyone taking turns at the detailed and 
nearly endless staining, sorting, drying, and weighing protocols”. 
Furthermore, distinguishing live roots from necromass is recommended 
when estimating carbon sequestration potential in the soil (Adame et al., 
2017). The proposed method, based on the connection of the root system 
to the surface, comes with its own limitations: the minimal size of roots 
detected depends on the scanning resolution chosen, and live root sys-
tems connected to shoots outside the perimeter of the core will be 
detected as necromass; prior knowledge of the live root thickness, in-
ternal structure and architecture is recommended to choose appropriate 
scanning parameters and to interpret the µCT volumes. Nevertheless, 
owing to the capacity of µCT to rapidly and non-destructively segment 
large and complex root systems, the method outlined in this paper could 
play a crucial role in studies of soil carbon dynamics. 

5. Conclusion 

This study applied X-ray Computed Microtomography to a highly 
heterogenous saltmarsh sediment core. We developed a hybrid seg-
mentation method that combines local adaptive thresholding and shape 
detection to visualize and quantify the 3D distribution of pores, live 
roots and necromass. The segmented volumes of roots and pores closely 
match the structures observed on high-resolution photographs of the 

Fig. 8. Ground referencing using the segmented volume overlain over a photograph of the cut-off face of the core. On the segmented volume: brown = inorganic 
matter; grey = pores; green = organic matter. Volume obtained using Drishti. (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.) 
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core taken along a cut-off face. We find that the use of a Frangi filter for 
tubular structure enhancement is particularly efficient to highlight fine 
root elements that have a low density contrast with the mineral phase. 
Compared with region-growth segmentation methods, which only 
segment objects connected to pre-selected seed points, this method is 
more versatile because it requires no prior knowledge of the core con-
tent, and because it distinguishes between the live root system and the 
necromass. Our analysis of the pore and organic matter elements’ vol-
ume and structure shows clear interactions between the two phases: root 
decay is a source of porosity in the sediment, while the presence of areas 
of lower density with a higher concentration of pores determine where 
roots are able to develop. Our application of X-ray µCT has the potential 
to provide unprecedented knowledge of the 3D organisation of pores 
and organic matter within heterogeneous soils, and to explore key 
ecosystem functioning such as erodibility and carbon sequestration 
dynamics. 
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