
Downloaded from: http://insight.cumbria.ac.uk/id/eprint/4569/

Usage of any items from the University of Cumbria’s institutional repository ‘Insight’ must conform to the following fair usage guidelines.

Any item and its associated metadata held in the University of Cumbria’s institutional repository Insight (unless stated otherwise on the metadata record) may be copied, displayed or performed, and stored in line with the JISC fair dealing guidelines (available here) for educational and not-for-profit activities provided that

- the authors, title and full bibliographic details of the item are cited clearly when any part of the work is referred to verbally or in the written form
- a hyperlink/URL to the original Insight record of that item is included in any citations of the work
- the content is not changed in any way
- all files required for usage of the item are kept together with the main item file.

You may not

- sell any part of an item
- refer to any part of an item without citation
- amend any item or contextualise it in a way that will impugn the creator’s reputation
- remove or alter the copyright statement on an item.

The full policy can be found here. Alternatively contact the University of Cumbria Repository Editor by emailing insight@cumbria.ac.uk.
Abstract (250 words)

Exercise in young adults consistently improves various aspects of physiological and psychological health but we are now realising the potential benefits of exercise with advancing age. Specifically, exercise improves cardiovascular, musculoskeletal, and metabolic health through reductions in oxidative stress, chronic low-grade inflammation and modulating cellular processes within a variety of tissues. In this this chapter we will discuss the effects of acute and chronic exercise on these processes and conditions in an aging population and how manipulating exercise variables can provide different stimuli which can have differing effects on these processes. Additionally we will address how physical inactivity can accelerate aging in tissues by promoting cell senescence and atrophy and, how physical activity and physical inactivity may affect non-communicable disease risk in older adults via cellular processes.

Physical Activity in the Elderly and Non Communicable Disease

Advancing age is associated with increased risk of non-communicable disease (NCD), such as cardiovascular disease (CVD), type 2 diabetes (T2DM), and cancer but to name a few (90). Using mathematical modelling, Lozano et al. (90) suggested that there is a 39% increase in the incidence of deaths attributable to NCD as a direct consequence of the aging population. Healthcare provision, and healthcare insurance costs are significant due to the debilitating effects of such diseases on the human body. Epidemiological evidence strongly suggests that we become more inactive as we age (57), which further increases the risk of NCD incidence, morbidity and mortality in this population (87, 139). Insufficient physical activity in the older population is associated itself with muscle mass loss/atrophy and sarcopenia (45), T2DM (3), CVD (159), and increased risk of infection (89), and is estimated to contribute to $65.7bn worth of healthcare costs per annum worldwide (149), which is equivalent to the gross domestic product of Costa Rica in a single year. In fact, increasing physical activity levels in
the older populations is linked with enhanced cognitive function, physical performance, improved cardiovascular health measures (20), reduced T2DM risk (37), together improving quality of life.

Physical activity and exercise can stimulate a host of changes at the molecular, cellular, and tissue level, which translates to improved physical, as well as psychological health. The following sections will delve into the physiological effects of exercise, and the benefits for the older population, detailing molecular, cellular and tissue-level effects which partly explain the health benefits of exercise and physical activity.

The Aging Cardiovascular System and Physical Activity/Inactivity

The cardiovascular system (CVS) is essential for the delivery of oxygen and nutrients to every cell in the body, the removal of waste products, such as carbon dioxide, lactate and ammonia, and also works to help the immune system fight infection through distributing leukocytes to sites of infection. As we age, various aspects of our cardiovascular system change. Our heart undergoes structural changes, as do our blood vessels, which makes it difficult for the CVS to perform its roles efficiently. Unfortunately, due to aging, we are at a high risk of CVD morbidity and mortality (90), as a result of incidence of stroke, myocardial infarction (MI) and heart failure (HF). Therefore maintaining the health of our CVS is key for longevity.

Aging and Vascular Function: Role of Exercise and Physical Activity

Our blood vessels are key structures within our body which regulate blood flow to all tissues of the body, and the ability of our vasculature to do so, is termed ‘vascular function’. The cells of the inner lining of all blood vessels are the endothelial cells. These cells are crucial in regulating blood flow via producing and releasing vasoactive substances such as nitric oxide (NO) (50). NO subsequently diffuses across to the surrounding vascular smooth muscle cells (VSMCs) and stimulate these cells to relax via Ca^{2+} active re-uptake by the sarcoplasmic reticulum. The relaxation causes a widening of the diameter of the blood vessel, thus allowing increased blood flow to tissues distal to the vessel. This predominantly occurs at the arteriolar level, rather than the artery or capillary level, due to the relative ratio of VSMCs to endothelial cells. We can assess vascular/endothelial function through a technology called ‘flow-mediated dilatation’, or FMD, which is the use of ultrasound technology to determine changes in vascular diameter (typically the brachial or femoral arteries) in response to an increase in flow after a period of ischaemia or occlusion. The subsequent shear stress after occlusion is removed results in an increase in NO production by the endothelium (28), and so FMD has been validated to be a measure of endothelial, NO-dependent vasodilation (55). Studies to date have found significant relationship between endothelial function/FMD scores and cardiovascular-related mortality, with
poorer scores and lower levels of vasodilation being predictive of earlier mortality (56). Unfortunately, with advancing age, we display significant reductions in endothelial function, as demonstrated in several studies (13, 14, 101, 134, 142). Potential causes include age-related elevations in oxidative stress, which may uncouple endothelial NO synthase (eNOS), which is required for NO production from its precursor, L-arginine. Aged vascular tissue exhibit greater production of superoxide (O$_2^{-}$) anions (30, 59, 97) which may contribute to the uncoupling of eNOS. The role of oxidants in the age-related reductions in endothelial function were confirmed in a study by Eskurza et al. (44). In this study, young, old sedentary adults were assessed for vascular function. They confirmed that vascular function was reduced in the older group, but that an acute dose of ascorbic acid (vitamin C, a powerful antioxidant) reversed this effect, so much so that there was no longer a significant difference in vascular function between the two age groups.

Interestingly, the study by Eskurza et al. (44) also included an older, endurance trained group. Vascular function between the young group and the endurance trained older group were not different from one another, indicating a powerful role of exercise and physical activity to prevent or at least attenuate age-related vascular dysfunction. The potential for exercise and physical activity to do this, as indicated by this cross-sectional study, has been confirmed by longitudinal studies in both young (10, 115) and older adults (13, 14).

Cardiovascular Regeneration and Repair with Aging and Exercise

Our bodies have the remarkable ability for endogenous regeneration, through our own stem and progenitor cell network. Stem cells, located in specific tissues, or from the bone marrow, contribute to tissue repair and growth. The walls of our heart contain c-kit$^+$ cardiac stem/progenitor cells (43, 116), which have been shown to differentiate into myocardial cells under stimulation in vitro and in vivo (43). Aging influences the function of these cardiac stem cells (22), with reduction in stemness of cardiac progenitor cells, impairments in differentiation into myocardial cells, and failure to secrete vital paracrine factors in response to stimulation in animal models (22). Aged mice also display CPCs expressing greater levels of senescent markers such as p27kip1, p53 and p19ARF, and subsequent loss of CPCs due to apoptosis occurred (148). Unfortunately, due to the invasive nature of CPC isolation, characterization and functional assessment, human data are lacking, however rat and mouse models are ideal as whole lifespan effects on such cells can be investigated with relative ease.

Interestingly, exercise training in animals activates c-kit$^+$ and Sca1$^+$ cardiac progenitor cells, which may contribute to left ventricular physiological hypertrophy (163), a response that appears to be dose-dependent (163). Mice that underwent physical training displayed greater number of c-Kit$^+$Lin$^-$ cells than sedentary controls, potentially due to increased survival or increased proliferation of cardiac
resident progenitors (88). It is possible that the increase in cardiac workload leads to increased cellular activation of these CPCs (150), which in turn would support the subsequent physiological hypertrophy observed with exercise training in humans. However, there is a lack of research in this area, and is an exciting area of future work to determine if exercise can be used to stimulate cardiac repair after ischaemic events in patients and in the elderly.

Bone marrow-derived, or tissue-resident endothelial progenitor cells (EPCs) contribute to the regeneration and growth of the vascular endothelium (5, 6). These cells may or may not differentiate into mature endothelial cells, but they do have the ability to secrete pro-angiogenic factors, such as vascular endothelial growth factor (VEGF) and interleukin-8 (IL-8) to support endothelial cell turnover and replication (71). Unfortunately, they circulate in such small numbers, within the region of 0.001-0.01% of all circulating mononuclear cells (21). Despite this, their circulating number has been related to vascular function (18) and mortality risk, with lower progenitor cells associated with impairments in peripheral arterial tonometry and greater risk of mortality and morbidity in humans (110). Several studies have observed lower circulating EPCs in older humans compared to younger counterparts (120, 146), which was independent of other cardiometabolic risk factors (120). EPC function and survival are also affected by aging, with older adults displaying greater number apoptotic EPCs than younger individuals (83), and these cells display functional deficits, such as secretion of pro-angiogenic cytokines and growth factors (82). Together, these data show that aging-associated increased vascular and mortality risk may be partly due to loss of EPC number and/or function. Additionally, Xia et al. (161) treated mouse ischemic hindlimbs with human EPCs from young and old donors. They found that cells from young donors homed to the site of ischemia, and helped to promote vascular repair, and recover blood flow more so than sham delivery. Interestingly, they also found that EPCs from older individuals lacked this ability, and associated this with an inability of these EPCs to migrate in vitro, shown to be associated with impaired intracellular CXCR4:JAK-2 signaling (161, 162).

Single bouts of exercise have a remarkable ability to mobilize these progenitor cells from peripheral tissues, such as the bone marrow, into the circulation in the post-exercise recovery period (121, 153), even in older adults, despite an attenuated response (120). The mobilization of such progenitor cells are accompanied by elevations in circulating VEGF (121, 152, 157), granulocyte colony-stimulating factor (G-CSF) (121) and stromal-derived factor-1α (SDF-1α) (152, 157), thought to act as chemoattractive factors. The response of EPCs to acute exercise is both time and intensity-dependent (84). Studies investigating the effect of regular exercise training on circulating EPCs provide mixed results with regards to outcomes. Most (29, 68, 85, 94, 124, 125, 133, 138, 151, 161), but not all studies (91, 146) demonstrate either an improvement in EPC number (due to increased mobilization or enhanced survival) or function with regular exercise training. In an elegant study, Xia et al. (161)
demonstrated that 12 weeks physical exercise training in older populations can restore the age-related impairment in EPC function. The researchers transplanted human EPCs (young and old donors, before and after exercise training) into mice that had undergone femoral artery ligation. Their data concur with their earlier finding that EPCs from older adults displayed reduced neovascularization and ability to recover blood flow in ischemic hindlimb in mice (162), but exercise training resulted in improved vascular repair capability, and recovery of blood flow.

The current evidence strongly suggest that exercise has a strong positive benefit for the cardiovascular system in aging populations, through its effects on improving vascular function via increasing NO bioavailability, angiogenesis, and both cardiac (c-kit+ CPC activation and survival) and vascular (improving EPC number and function) repair mechanisms.

Musculoskeletal Health and Function with Healthy Aging

One important change associated with biological aging is our reduced ability to exert force (or torque) around a joint. Age-associated dysfunction of the muscular system, termed sarcopenia, is defined as a syndrome characterised by loss of muscle mass and strength. This results in risk of adverse outcomes such as physical disability, inferior quality of life, and mortality (35, 39). Therefore, the European Working Group on Sarcopenia in Older People (EWGSOP) proposed that diagnosis requires evidence of reduced muscle mass, and either low muscle strength, or low physical performance. Recently, it has been observed that reduced muscle power (dynapenia) occurs faster than force or mass losses and may be more predictive of functional impairment (95). This is because many tasks of daily living require us to exert force over a short space of time. E.g. when we stand from a chair.

Various interacting tissues, including connective, nervous, skeletal, and muscular, determine measurable force and power in vivo. These systems do not operate in isolation, so a holistic view of force production is required. For example, nerve conduction velocity, motor unit recruitment, and firing frequency all influence force via recruitment of muscle, and decline with age (79). However, skeletal muscle is our most important organ for generating force and power, and therefore this section will focus on the biology of aging muscle.

Causes of Age-Associated Muscle Deterioration

Several theories are proposed to explain our reduced muscular capacity with age. Alterations to contractile characteristics, namely decreased twitch speed and a shift in fibre type (from fast to slow)
are observed in the elderly which reduces rate of force development. Decreased anabolic hormone production, increased proinflammatory cytokines, and protein turnover imbalances attenuate the ability of aged muscle to regenerate (which leads to atrophy and therefore reduced muscle mass). Importantly, these mechanisms occurring with age, are exacerbated (or even detected in isolation) by physical inactivity. However, if aging were ‘curable’ with exercise, masters athletes (older adults who train intensely on a regular basis) and ex-Olympians would be deemed immortal, which is clearly untrue. However, masters athletes do display a younger phenotype than age-matched sedentary counterparts, which results in lower incidence of frailty and dependency. As such, masters athletes may be considered as a model of successful aging (61). This hypothesis is supported by masters athletes presenting greater relative lean mass, and muscle power than sedentary counterparts, thus suggesting chronic exercise (even aerobic in nature) preserves muscle into later life (62). The following sections will discuss how each mechanism may cause muscle deterioration, and how exercise may mediate these mechanisms, with evidence from human studies.

Aging and Reduction in Anabolic Hormones: Influence of Exercise

As we age, less anabolic hormones are released into circulation to interact with muscular receptors, to exert muscle-building effects (131). This theory of muscle aging is supported by cell culture experiments (38), but also administering older adults testosterone and observing increased muscle mass and strength (7, 49, 132). Although supraphysiologic doses of anabolic hormones increase muscle mass, the effect of lifelong exercise or physical fitness on naturally occurring anabolic hormones is unclear. Ari and colleagues (4) reported higher testosterone in masters athletes compared with sedentary counterparts. However, this finding is not ubiquitous (64). Several studies inducting sedentary individuals onto an exercise programme do see an increase in ‘anabolic’ hormones, which accompanies lean mass gains (63, 66). What is evident however, is that a threshold level of metabolic stress may be required to induce hormone changes, as Khoo et al. (78) noted greater increases in testosterone following high volume, compared to low volume training. Similarly, Herbert et al. (66) reported increased insulin-like growth factor-1 (IGF-1) following high intensity training, but not following low intensity training in previously sedentary older men.

Endocrinology is a complex discipline, with hormones exerting multiple actions, which confounds our ability to draw conclusions about whether hormone changes are to blame for muscle deterioration. For example, IGF-1 may be increased post-exercise compared to pre-exercise, but testosterone, cortisol, myostatin, and growth hormone may not be different, so can we say for sure that the individual is more ‘anabolic’ than before? Probably not. Similarly, a hormone in circulation may be
Inflammation is a complex biological response to tissue injury. Aging increases the risk of chronic inflammation, which can contribute to muscle aging and loss of muscle mass. Exercise has been shown to have anti-inflammatory effects, which may help mitigate the negative effects of aging on muscle. The combination of aging and exercise can have a synergistic effect on muscle protein turnover, with resistance exercise most potent in increasing muscle protein synthesis (MPS) and reducing muscle protein breakdown (MPB). Amino acid-based feeding increases net protein balance, via increased MPS, and reduced MPB (99). Exercise exerts a synergistic effect on MPS and ultimately net protein balance, with resistance exercise most potent (40, 48). MPS in response to amino acids (36, 156) and
resistance exercise (81) is reduced in aged muscle compared to young muscle, and is termed *anabolic resistance* (117). It is worth noting however, that reduced MPS is not always observed in older adults (80, 141). Therefore, blaming chronological age for anabolic resistance, rather than physical inactivity (often associated with advanced age), may have led to classic type I error in cross-section comparison. Breen et al. (17) suggested that inactivity induces anabolic resistance as they observed two weeks’ reduced physical activity decreased lean leg mass by ~4%, and postprandial MPS by 26% in ~72 year olds. Furthermore, Symons (141) reported MPS increased in young and old adults to the same extent following resistance exercise and protein ingestion. In the sole study investigating MPS in masters athletes (41), masters and young triathletes completed 30 min downhill running to induce muscle damage, and MPS was lower in the masters triathletes comparing to the young triathletes, which resulted in poorer subsequent cycling performance.

Due to this disruption in net protein balance, older individuals likely require greater protein intake to maintain muscle mass and function (111, 112). This is often difficult as older individuals have a lower appetite, and protein is the most satiating of the macronutrients. Therefore, pragmatic supplementation may be necessary to optimise health (111).

Summary and Practical Applications

Whilst recent advancements in physiological imaging and molecular biology provide insight into the mechanisms underpinning muscle aging, loss of function, and frailty, we are still some way from conclusive evidence to suggest which cause is dominant. What we know, is the above causes occur simultaneously, and are often interlinked. To most of us however, the mechanisms underpinning muscle aging are academic, and the critical issue is our health and independence. Physical inactivity and aging-reduced muscle function increases our likelihood of sarcopenia or dynapenia. Therefore, applied studies that demonstrate improved physical function may have the greatest practical application. For example, Fiastrione and colleagues (46) reported improved strength (175%), lean leg mass (9%), and gait speed (47%) in nonagenarian women following resistance exercise, which demonstrates great muscle plasticity into old age. More recently, high intensity interval training (HIIT) has shown some promise for increasing muscle power in older adults (~65 years) (63, 67, 126). Yet, the efficacy and safety of this model in the old-old (85+ years) is still untested.

In summary, age reduces our capacity to increase muscle strength and size. Yet, by staying active and performing high intensity weight training or power output exercises, we can attenuate the symptoms
of aging, which may result in a younger muscle phenotype. More importantly, having a large amount of muscle (relative to the rest of the population) is a predictor of longevity (https://www.ncbi.nlm.nih.gov/pubmed/24561114).

Vitamin D and Bone Health in Older Adults

Vitamin D status and metabolism is associated with numerous negative skeletal consequences affecting both bone and muscle, such as reduced bone mineral density (BMD), sarcopenia and dynapenia (age-associated loss of muscle strength), osteomalacia (marked softening of bones), and impaired calcium absorption (69). A large proportion of the global population are vitamin D deficient due to not meeting recommended intake guidelines and the climate restricting sufficient dermatological metabolism of vitamin D. The primary source of vitamin D is from direct skin exposure to Ultra Violet B (UVB) rays from the sun initiating the conversion of pre-vitamin D (7-dehydrocholersterol) to vitamin D₃ (cholecalciferol) (70), which is inherently dependent on climate and weather and thus latitude and season. Vitamin D concentrations are inversely linked with advancing age (26), with evidence suggesting that aging affects the cutaneous capacity for the initial metabolic conversion in the vitamin D pathway, and the concentration and expression of subsequent vitamin D metabolites, such as the vitamin D binding protein (DBP) and the vitamin D receptor (VDR) (11). The ligand-activated VDR, expressed in skeletal muscle as well as most other tissues, is a strong mediator of mRNA transcription and thus protein synthesis (12, 130). The expression of VDR and the post-transcriptional regulation of VDR and can be affected by aging (34). As a result, evidence has suggested that a lack of vitamin D in an aging population may affect skeletal muscle mass and strength and thus induce a risk of falls and immobility.

It is generally accepted that vitamin D in combination with calcium beneficially affects bone health and quality, primarily the readily measured surrogate of bone strength: BMD. During the aging process there is a decline in the intestinal absorption of calcium, which may be predetermined by the bioavailability of the active form of vitamin D (1,25(OH)₂D₃) (154), which declines with advancing age. Vitamin D stimulates the production of calcium-binding protein (CBP) in the intestine to facilitate the absorption of calcium. Vitamin D is also a regulator of cell growth and maturation, particularly of osteoblasts (bone cells), and mediates the function of white blood cells such as macrophages and activated T- and B-lymphocytes, which modulate the immune system.

Although there are mixed results on the effect of exercise and vitamin D metabolism in older adults, research has indicated that mechanical stress such as exercise and strength training can alter the expression and action of key vitamin D metabolites and increase skeletal muscle mass and strength.
This may be through alterations in vitamin D signalling, which has been found to influence skeletal muscle protein synthesis. Vitamin D seems to have a role on skeletal muscle (23) that is easily manipulated by exercise and physical activity. A lower vitamin D status has been associated with a decline in muscle mass and strength, which becomes increasingly prevalent as age advances. Investigations in vitro have reported 1,25(OH)2D3 to stimulate key cellular pathways of muscle growth and differentiation, acting primarily through the action of VDR, to induce myogenesis (24, 51). Currently it is uncertain if the effect of vitamin D on skeletal health is association or causation.

The Elderly Immune System and Changes with Exercise

Immune Cell Senescence and Aging

Human immunosenescence is the canopy term used to refer to the gradual deterioration of the immune system and function attributed to advancing age. The complex process of aging negatively impacts the innate and adaptive immune system and their functional capacity, therefore compromising the ability of the host to elicit an effective immune response to fight (ever-evolving) invading pathogens or prevent the development of a pro-inflammatory environment. The innate and adaptive immune systems are differently affected by aging, whereby innate immunity appears to be better preserved while adaptive immunity exhibits age-dependent depreciation.

Immunological parameters that impact health and mortality, creating the immune risk profile, become exhausted with the aging process. The functionality of the components of the adaptive immune system can become exhausted, specifically the main matured cells involved: bone marrow cells (B cells) and thymus lymphocytes (T cells) and their subsets. The primary lymphocyte subpopulation, CD3+ T cells can be divided into CD4+ and CD8+ subsets, which exhibit helper and cytotoxic functions. In particular, CD8 T cells are affected by age, inducing the development of an inverted CD4:CD8 T cell ratio and thus contributing to immune incompetence.

Thymic Atrophy with Aging

Age-dependent regression of the thymus, thymic atrophy, defined as the loss of thymic mass, induces a decline in the output of naïve T cells. Therefore, as age advances fewer T cells are developed and exported into the vascular pool (86), directly impacting on the peripheral T cell repertoire and altering white blood cell subset diversity, and thus the cells that are circulated to the target tissues.
There is an increase in the proportion of T cells expressing markers associated with senescence delineating T cell subpopulations from naïve T cells (recent thymic products with no proliferative history) to exhausted senescent T cells (not so recent poorly proliferative cells that exhibit severe functional abnormalities). These markers are primarily used to identify T cell subpopulations, but may also be used to provide insight into T cell differentiation, activation, and functional status. The combination of markers can be utilised to define naïve T cells turnover and loss of naïve T cells, assessing proliferative history. Aging can also restrict the T cell receptor (TCR) repertoire. T cell receptors are complex integral membrane proteins that are responsible for recognising antigens that are bound to the major histocompatibility complex (MHC). A diminished TCR pool reduces the capacity for T cells to identify specific bound antigens and illicit a distinct and critical immune response.

Exercise and Immunosenescence

The beneficial effect of exercise became apparent in the early work of David Neiman in the 1990’s who demonstrated that individuals who exercise are at less risk of upper respiratory tract infections (URTI), which are a major cause of visits to and treatment from physician. However, there is a hyperbolic relationship between intensity and volume of exercise and the risk of URTIs, suggesting that excessive or too intense exercise can be detrimental to effective immunity by suppressing immune function. There are both acute and chronic effects of exercise on immune function. In response to an acute bout of exercise, one of the major changes that occurs is a change in the number of leukocytes (118), with a biphasic response induced. The redeployment of lymphocytes from tissues or the blood vessel wall with exercise consists of an initial increase, known as lymphoctosis, that is followed by a significant transient drop in lymphocyte number, known as lymphocytopenia. Immediately upon cessation of exercise the rise in lymphocyte and neutrophil number usually precedes a reduction to below baseline levels, creating a pocket period of reduced immune protection, known as exercise-induced immunosuppression. Each of the individual cell types respond differently to exercise as they all perform different tasks to achieve sound immune function, however it is the Natural Killer (NK) cells and the cytotoxic T cells that display the largest response (128). Exercise-induced immunosuppression can also be altered by cytokines, the signalling molecules of the immune system. Circulating concentrations of cytokines have numerous responsibilities and roles in the inflammatory profile and protection against pathogens, directly and indirectly. Aging is recognised to strongly affect the redeployment of lymphocytes with particular subsets not mobilised in the bloodstream: although the relative numbers of T cells are similar between young and old, it is the absolute numbers that change. This causes a rise in senescent T cells that are mobilised and thus circulate around the body
unable to play an efficient role in immune function and protection (129). This age-related accumulation of senescent T cells lowers the naïve T cell stock and can increase host infection risk. This is also due to older individuals having less naïve and low differentiated cells in the circulation and peripheral tissues for redeployment (114). Exercise can override the age-related impairments in T cell subset redeployment, specifically CD8⁺ T cells (135). Aerobic fitness level, achieved through regular exercise, is inversely associated with the proportion of senescent T cells, with the relationship withstanding adjustment for age (136). Regular exercise appears to alleviate the deleterious effect of aging on the immune system.

Programmed cell death, or apoptosis, is an important mechanism in the mediation of the immune response, serving as a key role in the removal of damaged, infected, exhausted or redundant cells. This orchestrated system then allows for alterations in the proportion of cells that make up the bloodstream repertoire of T cells. Acute bouts of exercise have been shown to induce increases in both senescent and naïve T cells, and elevate apoptotic lymphocytes (100). Since aging induces an accumulation of senescent T cells, it is imperative for effective immune function to induce apoptosis in specific cell types, preferentially the older less functional cells, to allow for naïve T cells to be exported into the circulation, favourably altering the bloodstream repertoire. Exercise has been associated with an increase in apoptotic cells, although the mechanisms are not yet well understood. In addition, despite the modality of exercise, there is no evidence to suggest that lymphocyte-apoptosis contributes to exercise-induced lymphocytopenia (127).

Endocrine System, Aging and Physical Activity/Inactivity

Incidence and prevalence of Diabetes Mellitus

Diabetes is a global health problem, costing the national health services millions annually. Diabetes is a serious chronic disease, classified into two types: Type 1 Diabetes Mellitus (T1DM) and Type 2 Diabetes Mellitus (T2DM). The latest prevalence stats from Diabetes UK in 2016, report that almost 3.6 million people suffer from diabetes across the UK, with an additional 1 million likely to have undiagnosed T2DM, based on the Diabetes Prevalence Model 2016. Worldwide there are an expected 450 million people with Diabetes, with the incidence rate on the rise.

The initial pathophysiological events in the development of diabetes are insulin resistance, high blood glucose levels (hyperglycaemia), and impaired beta cell function (76). Beta cells are insulin-producing cells located in the islets of Langerhans in the pancreas. Degeneration of these cells is the main cause
of T1DM. T1DM is defined as insulin-dependent diabetes mellitus and requires medical monitoring and management in order to maintain euglycaemia (normal blood glucose concentration). The immune system attacks the beta cells, seizing the secretion of insulin and exposing the body to a hyperglycaemic state. This result is because insulin is the hormone responsible for the uptake of glucose from the systemic blood flow to the tissues. T2DM is defined as non-insulin-dependent diabetes mellitus and is the more common diagnosis. Although beta cell function may be affected, the autoimmune system does not attack the cells as in T1DM, the cells do not produce enough insulin to maintain euglycaemia. More commonly, T2DM is characterised by the body becoming resistant to the insulin that is secreted, known as insulin resistance or reduced insulin sensitivity. A lack of physical activity and exercise and a poor diet can lead to T2DM (105), suggesting it is a lifestyle-induced disease.

Role of Physical Activity and Exercise on Improving Insulin Sensitivity in Older Adults

Diabetes is very common in adults over the age of 65, with a decrease in insulin sensitivity observed with advancing age. Age-related changes, such as reduced physical activity, changes in diet, and undesirable changes in body composition, i.e. reduced muscle mass and increased fat mass, can affect glucose tolerance. A healthy lifestyle can reverse the detrimental effects on glucose metabolism. Most interventions focus on prevention rather than treatment, as diabetes is difficult to fully reverse. Although, it is known that regular exercise and a physically active lifestyle can help attenuate the usual decline in insulin sensitivity and glucose tolerance that is associated with aging. Older people, including those who are frail and/or weak, have been shown to benefit from endurance and resistance training, which can prevent age-related loss of muscle mass and strength, defined as sarcopenia and dynapenia. Muscle tissue has been identified as a major regulator of glucose homeostasis and tolerance; the more muscle tissue available to uptake glucose, the greater the control over systemic glucose levels. The initial step paramount for cellular glucose utilisation is the transport of glucose across the cell membrane into the matrix of the cell by the action of insulin, thus preventing hypo- and hyperglycaemia. The sensitivity of cells to the action of insulin may thus determine the rate at which glucose is cleared from the circulation. Since muscle tissue stores glucose, primarily as glycogen, the muscle mass has an available supply of glucose to maintain homeostasis in the case of hypoglycaemia. However, only during muscle activity can skeletal muscle glycogen breakdown provide a source of glucose (73), as it converted to lactate and then into blood glucose.

In addition, exercise training and maintaining a physically active lifestyle can be beneficial in promoting loss of excess abdominal or visceral adiposity that accumulates with an energy imbalance. In turn, this can result in alleviating insulin resistance (52). Obesity is associated with a low-grade
chronic inflammatory response, resulting from the secretion and activation of some pro-inflammatory cytokines/adipokines and respective pathways (137). Adipocytes exhibit properties shared by immune cells, mainly pro-inflammatory cytokine production, such as IL-6, tumor necrosis factor-α (TNF-α), and C-reactive protein (CRP), which can influence insulin production. Therefore, if older adults perform regular exercise and maintains a healthy body composition, the daily control over blood glucose levels may prevent the onset of a chronic hyperglycaemic state.

In addition to altering body composition, exercise can also influence insulin sensitivity on a cellular basis (65). Exercise upregulates the demand on hepatic and skeletal muscle metabolism to provide fuel for the mechanical stress induced. During exercise, the production, regulation, and uptake of glucose is mediated by the glucose transporter type 4 (GLUT4) through insulin-controlled pathways (109), with excess glucose contributing to glycogen stores if not metabolically required. Insulin secretion is inhibited during exercise and thus the body relies on hepatic and skeletal muscle tissue cells being sufficiently sensitive to insulin to maintain glucose homeostasis. Regular exercise can improve the efficiency of this mechanism, and as a result can improve insulin sensitivity of cells. Continuing to exercise throughout the age span, particularly in older adult or elderly ages, can delay the onset or reduce the risk of insulin resistance (54) and thus diabetes.

Oxidative Stress- An Aging Problem, An Exercise Solution?

Free radicals, and reactive oxygen species (ROS) can be generated within the body by various metabolic pathways and enzymes, such as mitochondrial complexes in the electron transport chain (ETC), cytochrome P450, xanthine oxidase and nicotinamide dinucleotide phosphate (NADPH) oxidase (102). Oxidative stress occurs when free radical or ROS production exceeds the body’s antioxidant capacity, leading to unchecked effects of these reactive molecules and compounds on tissues, such as DNA modifications, damage to lipids, proteins and other macromolecules. The accumulation of oxidative stress has been purported to lead to the aging associated tissue dysfunction. This ‘free radical theory of aging’ (60) hypothesizes that this elevated exposure to oxidative stress damages macromolecules, impairing antioxidant and repair mechanisms which leads to the deleterious effects on tissues (122). Indeed aging is associated with elevated levels of oxidative stress in various tissues in the body such as skeletal muscle (9), the heart, brain (103) and the vascular tree (92). Specifically, advanced age is linked with defective mitochondria which itself results from reduction in cytochrome C oxidase activity (103). This mitochondrial dysfunction leads to greater escape of generated electrons which can stimulate oxidative damage. Oxidative stress may play a role in processes such as inflammation (31), sarcopenia (72), insulin resistance (106). Whilst there is plethora of evidence to
show that lowering oxidative stress promotes tissue function (44, 142, 145), there is some evidence to challenge the free radical theory of aging, with studies showing that increasing antioxidant capacity in mice fails to extend lifespan (27), indicating that lowering oxidative stress may promote tissue function without affecting longevity.

Exercise and physical activity modulates some of the deleterious side-effects of aging, and is known to be protective against oxidative stress-associated conditions, including CVD, diabetes (37), and cancer (25). However, acute exercise, due to the elevated oxygen consumption ($\dot{V}O_2$), there is an enhanced leakage of superoxide ($O_2•$) from the ETC (158), leading to an imbalance between ROS production and antioxidant capacity. This overproduction of $O_2•$ though, acts as an important redox signal for regular exercise-induced adaptations (33, 96, 160). Several studies in human aging populations report reductions in plasma or urine markers of oxidative stress with endurance training or regular aerobic exercise (e.g. Thiobarbituric Acid Reactive Substances; TBARS, lipid peroxidation, $O_2•$) (53, 74, 77) or an improvement in antioxidant capacity (upregulation of antioxidant enzymes, such as superoxide dismutase; SOD, and catalase) (42, 75, 143). Resistance exercise may also confer some benefits, with some studies reporting positive effects on oxidative stress biomarkers and antioxidant capacity (15, 16, 108, 155). However there is some contrasting evidence to show lack of efficacy of exercise training to modulate some oxidative stress biomarkers (107). These differences lie due to variety of biomarkers of oxidative stress and damage, as well as antioxidant capacity, and as yet, due to the rapid appearance and subsequent disappearance of ROS and free radicals, measurement is difficult, and often requires downstream markers (32).

Physical inactivity itself promotes the elevation of basal ROS and oxidative stress (8, 113). Animal models of physical inactivity show that skeletal muscle from immobilized limbs in mice produce higher levels of $O_2•$ and hydrogen peroxide (H_2O_2) than mobilized limbs (19, 144, 164). In cross-sectional studies comparing active vs. inactive animals, lipid peroxidation and protein damage levels in skeletal muscle are elevated in sedentary vs. active rodent models (47, 119). In humans, one study showed that 2 weeks of unilateral limb immobilization in old men resulted in greater H_2O_2 production and mitochondrial leakage than the mobilized limb, however this returned to normal after a period of exercise training, suggesting that exercise may be able to counteract the pro-oxidant effect of inactivity. Further studies show that inactive older individuals display greater levels of oxidative stress biomarkers than trained age-matched controls (123). Together, these animal and human models of inactivity show that sedentary behaviours promotes localised ROS production, which may have significant effects on tissue function, compromising health of older individuals. Considering the positive effect of regular physical aerobic and/or resistance exercise, physical activity should be
promoted to counteract the negative effects of both aging and inactivity has on production of free radicals and downregulation of antioxidant enzymes in this susceptible population.

Future Directions

The exact ‘dose’ of exercise to promote healthy aging and longevity is still unknown, and unlikely to be described in the near future due to the varying effects that manipulating the time, intensity and frequency of exercise has on our cells and tissues. However, what is known is that exercise acts as a powerful, health-promoting, stimulus. Its ability to positively benefit a wide variety of cells, tissues and organs means it can be regarded as a potent anti-aging therapeutic intervention. The strong evidence available shows that physical activity and exercise can reduce NCD risk, improve cardiovascular, immune and muscle function, leading to improved quality of life in our ever increasing aging population.

References

1. **Aguirre LE, Jan IZ, Fowler K, Waters DL, Villareal DT, and Armamento-Villareal R.**
 Testosterone and Adipokines are Determinants of Physical Performance, Strength, and Aerobic Fitness in Frail, Obese, Older Adults. *International Journal of Endocrinology* 2014, 2014.

72. Jackson MJ. Reactive oxygen species in sarcopenia: Should we focus on excess oxidative damage or defective redox signalling? *Molecular Aspects of Medicine*.

132. **Smith GI, Yoshino J, Reeds DN, Bradley D, Burrows RE, Heisey HD, Moseley AC, and Mittendorfer B.** Testosterone and progesterone, but not estradiol, stimulate muscle protein...

