
Downloaded from: http://insight.cumbria.ac.uk/id/eprint/3921/

Usage of any items from the University of Cumbria’s institutional repository ‘Insight’ must conform to the following fair usage guidelines.

Any item and its associated metadata held in the University of Cumbria’s institutional repository Insight (unless stated otherwise on the metadata record) may be copied, displayed or performed, and stored in line with the JISC fair dealing guidelines (available here) for educational and not-for-profit activities provided that

• the authors, title and full bibliographic details of the item are cited clearly when any part of the work is referred to verbally or in the written form
  • a hyperlink/URL to the original Insight record of that item is included in any citations of the work
• the content is not changed in any way
• all files required for usage of the item are kept together with the main item file.

You may not

• sell any part of an item
• refer to any part of an item without citation
• amend any item or contextualise it in a way that will impugn the creator’s reputation
• remove or alter the copyright statement on an item.

The full policy can be found here. Alternatively contact the University of Cumbria Repository Editor by emailing insight@cumbria.ac.uk.
Continuous versus intermittent antibiotics for bronchiectasis (Review)

Donovan T, Felix LM, Chalmers JD, Milan SJ, Mathioudakis AG, Spencer S

Donovan T, Felix LM, Chalmers JD, Milan SJ, Mathioudakis AG, Spencer S.
Continuous versus intermittent antibiotics for bronchiectasis.
DOI: 10.1002/14651858.CD012733.pub2.

www.cochranelibrary.com
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HEADER</td>
<td>1</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>1</td>
</tr>
<tr>
<td>PLAIN LANGUAGE SUMMARY</td>
<td>2</td>
</tr>
<tr>
<td>BACKGROUND</td>
<td>2</td>
</tr>
<tr>
<td>OBJECTIVES</td>
<td>4</td>
</tr>
<tr>
<td>METHODS</td>
<td>4</td>
</tr>
<tr>
<td>RESULTS</td>
<td>8</td>
</tr>
<tr>
<td>Figure 1</td>
<td>9</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>10</td>
</tr>
<tr>
<td>AUTHORS' CONCLUSIONS</td>
<td>11</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>11</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>12</td>
</tr>
<tr>
<td>CHARACTERISTICS OF STUDIES</td>
<td>20</td>
</tr>
<tr>
<td>CONTRIBUTIONS OF AUTHORS</td>
<td>26</td>
</tr>
<tr>
<td>DECLARATIONS OF INTEREST</td>
<td>26</td>
</tr>
<tr>
<td>SOURCES OF SUPPORT</td>
<td>27</td>
</tr>
<tr>
<td>DIFFERENCES BETWEEN PROTOCOL AND REVIEW</td>
<td>27</td>
</tr>
</tbody>
</table>
Continuous versus intermittent antibiotics for bronchiectasis

Tim Donovan¹, Lambert M Felix², James D Chalmers³, Stephen J Milan⁴, Alexander G Mathioudakis⁵, Sally Spencer⁶

¹Medical and Sport Sciences, University of Cumbria, Lancaster, UK. ²Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK. ³University of Dundee, Ninewells Hospital and Medical School, Dundee, UK. ⁴Medical School, Lancaster University, Lancaster, UK. ⁵Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK. ⁶Postgraduate Medical Institute, Edge Hill University, Ormskirk, UK

Contact address: Tim Donovan, Medical and Sport Sciences, University of Cumbria, Lancaster, UK. tim.donovan@cumbria.ac.uk.

Editorial group: Cochrane Airways Group.


Citation: Donovan T, Felix LM, Chalmers JD, Milan SJ, Mathioudakis AG, Spencer S. Continuous versus intermittent antibiotics for bronchiectasis. Cochrane Database of Systematic Reviews 2018, Issue 6. Art. No.: CD012733. DOI: 10.1002/14651858.CD012733.pub2.

Copyright © 2018 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

ABSTRACT

Background
Bronchiectasis is a chronic airway disease characterised by a destructive cycle of recurrent airway infection, inflammation and tissue damage. Antibiotics are a main treatment for bronchiectasis. The aim of continuous therapy with prophylactic antibiotics is to suppress bacterial load, but bacteria may become resistant to the antibiotic, leading to a loss of effectiveness. On the other hand, intermittent prophylactic antibiotics, given over a predefined duration and interval, may reduce antibiotic selection pressure and reduce or prevent the development of resistance. This systematic review aimed to evaluate the current evidence for studies comparing continuous versus intermittent administration of antibiotic treatment in bronchiectasis in terms of clinical efficacy, the emergence of resistance and serious adverse events.

Objectives
To evaluate the effectiveness of continuous versus intermittent antibiotics in the treatment of adults and children with bronchiectasis, using the primary outcomes of exacerbations, antibiotic resistance and serious adverse events.

Search methods
On 1 August 2017 and 4 May 2018 we searched the Cochrane Airways Review Group Specialised Register (CAGR), CENTRAL, MEDLINE, Embase, PsycINFO, CINAHL, and AMED. On 25 September 2017 and 4 May 2018 we also searched www.clinicaltrials.gov, the World Health Organization (WHO) trials portal, conference proceedings and the reference lists of existing systematic reviews.

Selection criteria
We planned to include randomised controlled trials (RCTs) of adults or children with bronchiectasis that compared continuous versus intermittent administration of long-term prophylactic antibiotics of at least three months' duration. We considered eligible studies reported as full-text articles, as abstracts only and unpublished data.

Data collection and analysis
Two review authors independently screened the search results and full-text reports.

Main results
We identified 268 unique records. Of these we retrieved and examined 126 full-text reports, representing 114 studies, but none of these studies met our inclusion criteria.
Authors’ conclusions

No randomised controlled trials have compared the effectiveness and risks of continuous antibiotic therapy versus intermittent antibiotic therapy for bronchiectasis. High-quality clinical trials are needed to establish which of these interventions is more effective for reducing the frequency and duration of exacerbations, antibiotic resistance and the occurrence of serious adverse events.

**PLAIN LANGUAGE SUMMARY**

Are antibiotics more effective when given continuously or intermittently to people with bronchiectasis?

**Background**

Bronchiectasis is an incurable lung disease characterised by repeated chest infections. Antibiotics are a main form of treatment and can be taken long term to prevent chest infections from developing. This could be continuously or intermittently for a fixed period of time. However, we do not currently know which approach is the most effective for reducing the frequency and duration of exacerbations, managing antibiotic resistance and minimising side effects.

**Study Characteristics**

On 1 August 2017 we searched a wide range of sources to find clinical trials for our review. We found 268 potentially relevant results but on closer examination none of the studies met our review criteria and none could be included.

**Authors’ conclusions**

There is no high-quality evidence about whether continuously administered or intermittently administered antibiotics are safer and more helpful for people with bronchiectasis. More research is needed to evaluate which one of these methods is better for reducing chest infections, limiting resistance to antibiotic therapy and reducing serious side effects.

**BACKGROUND**

**Description of the condition**

Bronchiectasis is a chronic airway disease characterised by abnormal destruction and dilation of the large airways, bronchi and bronchioles (Pasteur 2010). It is characterised radiologically by permanent dilation of the bronchi, and clinically by a syndrome of cough, sputum production and recurrent respiratory infections (Chalmers 2014). The pathogenesis of bronchiectasis can be explained by the vicious cycle theory, whereby an initial insult to the airway leads to bronchial wall inflammation and damage, and disordered mucociliary clearance, predisposing the patient to chronic or recurrent infection resulting in further airway damage (Cole 1986; Chalmers 2013). An understanding of this cycle of persistent bacterial colonisation, chronic inflammation of the bronchial mucosa, and progressive tissue destruction is central to the management of bronchiectasis as strategies to arrest both inflammatory and bacterial components are required to limit the progression of lung injury (Cole 1997; Pasteur 2010). Bacteria most commonly isolated from the airways of patients with bronchiectasis include non-typeable Haemophilus influenzae, Pseudomonas aeruginosa, Streptococcus pneumoniae, Staphylococcus aureus and Moraxella catarrhalis (Foweraker 2011). Colonising pathogens such as P. aeruginosa, H. influenzae and M. catarrhalis also commonly display antimicrobial resistance arising from intrinsic resistance mechanisms or frequent exposure to antimicrobial agents. Approximately half of presenting cases are classified as idio-pathic. The most commonly assigned aetiology is post-infectious bronchiectasis, a heterogeneous group including patients with childhood respiratory infections like pertussis, bacterial pneumonia or tuberculosis (Pasteur 2010). Diagnosis is based on identification of one or more abnormally dilated bronchi using high-resolution computed tomography (HRCT) (Chang 2010; Pasteur 2010). The main aims of therapeutic management are reduction of symptoms such as cough, breathlessness and expectoration, reduction of the number and duration of exacerbations and improvement in quality of life (Pasteur 2010; Chalmers 2015). Bronchiectasis was once considered a relatively rare disease but recent studies have suggested increasing prevalence, particularly...
in women and those aged over 60 years (Weycker 2005; Roberts 2010; Seitz 2010), and higher prevalence rates in low- and middle-income countries (Habesoglu 2011). Prevalence in Germany in 2013 was estimated at 67 cases per 100,000 general population (Ringshausen 2015). In the UK, point prevalence rates per 100,000 rose from 350.5 to 566.1 in women and from 301.2 to 485.5 in men over a nine-year period, reflecting an increase of more than 60% and approximately 263,000 adults living with bronchiectasis in 2013 (Quint 2016). Similarly, incidence rates per 100,000 person-years over the same period rose from 21.2 to 35.2 in women and from 18.2 to 26.9 in men, a 63% increase, with over 15,000 new cases in 2013. Average European mortality rates per 100,000 general population are estimated at 0.3 in 27 of the 28 EU countries and at 0.2 in nine non-EU countries, based on 2005 to 2009 data (European Lung White Book 2013). Recent UK age-adjusted mortality rates are 2.26 times higher in women and 2.14 times higher in men compared with the general population (Quint 2016).

The disease has a significant impact on children, with worse quality of life in younger children and those with more frequent exacerbations (Kapur 2012). Bronchiectasis is also more common in some indigenous groups where prevalence may be as high as 16 per 1000 among southwest Alaskan children and 15 per 1000 in Australian Aboriginal and Torres Strait Islander children (Chang 2002). Furthermore, one study reported an incidence of 3.7 per 100,000 per year among New Zealand children aged under 15 years. This equates to an overall prevalence of 1 per 3000 children and 1 per 625 Pacific children (Twich 2005). It also demonstrates that the incidence rate among children in New Zealand is almost seven times higher than those from Finland (Twich 2005).

An improvement in diagnosis resulting from easier access to high-quality CT scanners, and increased awareness of symptoms common to bronchiectasis and other lung diseases, have been cited as factors contributing to increased prevalence (Goeminnie 2016). Bronchiectasis places an increasing burden on healthcare systems internationally (Chalmers 2015; Redondo 2016), with patients experiencing a high rate of exacerbations, hospital admissions and attributable mortality (Chalmers 2015). Data from the European bronchiectasis registry show that approximately half of bronchiectasis patients have two or more exacerbations per year and a third are hospitalised at least once a year (Polverino 2017). Patients colonised with P aeruginosa and those with a more frequent an annual exacerbation rate have an accelerated decline in lung function, reduced health-related quality of life (measured using the St George’s Respiratory Questionnaire, SGRQ), increased risk of hospitalisation and increased mortality risk (Evans 1996; Wilson 1997; Martínez-García 2007, Polverino 2017). A history of exacerbations, and particularly severe exacerbations, low body mass index, chronic bacterial infection, low forced expiratory volume in one second (FEV1) per cent of predicted, a higher proportion of affected lobes and more breathlessness are also associated with an increased risk of hospitalisation and mortality (Seitz 2010; Chalmers 2014; Rogers 2014).

This is particularly the case with P aeruginosa infection. A systematic review of observational studies identified that P aeruginosa infection is associated with a three-fold increase in mortality risk, an almost seven-fold increase in risk of hospital admission and an average of one additional exacerbation per patient per year. Bronchiectasis care is associated with substantial resource use. A recent Spanish study reported a mean direct annual medical cost for adult patients with bronchiectasis of EUR 4671, escalating with disease severity (de la Rosa 2016). Furthermore, factors such as FEV1 percentage predicted, age, Pseudomonas colonisation and hospitalisation may independently influence health care costs. A USA-based study reported an annual increase of USD 2319 in overall costs and USD 1607 in respiratory-related costs in patients with bronchiectasis compared with matched case-controls, attributed primarily to an increase of two outpatient visits and 1.6 respiratory-related visits per patient per year (Joish 2013).

Description of the intervention

Antibiotics aiming to treat bacterial infections of the respiratory tract, or to control bacterial colonisation, or both, represent a central component of the treatment of bronchiectasis, as they reduce bacterial load, inflammation and consequent tissue destruction in the airways (Chalmers 2012). Long-term prophylactic antibiotics, administered for more than three months, have proved effective for patients with frequent bronchiectasis exacerbations or those with fewer exacerbations causing significant morbidity, as they appear to decrease the frequency and severity of exacerbations, at the expense of a significant increase in the risk of emerging drug resistance (Hnin 2015). Patients taking continuous antibiotics are more than three times at risk of bacterial resistance compared to those who do not (Hnin 2015). Pathogens isolated in the sputum cultures of these patients during an exacerbation or at stable disease, such as P aeruginosa, H influenzae or M catarrhalis, commonly display antimicrobial resistance arising from intrinsic resistance mechanisms or frequent exposure to antimicrobial agents. There is also risk of antibiotic-related adverse effects, such as hearing impairment and cardiotoxicity (Serisier 2013).

Randomised controlled trials (RCTs) have evaluated different modes of administration, namely oral, intravenous and inhaled, and different classes of antibiotics including but not limited to macrolides, quinolones or polymyxins. Two strategies for the administration of long-term antibiotics have been described: (i) continuous and (ii) intermittent administration. In contrast to continuous, intermittent refers to the repeated prophylactic administration of courses of antibiotics with predefined duration and intervals. Examples include one short course of antibiotics every month; month on and month off; or during the winter months. We intended this review to include intermittent antibiotic ther-
apy where administration is at predefined regular intervals over a duration of at least three weeks, and where patients are not receiving concomitant prophylactic antibiotics. We intended to compare continuous versus intermittent administration of long-term prophylactic antibiotics for at least three months.

**How the intervention might work**

There is a strong relationship between airway bacterial infection and disease morbidity in bronchiectasis; for example, patients chronically infected with *P. aeruginosa* have a three-fold increase in mortality, a 6.5 times increase in hospital admission rate and an average of one additional exacerbation per patient per year, when compared to patients not chronically infected with *P. aeruginosa* (Finch 2015). Other commonly isolated bacteria such as *H. influenzae* and *M. catarrhalis* also drive an increase in neutrophilic inflammation (Chalmers 2012); and they are associated with an increased risk of severe exacerbations (Chalmers 2014). Antibiotic treatment aims to suppress neutrophilic inflammation, reduce bacterial load and thereby improve clinical outcomes (Brodt 2014). Continuous administration of antibiotic treatment is based on the assumption that chronic infection cannot be eradicated, and must therefore be continuously suppressed to prevent a return of bacterial load, increased inflammation and a recurrence of symptoms (Haworth 2014).

The argument against continuous exposure to antibiotics is that it leads to increased bacterial resistance and consequently treatment may lose its effectiveness (Chalmers 2015). On the contrary, intermittent administration of antibiotics might remove or limit the antibiotic selection pressure and, consequently, prevent the development of resistance, although intermittent antibiotics could also be less effective. While data are lacking on the impact of intermittent versus continuous administration of antibiotics on the development of antibiotic resistance among patients with bronchiectasis, there is some indirect evidence. For example, in a large retrospective analysis of mechanically-ventilated patients with nosocomial infections (40% chronic lung disease), an interval of at least 20 days between serial courses of antibiotics was associated with a 24% reduction in development of resistance (Hui 2013).

An additional advantage of intermittent antibiotic administration is a reduced treatment burden to patients, as continuous administration may result in more side effects as a result of higher cumulative exposure of the patient to antibiotics.

**Why it is important to do this review**

While long-term antibiotic treatments given both orally and via inhalation are part of the standard care for patients with bronchiectasis (Chalmers 2015), there is no agreement on the optimal method of delivery of antibiotic therapies. It is common practice to administer both oral and inhaled antibiotics daily (Altenburg 2013; Haworth 2014), on alternate days (Wong 2012), month on and month off (Barker 2014), or during the winter months when patients may experience more exacerbations. International guidelines are unable to comment on which method of antibiotic administration is most effective or is associated with the lowest rates of adverse events or antibiotic resistance. A European Respiratory Society/European Bronchiectasis Network (EMBARC) task force produced 22 consensus recommendations for future research into bronchiectasis, including “Studies should evaluate whether cyclic or continuous administration of long-term antibiotics is superior both in terms of clinical efficacy and the emergence of resistance” (Aliberti 2016). As this was determined to be an important clinical question by both patients and physicians, this systematic review was intended to evaluate the current evidence for continuous versus intermittent administration of antibiotic treatment in bronchiectasis.

**Objectives**

To evaluate the effectiveness of continuous versus intermittent antibiotics in the treatment of adults and children with bronchiectasis, using the primary outcomes of exacerbations, antibiotic resistance and serious adverse events.

**Methods**

**Criteria for considering studies for this review**

**Types of studies**

We planned to include randomised controlled trials (RCTs) and cluster-randomised trials. We also planned to include cross-over studies, but to only use data from the first pre-cross-over phase to eliminate potentially irreversible carry-over effects (e.g. antibiotic resistance). We also planned to include studies reported as full text, those published as abstract only, and unpublished data.

**Types of participants**

We planned to include adults and children (< 18 years) diagnosed with bronchiectasis by bronchography, or computed tomography who reported daily signs or symptoms, such as cough, sputum production, or those with recurrent episodes of chest infections. Studies would have been excluded if participants had received a diagnosis of cystic fibrosis (CF) or active allergic bronchopulmonary aspergillosis. We planned to analyse data on children and adults separately.
**Types of interventions**

We aimed to compare continuous versus intermittent administration of long-term prophylactic antibiotics of at least three months’ duration. The delivery method was to be the same in all study groups, e.g. nebulised versus nebulised, in order to isolate the effect of the antibiotic rather than the delivery device.

We considered intermittent administration of antibiotics, provided that there were predefined regular intervals of antibiotic administration followed by a duration of at least three weeks when participants did not receive prophylactic antibiotics (e.g. one short course of antibiotics every month; month on and month off; or during the winter months). We considered antibiotics delivered without intervals of no antibiotics for the duration of the study to be continuous.

**Types of outcome measures**

**Primary outcomes**

1. Exacerbations (frequency, proportion with one or more, duration, time to next exacerbation), defined using study authors’ criteria.
2. Antibiotic resistance, defined as either the presence of antibiotic resistance after the administration of antibiotics for at least three months, or the development of antibiotic resistance within at least three months of antibiotic administration. We planned to only evaluate resistance to the antibiotic(s) being investigated.
3. Serious adverse events.

**Secondary outcomes**

1. Health-related quality of life using measures validated in a clinical setting (e.g. SGRQ, Leicester Cough Questionnaire (LCQ), Quality of Life-Bronchiectasis (QoL-B) questionnaire).
2. Hospital admissions due to exacerbations (frequency, duration), defined using study authors’ criteria.
3. Mortality (we planned to extract and report whether mortality is defined as all-cause or bronchiectasis-related in the individual studies).
4. Sputum volume and colour.
5. Symptoms (cough, dyspnoea, wheeze).
6. Lung function measured as forced expiratory volume in one second (FEV\(_1\)) (litres or per cent of predicted).
7. Exercise capacity (e.g. Six-Minute Walk Test or Incremental Shuttle Walk Test).
8. Adverse events/side effects.

We planned to use the definitions from Edwards 2000 and Hansen 2015 for serious adverse events and adverse events as follows.

1. Serious adverse events are those that result in death or life-threatening events; requirement for hospitalisation or prolongation of existing hospitalisation; persistent or significant disability; or congenital anomalies; or are events considered medically important.
2. Adverse events are any untoward occurrence that presents while a patient is taking a drug but does not necessarily have a causal relation to the treatment. They are undetectable by the patient; usually identified by laboratory tests (e.g. biochemical, haematological, immunological, radiological, and pathological tests); or by clinical investigations (e.g. gastro-intestinal endoscopy, cardiac catheterisation).

Reporting one or more of the outcomes listed here in the study was not an inclusion criterion for the review.

**Search methods for identification of studies**

**Electronic searches**

We identified studies from the Cochrane Airways Group Register of Trials, which is maintained by the Information Specialist for the Group. The Cochrane Airways Trials Register contains studies identified from several sources, as follows.

1. Monthly searches of the Cochrane Central Register of Controlled Trials (CENTRAL, in the Cochrane Library), through the Cochrane Register of Studies Online (crso.cochrane.org);
2. Weekly searches of MEDLINE Ovid SP 1946 to date;
3. Weekly searches of Embase Ovid SP 1974 to date;
4. Monthly searches of PsycINFO Ovid SP;
5. Monthly searches of CINAHL EBSCO (Cumulative Index to Nursing and Allied Health Literature);
6. Monthly searches of AMED EBSCO (Allied and Complementary Medicine); and
7. Handsearches of the proceedings of major respiratory conferences.

We identified studies contained in the Trials Register through search strategies based on the scope of the Cochrane Airways Group. Details of these strategies, as well as a list of handsearched conference proceedings, are in Appendix 1. See Appendix 2 for search terms used to identify studies for this review.

We searched the following trials registries.

1. US National Institutes of Health Ongoing Trials Register ClinicalTrials.gov (www.ClinicalTrials.gov);
2. World Health Organization International Clinical Trials Registry Platform (apps.who.int/trialsearch).

We searched the Cochrane Airways Trials Register and additional sources from inception to 1 August 2017 and registries on 25 September 2017, with no restriction on language of publication.
We checked the reference lists of all primary studies and review articles for additional references. We searched relevant manufacturers’ websites for study information. We planned to search for errata or retractions from included studies published in full text on PubMed and to report the date this was done within the review.

**Data collection and analysis**

**Selection of studies**

Two review authors (SM and TD) independently screened the titles and abstracts of the search results and coded them as ‘retrieve’ (eligible or potentially eligible/unclear) or ‘do not retrieve’. We retrieved the full-text study reports of all potentially eligible studies and two review authors (SM and TD) independently screened them for inclusion, recording the reasons for exclusion of ineligible studies. We resolved disagreement through discussion or, if it had been necessary, we planned to consult a third review author (JC). We identified and excluded duplicates and collated multiple reports of the same study so that each study, rather than each report, was the unit of interest in the review. We recorded the selection process in sufficient detail to complete a PRISMA flow diagram and ‘Characteristics of excluded studies’ table (Moher 2009).

**Data extraction and management**

We planned to use a data collection form for study characteristics and outcome data, that had been piloted on at least one study in the review. One review author (TD) would have extracted the following study characteristics from included studies.

1. Methods: study design, total duration of study, details of any ‘run-in’ period, number of study centres and location, study setting, withdrawals and date of study.
2. Participants: N, mean age, age range, gender, severity of condition, diagnostic criteria, baseline lung function, smoking history, inclusion criteria and exclusion criteria.
3. Interventions: intervention, comparison, concomitant medications and excluded medications.
4. Outcomes: primary and secondary outcomes specified and collected, and time points reported.
5. Notes: funding for studies and notable conflicts of interest of trial authors.

We planned for two review authors (TD and LF) to independently extract outcome data from included studies. We planned to note in the ‘Characteristics of included studies’ table where outcome data were not reported in a usable way. We planned to resolve disagreements by consensus or by involving a third review author (JC). We also planned for one review author (TD) to transfer data into the Review Manager 5 file (Review Manager 2014); and to double-check that data were entered correctly by comparing the systematic review with the study reports. We planned for a second review author (LF) to spot-check study characteristics for accuracy against the study report.

**Assessment of risk of bias in included studies**

We planned for two review authors (LF and TD) to independently assess risk of bias for each study using the criteria outlined in the Cochrane Handbook for Systematic Reviews of Interventions (Higgins 2011); and to resolve disagreements by discussion or by involving another author (SM). We planned to assess the risk of bias according to the following domains.

1. Random sequence generation.
2. Allocation concealment.
3. Blinding of participants and personnel.
5. Incomplete outcome data.
6. Selective outcome reporting.
7. Other bias.

We planned to judge each potential source of bias as high, low or unclear and provide a quote from the study report together with a justification for our judgement in the ‘Risk of bias’ table. We also planned to summarise the risk of bias judgements across different studies for each of the domains listed. We planned to consider blinding separately for different key outcomes where necessary (e.g. for unblinded outcome assessment, risk of bias for all-cause mortality may be very different than for a patient-reported pain scale). Where information on risk of bias related to unpublished data or correspondence with a trialist, we planned to note this in the ‘Risk of bias’ table.

When considering treatment effects, we planned to take into account the risk of bias for the studies that contributed to that outcome.

**Assessment of bias in conducting the systematic review**

We conducted the review according to the published protocol and planned to justify any deviations from it in the ‘Differences between protocol and review’ section of the systematic review.

**Measures of treatment effect**

We planned to analyse dichotomous data as odds ratios, and continuous data as mean differences or standardised mean differences. We planned to enter data presented as a scale with a consistent direction of effect.

We planned to undertake meta-analyses only when it was meaningful (i.e. when treatments, participants and the underlying clinical question were similar enough for pooling to make sense). We planned to narratively describe skewed data reported as medians and interquartile ranges.
If multiple trial arms had been reported in a single trial, we planned to include only the relevant arms. If two comparisons (e.g. drug A versus placebo and drug B versus placebo) had been combined in the same meta-analysis, we planned to halve the control group to avoid double-counting.

**Unit of analysis issues**

If we had included any studies, the unit of analysis would have been the participant. In terms of exacerbation rates and hospitalisation rates, we planned to focus on the number of events experienced by the participant during the trial and to analyse the results using rate ratios if possible. We planned to use adjusted data where it was available (e.g. rate ratios from Poisson regression models, or mean differences from ANOVA or results from cluster randomised studies adjusted for cluster effect) as a first choice, followed by change scores and final scores as last choice.

**Dealing with missing data**

We planned to contact investigators or study sponsors in order to verify key study characteristics and to obtain missing numerical outcome data where possible (e.g. when a study was only identified as an abstract). Where this was not possible, and missing data were thought to introduce serious bias, we planned to take this into consideration in the GRADE rating for affected outcomes.

**Assessment of heterogeneity**

We planned to use the I² statistic to measure heterogeneity among the studies in each analysis; and if we had identified substantial heterogeneity, to report it and explore possible causes using the prespecified subgroup analyses.

**Assessment of reporting biases**

If we had been able to pool more than 10 studies, we would have created and examined a funnel plot to explore possible small-study effects of interventions across studies are not randomly distributed (e.g. with publication bias), the estimates from a random-effects model may be unreliable or biased. It was likely that this review would only include a small number of low-powered studies, and we had therefore planned to use a fixed-effect model, reported with 95% confidence intervals (CI), to evaluate the impact of model choice using a sensitivity analysis. We planned to synthesise and report dichotomous and continuous data separately for each outcome (e.g. exacerbation/no exacerbation or exacerbation duration). Where end-of-study point estimates and change from baseline scores were reported, we planned to analyse these separately. Furthermore, we planned to use standardised mean differences (SMD) when outcomes were measured using different scales (e.g. health-related quality of life measures) and to use the baseline standard deviation (SD) for SMD analyses.

**Summary of findings’ table**

We planned to create a ‘Summary of findings’ table using the following outcomes: exacerbations; antibiotic resistance; serious adverse events; hospitalisations; mortality; symptoms; and quality of life. We planned to use the five GRADE considerations (risk of bias, consistency of effect, imprecision, indirectness and publication bias) to assess the overall quality of the evidence in terms of the studies that contributed data to the prespecified outcomes. We planned to use the methods and recommendations described in Section 8.5 and Chapter 12 of the Cochrane Handbook for Systematic Reviews of Interventions (Higgins 2011), using GRADEpro software (GRADEpro GDT); and to justify all decisions to downgrade the quality of studies using footnotes. We planned to include comments to aid the reader’s understanding of the review where necessary.

**Subgroup analysis and investigation of heterogeneity**

We planned to carry out the following subgroup analyses.

1. Mode of delivery (e.g. oral, nebulised).
2. Antibiotic class (e.g. macrolide).
3. Duration participants colonised with *P. aeruginosa*.
4. Specifically for the outcome antibiotic resistance, we planned subgroup analyses according to the definition of antibiotic resistance (presence of antibiotic resistance versus development of antibiotic resistance, following at least three months’ administration of antibiotics).

We planned to use the formal test for subgroup interactions in Review Manager 5 (Review Manager 2014).

**Sensitivity analysis**

We planned to evaluate the impact of methodological quality using the following domains to remove studies at high or unclear risk of bias.
We planned to compare the results from a fixed-effect model with the random-effects model.

**RESULTS**

**Description of studies**

We identified 268 study reports in our database searches on 1 August and 25 September 2017, and 4 May 2018. We also searched the USA National Institutes of Health Ongoing Trials Register (www.ClinicalTrials.gov), the World Health Organization International Clinical Trials Registry Platform (apps.who.int/trialsearch), conference proceedings and the reference lists of existing systematic reviews. We identified 13 additional records through other sources (WHO trials portal) but they were not relevant to our inclusion criteria Figure 1
Figure 1. Study flow diagram.

268 records identified through database searching (Cochrane Airways Group Specialised Register of Trials, ClinicalTrials.gov)

280 records after duplicates removed

260 records screened

164 records excluded

126 full-text articles assessed for eligibility

126 full-text articles excluded, with reasons, covering 114 studies

0 studies included in qualitative synthesis

0 studies included in quantitative synthesis (meta-analysis)
Included studies
We did not identify any studies relevant to our inclusion criteria.

Excluded studies
One hundred and twenty-six study reports (covering 114 studies) were excluded, with reasons, from original database searches following inspection of the study report (Characteristics of excluded studies). Sixty-seven (59%) were not randomised studies (and were also otherwise not relevant to our inclusion criteria), 23 (20%) compared an antibiotic versus placebo, 12 (10%) compared different antibiotics, five (4%) made a comparison between doses of the same antibiotic, two (2%) were excluded on the basis of the study having no relevance to the condition. The following were also excluded: Juqin mixture (Chinese medicine) aerosol inhalation plus standard care versus standard care alone, one (1%); comparison between Pidotimod versus no treatment, one (1%); comparison between herbal decoction with standard decoction, one (1%); comparison between colistimethate sodium versus saline solution, one (1%); and the one remaining record (1%) was a letter.

Risk of bias in included studies
No studies met the review inclusion criteria (Criteria for considering studies for this review). We were therefore unable to conduct the planned assessment risk of bias.

Effects of interventions
We were unable to evaluate the effectiveness of continuous versus intermittent antibiotics for bronchiectasis given the absence of studies meeting our inclusion criteria.

DISCUSSION

Summary of main results
We planned to evaluate the effectiveness of continuous versus intermittent antibiotics for bronchiectasis with respect to our predefined outcomes. Despite a comprehensive search, we identified no randomised trials meeting our predefined inclusion criteria (Criteria for considering studies for this review), revealing a paucity of evidence in this area.

Overall completeness and applicability of evidence
We were unable to assess completeness and applicability of evidence as no studies met our inclusion criteria.

Quality of the evidence
We were unable to consider the quality of the evidence as no studies were included in this review.

Potential biases in the review process
We carried out an extensive and comprehensive search for relevant studies, with expert support from the Cochrane Airways Group. We conducted searches in nine databases, and obtained translation of all potentially relevant non-English publications identified in our searches.

Agreements and disagreements with other studies or reviews
Although no other relevant systematic reviews or clinical trials were identified in our searches, in clinical practice both continuous and intermittent antibiotic administration is used with competing rationale (Chalmers 2015). Intermittent antibiotic treatment may help to limit resistance, because although antibiotics select for resistant bacteria, resistance often carries a ‘fitness cost’ for bacteria, meaning that resistant organisms are then overgrown once antibiotics are discontinued (Melnyk 2015). This is the reason that inhaled antibiotics are often administered in 28-day cycles with 28 days off between cycles. Two trials of aztreonam lysine have been performed using an intermittent regime in bronchiectasis (Barker 2014), while many antibiotics including tobramycin and aztreonam in cystic fibrosis are administered intermittently (Elborn 2016). In a network meta-analysis continuous administration of inhaled colistin was indirectly compared to intermittent administration of inhaled tobramycin and aztreonam for patients with cystic fibrosis and pseudomonas infection. Comparable efficacies were found between these arms, however their results are limited by a small overall study population and heterogeneity (Littlewood 2012). Evidence that this approach limits resistance in bronchiectasis is lacking. An added benefit of intermittent administration for inhaled antibiotics is that inhaled antibiotic therapy can take a long time to deliver, and so less frequent administration can improve compliance (McCullough 2014). Some preparations are also expensive and therefore intermittent administration may limit costs. For oral antibiotic administration, some studies suggest that
bronchiectasis exacerbations are seasonal; for example Bibby and colleagues showed that admissions for bronchiectasis were more frequent in the winter and spring (Bibby 2015). Therefore it is common practice in some countries to give prophylactic antibiotics only during the winter. Conversely, the argument in favour of continuous administration of antibiotics is that airway bacterial load, which is suppressed by antibiotics, rebounds back to baseline levels after approximately 14 days of antibiotic discontinuation, and this provokes increased airway inflammation (Chalmers 2012; Wilson 2013). Studies of azithromycin and nebulized gentamicin have shown that treatment benefit is lost once the drug is discontinued, although follow-up in both studies was only three months (Murray 2011; Altenburg 2013).

**Authors’ Conclusions**

**Implications for practice**

Our review revealed a lack of relevant high-quality evidence, as thorough systematic searches failed to yield any randomised controlled trials comparing continuous versus intermittent prophylactic antibiotic administration for bronchiectasis.

Due to lack of scientific evidence on the comparative risks and benefits of continuous versus intermittent antibiotics for this population, British, European and Spanish guidelines have made recommendations based on the available literature, which at the moment are the only available guide for the management of patients with bronchiectasis (Pasteur 2010; Polverino 2017; Martínez-García 2018). For example, the European guidelines recommend long-term antibiotics for people with three or more exacerbations per year but make no recommendations regarding a continuous or intermittent therapeutic regime (Polverino 2017).

**Implications for research**

Although cystic fibrosis research may provide some insight it is likely bronchiectasis has different patterns of efficacy and particularly antibiotic resistance for continuous or intermittent antibiotics. They are different clinical entities and a direct extrapolation of clinical beneficial treatments in cystic fibrosis may not apply to bronchiectasis (Barker 2014). In identifying the most important research priorities for bronchiectasis, the European Bronchiectasis Network (EMBARC) reported the following as a key research question: “Studies should ideally evaluate whether cyclic or continuous administration of long-term antibiotics is superior both in terms of clinical efficacy and the emergence of resistance” (Aliberti 2016). This question is important because long-term antibiotic prophylaxis is widely used, and resolving this question has important implications for both efficacy and antibiotic resistance. Our review identified no studies that could answer this question.

It is evident that there is urgent need for robust randomised trials to evaluate continuous versus intermittent antibiotics for bronchiectasis with respect to: exacerbations (frequency, proportion with one or more, duration, time to next exacerbation) ideally defined using a new international consensus definition (Hill 2017); antibiotic resistance (defined as either the presence of antibiotic resistance after the administration of antibiotics for at least three months, or the development of antibiotic resistance within at least three months of antibiotic administration); and serious adverse events.

Similarly, consideration of the benefits of continuous versus intermittent antibiotics with respect to the following outcomes would also be especially helpful: health-related quality of life using measures validated in a clinical setting (e.g. SGRQ, LCQ, QoL-B); hospital admissions due to exacerbations (both in terms of frequency and duration); mortality; sputum volume and colour; symptoms (cough, dyspnoea, wheeze); lung function measured as forced expiratory volume in one second (FEV1); exercise capacity (e.g. Six-Minute Walk Test); and adverse events/side effects.

**Acknowledgements**

We would like to thank Edge Hill University for supporting this study. We would also like to thank the Cochrane Airways Group for its support.

We would especially like to thank Dr Chris Cates for his support; Chris was the Editor for this review and provided helpful, critical comments on the review and guidance. We would also particularly like to thank Emma Dennett, Liz Stovold, Emma Jackson and Rebecca Normansell.

We are most grateful to the following with the translation of non-English study reports: Usama Al-Sari, Adelina Angusheva-Thianov, Paul Ashton, Romain Bardot, Jane Dennis, Sylvia Ellis, Guillermo Guerra, Akira Kuriyama, Michela Masci, Georgi Popivanov, Laura Sansum, Marion Schulze, Birgit Smith, Daichi Suzuki and Joana Terzieva.

The **Background** and **Methods** sections of this protocol are based on a standard template used by Cochrane Airways.

This project was supported by the National Institute for Health Research, via Cochrane Infrastructure funding to Cochrane Airways. The views and opinions expressed herein are those of the authors and do not necessarily reflect those of the Systematic Reviews Programme, NIHR, NHS or the Department of Health.
Aksamit 2016  {published data only}  

Aksamit 2017  {published data only}  

Alberto 1968  {published data only}  

Alekseenko 1978  {published data only}  

Alekseenko 1980  {published data only}  

Aliberti 2016  {published data only}  

Al-Mobeireek 1998  {published data only}  

Antoniu 2013  {published data only}  

Cherniack 1959  {published data only}  

ChiCTR-IOR-16008910 2016  {published data only}  

Chonabayasi 1988  {published data only}  
Continuous versus intermittent antibiotics for bronchiectasis (Review)

Copyright © 2018 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Choo 2018 [published data only]

Caeri 1975 [published data only]

Currie 1987 [published data only]


Dimakou 2017 [published data only]


Douglas 1957 [published data only]

Hayashi 1989 [published data only]

Irabu 1989 [published data only]

Irabu 1992 [published data only]

Juthong 2011 [published data only]

Kanai 1963 [published data only]

Kawano 1974 [published data only]

Howie 1976 [published data only]

Kawano 1989 [published data only]

Kawashima 1989 [published data only]

Koyama 1992 [published data only]

Krawczyk 1981 [published data only]

Hughes 1973 [published data only]


Iglauer 1973 [published data only]

Inoue 1989 [published data only]


Continuous versus intermittent antibiotics for bronchiectasis (Review)

Kudo 1992 (published data only)

Kurishima 1992 (published data only)

Kuze 1988 (published data only)

Lamotte 1981 (published data only)

Ledson 2000 (published data only)

Lunacharskaia 1968 (published data only)

Maekawa 1967 (published data only)

Masuno 1992 (published data only)

Matsumoto 1984 (published data only)

Matsumoto 1992 (published data only)

Matsuura 1993 (published data only)

May 1974 (published data only)

Mazzei 1993 (published data only)

Messens 1973 (published data only)

Milev 1985 (published data only)

Ming 2005 (published data only)

Molodtsova 1980 (published data only)

Morrone 1989 (published data only)

Murayama 1992 (published data only)

Nagy 1968 (published data only)

Nakagawa 1989 (published data only)

Nakagawa 1993 (published data only)

Nasu 1988 (published data only)

NCT00415350 (published data only)

NCT00524095 (published data only)
NCT00775138 [published data only]
NCT00775138. A study to determine the safety and tolerability of arikace versus placebo in patients who have bronchiectasis [A placebo controlled, randomized, parallel cohort, safety and tolerability study of 2 dose levels of liposomal amikacin for inhalation (Arikace™) in patients with bronchiectasis complicated by chronic infection due to pseudomonas aeruginosa]. clinicaltrials.gov/ct2/show/NCT00775138 (first received 17 October 2008).

NCT00889967 [published data only]
NCT00889967. Safety and efficacy study of ciprofloxacin for inhalation in patients with non-cystic fibrosis bronchiectasis “ORBIT-1” [An international, multicenter, randomized, double-blind, placebo-controlled study to evaluate the efficacy, safety, and tolerability of once daily administration of two strengths of ciprofloxacin for inhalation compared with placebo for inhalation in the management of pseudomonas aeruginosa in patients with non cystic fibrosis bronchiectasis]. clinicaltrials.gov/ct2/show/NCT00889967 (first received 29 April 2009).

NCT00930982 [published data only]

NCT01313624 [published data only]
NCT01313624. A study to see if AZLI (an inhaled antibiotic) is effective in treating adults with non-cf bronchiectasis - AIR-BX1 [A phase 3, double-blind, multicenter, randomized, placebo-controlled trial evaluating repeated courses of aztreonam for inhalation solution in subjects with non-cf bronchiectasis and gram-negative endobronchial infection]. clinicaltrials.gov/ct2/show/NCT01313624 (first received 14 March 2011).

NCT01515007 [published data only]

NCT01538667 [published data only]
NCT01538667. Study to characterize lung deposition, pharmacokinetics, safety and tolerability of single inhalations of radiolabeled ciprofloxacin dry powder in healthy subjects and patients with chronic lung diseases [Non-blinded, single dose, single centre trial to assess the pulmonary deposition as well as pharmacokinetics, safety and tolerability of 99mTc labeled ciprofloxacin when delivered as a single dose from a dry powder inhaler to healthy subjects with and without charcoal block and patients suffering from bronchiectasis and COPD]. clinicaltrials.gov/ct2/show/NCT01538667 (first received 24 February 2012).

NCT01761214 [published data only]
NCT01761214. Bacteriology and inflammation in bronchiectasis [Bacteriology and sputum and systemic inflammation in steady-state, acute exacerbation and recovery of bronchiectasis]. clinicaltrials.gov/ct2/show/NCT01761214 (first received 4 January 2013).

NCT02035488 [published data only]

NCT02047773 [published data only]

NCT02081963 [published data only]

NCT02102152 [published data only]
NCT02102152. Efficacy & tolerability of tobramycin podhaler in bronchiectasis patients with chronic pseudomonas aeruginosa infection. clinicaltrials.gov/ct2/show/NCT02102152 (first received 2 April 2014).

NCT02104245 [published data only]

NCT02107274 [published data only]

NCT02315547 [published data only]

NCT02491723 [published data only]

NCT02509091 [published data only]
NCT02509091. Therapy of bronchoalveolar lavage and local amikacin injection in patients with acute exacerbation

NCT02657473 [published data only]

NCT02661438 [published data only]

NCT03058718 [published data only]
NCT03058718. Procacitoin-g guided antibiotic therapy in bronchiectasis [Effectiveness of procacitin-g guided antibiotic therapy in acute exacerbations of bronchiectasis: a randomized controlled trial]. clinicaltrials.gov/ct2/show/NCT03058718 (first received 23 February 2017).

NCT03093974 [published data only]

NCT03460704 [published data only]

Neumayr 1963 [published data only]

O'Donnell 2016 [published data only]

Obana 1992 [published data only]

Odagiri 1992 [published data only]

Oizumi 1978 [published data only]

Pezza 1983 [published data only]

Rikitomi 1988 [published data only]

Saito 1993 [published data only]

Santiveri 1995 [published data only]

Schulz 1972 [published data only]

Serisier 2011 [published data only]
Serisier DJ, Thompson PJ, Greville H, Kolbe J, Bruinenberg PR. Dual release ciprofloxacin for inhalation (DRCFI) reduces sputum pseudomonas aeruginosa (Pa) density and delays time to infective pulmonary exacerbation in non-cystic fibrosis (CF) bronchiectasis (BE) [Abstract]. European Respiratory Journal 2011;28:334s.

Serisier 2012 [published data only]

Rogers GB, Bruce KD, Martin ML, Burr LD, Serisier DJ. Corrections to, The effect of long-term macrolide treatment


**Shigeno 1984** ([published data only](#))

**Shimada 1988** ([published data only](#))

**Shimokata 1995** ([published data only](#))

**Shishido 1995** ([published data only](#))

**Simioli 2017** ([published data only](#))

**Soejima 1988** ([published data only](#))

**Suga 1988** ([published data only](#))

**Sun 2015** ([published data only](#))

**Suyama 1988** ([published data only](#))

**Tagaya 2001** ([published data only](#))

**Tamura 1992** ([published data only](#))

**Tanimoto 1992** ([published data only](#))

**Tanimoto 1993** ([published data only](#))

**Twiss 2009** ([published data only](#))

**Wada 1992** ([published data only](#))

**Watanabe 1988** ([published data only](#))

**Watanabe 1991** ([published data only](#))

**Watanabe 1995** ([published data only](#))

**Weston 1966** ([published data only](#))

**Wilson 2011** ([published data only](#))

**Wong 2004** ([published data only](#))

**Yamada 1993** ([published data only](#))

**Yoshida 1989** ([published data only](#))
Zegaya 1981 [published data only]

References to ongoing studies
NCT02712983 [published data only]
Dose-finding Study to Assess the Efficacy, Safety and Tolerability of Tobramycin Inhalation Powder in Patients With Non-Cystic Fibrosis Bronchiectasis and Pulmonary P. Aeruginosa Infection (iBEST-1). Ongoing study 2 February 2017.

Additional references
Altenburg 2013

Barker 2014

Bibby 2015

Brodt 2013

Chalmers 2015

Chang 2002

Chang 2010

Cole 1986

Cole 1997

de la Rosa 2016

Edwards 2000

Elborn 2016

European Lung White Book 2013

Evans 1996

Finch 2015
Finch S, McDonnell MJ, Abo-Leyah H, Aliberti S, Chalmers JD. A comprehensive analysis of the impact of
Continuous versus intermittent antibiotics for bronchiectasis (Review)

Copyright © 2018 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.


**Foweraker 2011**


**Goeminne 2016**


**GRADEpro GDT [Computer program]**


**Habesoglu 2011**


**Hansen 2015**


**Haworth 2014**


**Higgins 2011**


**Hill 2017**


**Hnin 2015**


**Hui 2013**


**Joish 2013**


**Kapur 2012**


**Littlewood 2012**


**Martínez-García 2007**


**Martínez-García 2018**


**McCullough 2014**


**Melnyk 2015**


**Moher 2009**


**Murray 2011**


**Pasteur 2010**

Polverino 2017

Quint 2016

Redondo 2016

Review Manager 2014 [Computer program]

Ringshausen 2015

Roberts 2010

Rogers 2014

Seitz 2010

Serisier 2013

Twiss 2005

Weycker 2005

Wilson 1997

Wilson 2013

Wong 2012

* Indicates the major publication for the study.
## Characteristics of excluded studies  [ordered by study ID]

<table>
<thead>
<tr>
<th>Study</th>
<th>Reason for exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aksamit 2016</td>
<td>Comparison between ciprofloxacin versus placebo</td>
</tr>
<tr>
<td>Aksamit 2017</td>
<td>Comparison between ciprofloxacin (intermittent for 28 days) versus ciprofloxacin (intermittent for 14 days) versus placebo</td>
</tr>
<tr>
<td>Al-Mobeireek 1998</td>
<td>Study to determine the range and sensitivity of bacterial pathogens in infective exacerbations of bronchiectasis</td>
</tr>
<tr>
<td>Alberto 1968</td>
<td>Randomised comparison of thiamphenicol glycinate plus acetylcysteine (FZ280E) versus thiamphenicol glycinate in chronic bronchopulmonary disease</td>
</tr>
<tr>
<td>Alekseenko 1978</td>
<td>Comparison between antibiotics with direct current intervention versus antibiotics alone in the treatment of inflammatory suppurative diseases of the lungs</td>
</tr>
<tr>
<td>Alekseenko 1980</td>
<td>Not a randomised trial. Study focusing on antibiotics and bronchial sanitations</td>
</tr>
<tr>
<td>Aliberti 2016</td>
<td>Not a randomised trial. Consensus statement on the management of bronchiectasis</td>
</tr>
<tr>
<td>Antoniou 2013</td>
<td>Comparison between ciprofloxacin versus placebo</td>
</tr>
<tr>
<td>Cherniack 1959</td>
<td>Not a randomised trial. Comparison among placebo versus tetracycline versus oleandomycin-penicillin versus penicillin</td>
</tr>
<tr>
<td>ChiCTR-IOR-16008910 2016</td>
<td>Comparison between procalcitonin versus control (conventional treatment). Study yet to be completed in 2017</td>
</tr>
<tr>
<td>Choo 2018</td>
<td>Comparison between erythromycin versus placebo</td>
</tr>
<tr>
<td>Cseri 1975</td>
<td>No indication of randomisation. Comparison between sumetrolim versus oxytetracycline for chronic non-specific respiratory tract infections</td>
</tr>
<tr>
<td>Currie 1987</td>
<td>Comparison between amoxycillin versus placebo</td>
</tr>
<tr>
<td>Dimakou 2017</td>
<td>Comparison between tobramycin versus colistin</td>
</tr>
<tr>
<td>Douglas 1957</td>
<td>Comparison between chloramphenicol versus oxytetracycline</td>
</tr>
<tr>
<td>Hayashi 1989</td>
<td>Not a randomised trial. Evaluation of cefdinir in the treatment of pneumonia</td>
</tr>
<tr>
<td>Reference</td>
<td>Study Title</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Hill 1992</td>
<td>Comparison between 200 mg twice daily versus 400 mg twice daily of loracarbef (LY 163892)</td>
</tr>
<tr>
<td>Howie 1976</td>
<td>Letter</td>
</tr>
<tr>
<td>Huang 2018</td>
<td>Comparison between herbal decoction with standard decoction</td>
</tr>
<tr>
<td>Hughes 1973</td>
<td>Comparison between trimethoprim and ampicillin</td>
</tr>
<tr>
<td>Iglauer 1973</td>
<td>Comparison between trimethoprim versus sulphamethoxazol</td>
</tr>
<tr>
<td>Inoue 1989</td>
<td>Not a randomised trial. Evaluation of 7432-S</td>
</tr>
<tr>
<td>Irabu 1989</td>
<td>Not a randomised trial. Evaluation of cefdinir</td>
</tr>
<tr>
<td>Irabu 1992</td>
<td>Not a randomised trial. Evaluation of ME1207</td>
</tr>
<tr>
<td>Juthong 2011</td>
<td>Comparison between roxithromycin versus placebo</td>
</tr>
<tr>
<td>Kanai 1963</td>
<td>Spectrophotometric examination of the respiratory chain</td>
</tr>
<tr>
<td>Kawano 1974</td>
<td>Comparison between 200 mg versus 400 mg of amikacin</td>
</tr>
<tr>
<td>Kawashima 1989</td>
<td>Not a randomised trial. Observational study of branhamella catarrhalis infection in pulmonary disorders</td>
</tr>
<tr>
<td>Koyama 1992</td>
<td>Not a randomised trial. Evaluation of ME1207</td>
</tr>
<tr>
<td>Krawczyk 1981</td>
<td>Not a randomised trial. Evaluation of antibiotics and biceptol preparation</td>
</tr>
<tr>
<td>Kudo 1992</td>
<td>Not a randomised trial. Evaluation of ME1207</td>
</tr>
<tr>
<td>Kurishima 1992</td>
<td>Not a randomised trial. Evaluation of cefclidin</td>
</tr>
<tr>
<td>Kuze 1988</td>
<td>Not a randomised trial. Evaluation of cefodizime (THR-221) in respiratory tract infections</td>
</tr>
<tr>
<td>Lamotte 1981</td>
<td>Not a randomised trial. Overview of bronchiectasis</td>
</tr>
<tr>
<td>Ledson 2000</td>
<td>Not a randomised trial. N of 1 study of nebulised taurolidine</td>
</tr>
<tr>
<td>Lunacharskaia 1968</td>
<td>Evaluation of intratracheal administration of morphocyline</td>
</tr>
<tr>
<td>Maekawa 1967</td>
<td>Study did not include participants with bronchiectasis</td>
</tr>
<tr>
<td>Masuno 1992</td>
<td>Not a randomised trial. Evaluation of cefclidin</td>
</tr>
<tr>
<td>Matsumoto 1984</td>
<td>Not a randomised trial. Evaluation of lenampicillin (KBT-1585) in respiratory infection</td>
</tr>
<tr>
<td>Matsumoto 1992</td>
<td>Not a randomised trial. Evaluation of ME1207 in the treatment of respiratory tract infection</td>
</tr>
<tr>
<td>Reference</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Matsuura 1993</td>
<td>Not a randomised trial. Evaluation of S-1108 in elderly patients</td>
</tr>
<tr>
<td>May 1974</td>
<td>Comparison between amoxicillin versus ampicillin</td>
</tr>
<tr>
<td>Mazzei 1993</td>
<td>Not a randomised trial. Evaluation of ciprofloxacin for lower respiratory tract infections</td>
</tr>
<tr>
<td>Messens 1973</td>
<td>Comparison between sulfamethoxazoletrimethoprim versus demethylchlortetracycline in the treatment of pulmonary infections</td>
</tr>
<tr>
<td>Milcev 1985</td>
<td>Focus of this before and after comparison was on anaerobic pulmonary infections and their resistance to antibiotics</td>
</tr>
<tr>
<td>Ming 2005</td>
<td>Comparison between macrolide with theophylline versus 'necessary antibiotics'</td>
</tr>
<tr>
<td>Molodtsova 1980</td>
<td>Evaluation of penicillin, streptomycin, monomycin, levomycetin zeporin, chemotripcin and gignolitin</td>
</tr>
<tr>
<td>Morrone 1989</td>
<td>Participants were randomised to receive 400 mg versus 800 mg of Ofloxacin, two doses per day for 10 days for a total of 400 mg per day or 800 mg per day. Comparison therefore not intermittent versus continuous</td>
</tr>
<tr>
<td>Murayama 1992</td>
<td>Not a randomised trial. Evaluation of ME1207 for respiratory infections</td>
</tr>
<tr>
<td>Nagy 1968</td>
<td>Not a randomised trial</td>
</tr>
<tr>
<td>Nakagawa 1989</td>
<td>Not a randomised trial. Evaluation of cefdinir in respiratory tract infections</td>
</tr>
<tr>
<td>Nakagawa 1993</td>
<td>Not a randomised trial</td>
</tr>
<tr>
<td>NCT00415350</td>
<td>Comparison between azithromycin versus placebo</td>
</tr>
<tr>
<td>NCT00524095</td>
<td>Comparison between fluticasone versus azithromycin (study terminated and did not proceed to treatment phase)</td>
</tr>
<tr>
<td>NCT00775138</td>
<td>Comparison between 280 mg versus 560 mg arikace versus placebo</td>
</tr>
<tr>
<td>NCT00889967</td>
<td>Comparison between ciprofloxacin versus placebo</td>
</tr>
<tr>
<td>NCT00930982</td>
<td>Comparison between ciprofloxacin versus placebo</td>
</tr>
<tr>
<td>NCT01313624</td>
<td>Comparison between aztreonam versus placebo</td>
</tr>
<tr>
<td>NCT01515007</td>
<td>Comparison between iprofloxacin for Inhalation versus placebo liposomes for inhalation</td>
</tr>
<tr>
<td>NCT01538667</td>
<td>Evaluation of lung deposition, pharmacokinetics, safety and tolerability of ciprofloxacin dry powder</td>
</tr>
<tr>
<td>Trial Number</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>NCT01761214</td>
<td>Not a randomised trial. Evaluation of fluoroquinolones</td>
</tr>
<tr>
<td>NCT02035488</td>
<td>Not a randomised trial. Evaluation of tobramycin</td>
</tr>
<tr>
<td>NCT02047773</td>
<td>Evaluation of bacterial load guided therapy</td>
</tr>
<tr>
<td>NCT02081963</td>
<td>Comparison between amikacin and normal saline</td>
</tr>
<tr>
<td>NCT02102152</td>
<td>Comparison between tobramycin versus placebo</td>
</tr>
<tr>
<td>NCT02104245</td>
<td>Comparison between pulmaquin versus placebo</td>
</tr>
<tr>
<td>NCT02107274</td>
<td>Comparison between azithromycin versus placebo</td>
</tr>
<tr>
<td>NCT02315547</td>
<td>Not a randomised trial. Comparison between bronchiectasis patients and healthy participants</td>
</tr>
<tr>
<td>NCT02491723</td>
<td>Not a randomised trial. Evaluation of azithromycin</td>
</tr>
<tr>
<td>NCT02509091</td>
<td>Fundamental treatment combining with the therapy of bronchoalveolar lavage and local amikacin injection versus fundamental treatment alone</td>
</tr>
<tr>
<td>NCT02657473</td>
<td>Comparison between tobramycin inhalation solution and saline inhalation solution</td>
</tr>
<tr>
<td>NCT02661438</td>
<td>Not a randomised trial. Evaluation of ciprofloxacin</td>
</tr>
<tr>
<td>NCT03058718</td>
<td>Evaluation of procalcitonin-guided antibiotic therapy</td>
</tr>
<tr>
<td>NCT03093974</td>
<td>Comparison between colistimethate sodium versus saline solution</td>
</tr>
<tr>
<td>NCT03460704</td>
<td>Comparison between colistimethate sodium versus saline Solution</td>
</tr>
<tr>
<td>Neumayr 1963</td>
<td>Not a randomised trial</td>
</tr>
<tr>
<td>O'Donnell 2016</td>
<td>Comparison of Pulmaquin versus placebo</td>
</tr>
<tr>
<td>Obana 1992</td>
<td>Not a randomised controlled trial. Evaluation of ME1207 in respiratory tract infections</td>
</tr>
<tr>
<td>Odagiri 1992</td>
<td>Not a randomised controlled trial. Evaluation of ME1207 in respiratory tract infections</td>
</tr>
<tr>
<td>Oizumi 1978</td>
<td>Not a randomised controlled trial. Evaluation of amikacin in urinary and respiratory tract infections</td>
</tr>
<tr>
<td>Pezza 1983</td>
<td>Not a randomised trial. Evaluation of ceftriaxone in pneumonia with acute exacerbations</td>
</tr>
<tr>
<td>Reference</td>
<td>Summary</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Saito 1993</td>
<td>Evaluation of the clinical effects of clindamycin on respiratory infections</td>
</tr>
<tr>
<td>Santiveri 1995</td>
<td>Evaluation of inhaled antibiotic treatment for pseudomonas aeruginosa</td>
</tr>
<tr>
<td>Schulz 1972</td>
<td>Evaluation of chloramphicol and tetracycline</td>
</tr>
<tr>
<td>Serisier 2011</td>
<td>Comparison between DRCFI (a novel liposomal formulation) versus placebo</td>
</tr>
<tr>
<td>Serisier 2012</td>
<td>Comparison between erythromycin versus placebo</td>
</tr>
<tr>
<td>Shigeno 1984</td>
<td>Not a randomised controlled trial. Evaluation of lenampicill (KBT-1585)</td>
</tr>
<tr>
<td>Shimada 1988</td>
<td>Not a randomised controlled trial. Evaluation of NY-198 in urinary and respiratory tract infections</td>
</tr>
<tr>
<td>Shimokata 1992</td>
<td>Not a randomised controlled trial. Evaluation of cefclidin on respiratory tract infections</td>
</tr>
<tr>
<td>Shishido 1995</td>
<td>Comparison between 100 mg and 200 mg levofloxacin</td>
</tr>
<tr>
<td>Simioli 2017</td>
<td>Comparison between pidotimod 800 mg OD versus no treatment</td>
</tr>
<tr>
<td>Soejima 1988</td>
<td>Not a randomised controlled trial. Evaluation of TE-031 (A-56268)</td>
</tr>
<tr>
<td>Suga 1988</td>
<td>Not a randomised controlled trial. Evaluation of T-3262 in respiratory tract infection</td>
</tr>
<tr>
<td>Sun 2015</td>
<td>Juqin mixture aerosol inhalation + standard care versus standard care alone</td>
</tr>
<tr>
<td>Suyama 1988</td>
<td>Not a randomised controlled trial. Evaluation of T-3262 cefodizime (THR-221)</td>
</tr>
<tr>
<td>Tagaya 2001</td>
<td>Not a randomised controlled trial. Comparison between clarithromycin versus amoxicillin</td>
</tr>
<tr>
<td>Tamura 1992</td>
<td>Full review of this study not available. However the intervention is not used in clinical practice</td>
</tr>
<tr>
<td>Tanimoto 1992</td>
<td>Not a randomised controlled trial. Evaluation of ME 1207 in the treatment of respiratory infections</td>
</tr>
<tr>
<td>Tanimoto 1993</td>
<td>Not a randomised controlled trial. Evaluation of S-1108 in the treatment of respiratory infections</td>
</tr>
<tr>
<td>Twiss 2009</td>
<td>Comparison between nebulised gentamicin versus placebo</td>
</tr>
<tr>
<td>Wada 1992</td>
<td>Not a randomised controlled trial and not participants with bronchiectasis. Respiratory tract infections</td>
</tr>
<tr>
<td>Watanabe 1988</td>
<td>Not a randomised controlled trial and not participants with bronchiectasis</td>
</tr>
<tr>
<td>Watanabe 1991</td>
<td>Not a randomised controlled trial</td>
</tr>
<tr>
<td>Watanabe 1995</td>
<td>Not a randomised controlled trial</td>
</tr>
</tbody>
</table>
Characteristics of ongoing studies  [ordered by study ID]

NCT02712983

<table>
<thead>
<tr>
<th>Trial name or title</th>
<th>Dose-finding Study to Assess the Efficacy, Safety and Tolerability of Tobra...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods</td>
<td>Parallel group randomized trial</td>
</tr>
<tr>
<td>Participants</td>
<td>Patients with non-cystic fibrosis bronchiectasis and pulmonary <em>P. Aeruginosa</em> infection</td>
</tr>
<tr>
<td>Interventions</td>
<td>tobramycin inhalation powder (TIP) dose and placebo, 3 dose regimens</td>
</tr>
<tr>
<td>Outcomes</td>
<td><em>P. aeruginosa</em> density in sputum</td>
</tr>
<tr>
<td>Starting date</td>
<td>2 February 2017</td>
</tr>
<tr>
<td>Contact information</td>
<td>Novartis Pharmaceuticals: email: <a href="mailto:trialandresults.registries@novartis.com">trialandresults.registries@novartis.com</a></td>
</tr>
<tr>
<td>Notes</td>
<td>Estimated completion date: 10 September 2018</td>
</tr>
</tbody>
</table>

CONTRIBUTIONS OF AUTHORS

All review authors contributed to the Background section. LF and SS contributed to the Methods section. SM and TD screened the searches. All authors contributed to results, discussion and conclusions.
**DECLARATIONS OF INTEREST**

J Chalmers: part of the EMBARC group that set research priorities in bronchiectasis. He also receives grant support from Pfizer, AstraZeneca and GlaxoSmithKline. In addition, he is part of an innovative medicines initiative consortium that includes Novartis and Basilea Pharmaceutica. He has participated in advisory boards for Bayer HealthCare, Chiesi and Raptor Pharmaceuticals. He has received fees for speaking from Napp, AstraZeneca, BI and Pfizer. None of these conflicts of interest are related to the work of this review and are unrelated to the topic of the review.

T Donovan: none known.

L Felix: none known.

A Mathioudakis: none known.

S Milan: none known.

S Spencer: named co-investigator on a study conducted to develop a series of reviews on bronchiectasis.

**SOURCES OF SUPPORT**

Internal sources

- Edge Hill University, UK.
  Funded Lambert Felix to provide support for a series of reviews on bronchiectasis.

External sources

- National Institute of Health Research, UK.
  AGM was funded by an NIHR Academic Clinical Fellowship in Respiratory Medicine

**DIFFERENCES BETWEEN PROTOCOL AND REVIEW**

No differences.