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MUSCLE ACTIVATION ASSESSMENT: EFFECTS OF METHOD, STIMULI NUMBER 

AND JOINT ANGLE 

 

Abstract 

The aim of this study was to compare and assess the sensitivity of the interpolated twitch technique 

(ITT) and central activation ratio (CAR) to potential errors introduced by 1) evoking inadequate 

force, by manipulating the number of stimuli and 2) neglecting differences in series elasticity 

between conditions, by manipulating joint angle. Ten subjects performed knee extension 

contractions at 30 and 90 deg knee joint angles during which the ITT [(1-superimposed stimulus 

torque/resting stimulus torque) x 100] and CAR [voluntary torque/voluntary torque+superimposed 

stimulus torque] methods were applied using 1, 2, 4 and 8 electrical stimuli. Joint angle influenced 

the ITT outcome with higher values taken at 90 deg (P<0.05), while stimuli number influenced the 

CAR outcome with a higher number of stimuli yielding lower values (P<0.05). For any given joint 

angle and stimuli number, the CAR method produced higher activation values than the ITT method 

by 8-16%. Therefore, it is suggested that in the quantification of voluntary drive with the ITT and 

CAR methods consideration be given not only to the number of stimuli applied but also to the effect 

of series elasticity due to joint angle differences, since these factors may affect differently the 

outcome of the calculation, depending on the approach followed. 

 

Keywords: maximum voluntary contraction, electrical stimulation, interpolated twitch technique, 

central activation ratio, series elastic component  
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INTRODUCTION 

The measurement of isometric torque produced by maximal effort voluntary contraction (MVC) has 

been routinely used for assessing muscle function in different populations, such as a) patients with 

fibromyalgia and anterior knee pain32,41, elderly18,36 and athletes13,25, and after b) acute (e.g.,  

fatigue16,31) and chronic interventions (e.g., exercise training 7,26). One of the main factors that affect 

MVC torque generation is the degree to which the agonist muscles tested are activated by volition. 

This functional parameter shows physiological variation in clinical situations such as motor neuron 

disorders17,37 and joint pathologies32,41, but it may also be subject to methodological variation2,4,34. 

To assess activation capacity, two methods have traditionally been employed: The interpolated 

twitch technique (ITT)1,3,4,5,8,13,26,34,38,42  and the central activation ratio (CAR)18,29,36. 

The ITT method involves the application to the muscle or parent nerve of an electrical stimulus (or 

series of stimuli at frequencies allowing a fused contractile response) during an MVC 

(superimposed stimulation) and the application of an identical electrical stimulus at rest. Activation 

capacity with this method is calculated as ITT = (1- superimposed stimulus torque / resting stimulus 

torque) x 100 [equation 1]. The CAR method involves only the application of a superimposed 

stimulus and the activation capacity is calculated as CAR = MVC torque / MVC torque + 

superimposed stimulus torque [equation 2].  

Despite the fact that both methods are based on the principle that activation is incomplete if the 

superimposed stimulation causes any further torque increase above the level of MVC, the 

quantitative agreement of the two methods and the physiological mechanisms underpinning any 

possible differences have not been fully elucidated. To date, only Behm et al4 have compared the 

two methods and found that the CAR method yielded higher activation values than the ITT method 

when applied at the same joint angle. Surprisingly, however, superimposing two stimuli and a 

tetanus at 100 Hz produced similar CAR values. Increasing the number of stimuli would be 

expected to increase the extra contractile torque produced by the superimposed stimulus due to 

summation of twitch contractile responses, and should thus result in reduced activation capacity 
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values using the CAR method. In contrast, this would not be the case for the ITT method, since this 

method encompasses also the torque produced by applying the same stimulus at rest. Errors of 

different magnitude might also be introduced in the two methods when comparative measurements 

are taken across a range of joint positions. Changes in joint angle would alter the passive stiffness of 

the series elastic component (SEC) of the muscle. This alteration may result in changes in the 

effectiveness of the SEC to transmit the force evoked by the application of an electrical stimulus to 

the muscle, thus potentially affecting the magnitude of the resting twitch and consequently the 

calculation of activation capacity using the ITT method. In contrast, the lack of resting twitch in the 

CAR method would render this method insensitive to errors associated with changes in SEC 

stiffness with joint angle. 

To gain insight into the above methodological issues and their impact on the estimation of 

activation capacity, we have designed a study with the aim of comparing the ITT and CAR methods 

when manipulating the number of electrical stimuli and joint angle. We studied the quadriceps 

muscle group and hypothesized that, for a given level of volitional effort during knee extension 

contraction, a) the CAR method would be more sensitive than the ITT method to differences in the 

number of applied stimuli, and b) the ITT method would be more sensitive than the CAR method to 

knee joint angle changes for any given number of stimuli.  

 

MATERIALS AND METHODS 

Subjects. Ten healthy, physically active males (age: 29 ± 7 years, height: 178 ± 6 cm, body mass: 

78 ± 10 kg; mean ± SD) provided written informed consent to participate in this study, which was 

approved by the Institutional Ethics Committee. All subjects were tested in the laboratory on a 

single occasion, but had previously visited the laboratory on at least another one occasion to 

become familiar with the experimental procedures involved.  

Maximal contractile torque. Knee extension MVC torque was measured on the right leg at knee 

joint angles of 30 and 90 deg (full knee extension = 0 deg) with the hip joint at 85 deg (supine 
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position = 0 deg), using an isokinetic dynamometer (Cybex NORM, Ronkonkoma, NY). The knee 

joint angles tested were selected in order to represent positions where the passive stretch applied to 

the SEC varied considerably, i.e., the SEC is stretched at 90 deg and slacker at 30 deg. The centre of 

rotation of the knee was aligned with the dynamometer axis. Straps were positioned at the hip, 

shoulders and over the tested thigh to prevent extraneous movement. The subjects were instructed 

to perform all contractions by increasing their effort gradually in ~2-3 s and maintain the maximum 

torque produced for an additional ~1 s. A rest period of 2-3 minutes separated the contractions.   

Quantification of voluntary activation. The quantification of voluntary activation during the 

MVCs was based on the application of electrical stimulation. Femoral nerve stimulation proved to 

cause major discomfort in some subjects, especially when applying trains of stimuli; hence we 

opted for percutaneous muscle stimulation. Two 7 x 12.5-cm self-adhesive electrodes were placed 

on the proximal and distal regions of the quadriceps muscle group. The size and location of the 

stimulating electrodes was determined in preliminary experiments, with the criterion being the 

generation of the highest possible knee extension torque by applying a twitch of a given intensity. 

Signals of torque and electrical stimuli application were displayed on the screen of a computer 

(Macintosh, G4, Apple Computer, Cupertino, CA, USA), interfaced with an acquisition system 

(Acknowledge, Biopac Systems, Santa Barbara, CA, USA) used for analog-to-digital conversion, at 

a sampling frequency of 2,000 Hz. Stimuli of 200-μs pulse width and 10-ms inter-stimulus gap 

were generated by an electrical stimulator (model DS7, Digitimer stimulator, Welwyn, Garden City, 

UK) modified to deliver a maximum of 1,000 mA output. One (singlet), two (doublet) and four 

stimuli (quadruplet) were applied in a randomized order in all ten subjects. Six of the ten subjects 

were capable of tolerating discomfort levels caused by application of eight stimuli (octuplet); hence, 

these data were also collected and included in the analysis. 

The supramaximal stimulation intensity was determined at each joint angle by single twitches 

applied at rest with increasing current intensity at 300 V. Supramaximality was defined as the level 

at which a further increase in current of 50 mA did not elicit an increase in twitch torque. 
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Supramaximal stimulation was applied during the plateau phase of MVC and 3 s after complete 

relaxation following the MVC (Fig. 1). The latter resting potentiated stimulus was evoked 

automatically. Two MVCs were performed and the contraction with the highest torque was selected 

for analysis. 

Activation capacity was calculated from equation 1 for the ITT method and equation 2 for the CAR 

method (see Introduction). The rate of torque development for the resting stimuli was measured to 

further elucidate the influence of SEC on the ITT method outcome. Rate of torque development for 

each stimuli number was measured as the gradient of the torque-time curve from rest to peak torque 

during stimulation. 

Statistics. Normality of the data was examined using the Kolmogorov-Smirnov test. In cases where 

the data were not normally distributed, a transformation was performed using the most appropriate 

transformation function44 prior to further analysis and normality was subsequently confirmed. A 

one-way repeated measures analysis of variance (ANOVA) was used to examine for differences in 

baseline MVC torque at each joint angle, just before superimposing the singlet, doublet, quadruplet 

and octuplet. A one-way ANOVA was also used to examine for differences in the torque ratio of 

superimposed stimulation to resting stimulation between the singlet, doublet, quadruplet and 

octuplet at each joint angle. A mixed-design 2 x 2 x 4 repeated measures factorial ANOVA was 

used to examine for differences in activation capacity between methods, knee joint angles and 

stimuli number. A 2 x 4 repeated measures factorial ANOVA was used to examine for differences 

in the rate of torque development between stimuli number and joint angle. Simple effects tests were 

used for post hoc analysis where appropriate. Values are presented as the mean ± SD. Significance 

was accepted at the level P < 0.05. 

 

RESULTS 

The torque values produced prior to superimposed stimulation at each joint angle were not different 

between contractions (P > 0.05; Table 1), indicating that the volitional efforts exerted during the 
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MVCs were similar. The current corresponding to supramaximal stimulation intensity was identical 

for the two joint angles (731 ± 92 mA).  

ITT method. There was no effect of stimuli number on the ITT outcome for either joint angle (P > 

0.05). In contrast, there was an effect of joint angle (P < 0.05). The singlet, doublet and quadruplet 

at 90 deg yielded higher activation capacity values than the respective stimuli at 30 deg (9-18% 

difference, P < 0.05), while the octuplet yielded no difference (P > 0.05) between joint angles. The 

torque ratio of superimposed stimulation to resting stimulation at each joint angle did not differ 

between the singlet, doublet, quadruplet and octuplet (P > 0.05; Table 1). The rate of torque 

development for the octuplet did not differ between joint angles (P > 0.05; Table 1), while the 

singlet, doublet and quadruplet yielded higher values (P < 0.05; Table 1) at 90 than 30 deg by 

131%, 116% and 71%, respectively.  

CAR method. The CAR outcome depended on number of stimuli. At the knee joint angle of 30 

deg, the singlet yielded higher activation values than the doublet (4% difference, P < 0.05), 

quadruplet (9% difference, P < 0.05) and octuplet (12% difference, P < 0.05), and the doublet 

yielded higher activation values than the quadruplet (6% difference, P < 0.05) and octuplet (9% 

difference, P < 0.05). At 90 deg the singlet produced higher activation than the quadruplet and 

octuplet (3% and 4% respectively, P < 0.05), but no differences were found in the comparisons 

involving the doublet and between the quadruplet and octuplet (P > 0.05). In contrast to the ITT 

method, there was no effect of joint angle on the CAR method outcome for any number of stimuli 

(P > 0.05). For any given stimuli number and joint angle, the CAR method produced higher 

activation capacity values by 8-16% than the ITT method. These differences reached statistical 

significance (P < 0.05) for the singlet, doublet and quadruplet at 30 deg.  

Mean activation values for each method, stimuli number and joint angle are presented in Fig. 2.  
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DISCUSSION 

In the present study, we manipulated the number of electrical stimuli and the knee joint angle and 

we showed that for a given volitional knee extension effort, a) differences in stimuli number have a 

greater effect on the CAR than ITT method, and b) knee joint angle changes have a greater effect on 

the ITT than CAR method. These results support our hypotheses.  

ITT outcome. The application of a train of maximal intensity stimuli often causes discomfort and 

limits the applicability of electrical stimulation for the assessment of activation capacity8,38. 

Nonetheless, it has previously been suggested that multiple stimuli rather than single twitches are 

required to improve the signal-to-noise ratio and increase the sensitivity of the ITT method by 

reducing the variability of the superimposed force42 and more effectively overcoming the 

antidromic effect of stimulation and spinal reflexes4, especially during nerve stimulation. However, 

increasing the number of stimuli in the present study did not alter the activation values taken with 

the ITT method at either knee joint angle. A similar finding has been reported for the level of knee 

extensor muscle activation obtained by extrapolating the curve describing the relation between the 

torque ratio of superimposed twitch to resting twitch, and voluntary torque, when using one, two 

and five stimuli5. Similarly, no differences in elbow flexor activation capacity were found by 

applying the ITT method using one, two and four stimuli, due to a similarity in the magnitude of the 

superimposed torque evoked by the three stimulations2. In the present study, as in other 

studies17,30,40, the magnitude of the extra torque generated by superimposing current increased with 

stimuli number (201% and 98% increase from singlet to octuplet at 30 and 90 deg, respectively) 

indicating fuller activation due to increases in myofibrillar calcium concentration9,10. However, 

when this extra torque was normalized to the corresponding torque produced by the reference 

resting stimulus the differences between stimuli number disappeared, thus producing a constant ITT 

outcome.  

Studies on the effect of joint angle on activation capacity assessed using the ITT method are scarce 

and report inconsistent results, with longer muscle lengths yielding higher23, lower43, or similar 
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activation values31 compared with shorter muscle lengths. Our ITT results suggest higher 

activations at longer lengths when using one, two and four stimuli, and similar activations at shorter 

and longer lengths when using eight stimuli. In seeking to address whether the inter-angle variation 

in the ITT outcome in any given study is a true biological effect, the effect of SEC stiffness 

differences at different muscle lengths should be considered. Changes in SEC stiffness can affect 

the magnitude of twitch force 12,24. One important factor that can affect the SEC stiffness is joint 

angle. This is supported by recent ultrasound-based findings that passive joint rotation alters not 

only muscle fascicle length, but also tendon length and therefore its tensile stiffness11. At 90 knee 

angle the quadriceps SEC would be longer and stiffer than at 30 deg, thus being able to more 

faithfully transmit the resting twitch force to the tibia, as evidenced by the differences in the 

corresponding rate of torque development for the singlet, doublet and quadruplet. Reducing the 

sensitivity of the ITT method to changes in resting series elasticity would require application of 

reference forces that can be transmitted equally faithfully across joint angles. Our ITT and rate of 

torque development results indicate that this criterion was met by the application of octuplets.  

The present ITT activation capacity values at 30 deg knee flexion are lower than the average ITT 

values reported for quadriceps voluntary activation, which range from ~84 to 95%4,6,23,31. However, 

our ITT values at 90 deg fall within the above range. This difference may be attributed to the fact 

that the vast majority of published quadriceps ITT values refer to measurements at 90 deg knee joint 

angle. As explained above, the quadriceps SEC at 90 deg is stiffer than at 30 deg, thus yielding 

higher resting twitch responses and lower activation estimates. 

CAR outcome. In agreement with Behm et al4, the CAR method yielded higher values than the ITT 

method. The present difference, however, was found to be joint angle-dependent, reaching the level 

of 16% at shorter muscle lengths and 8% at longer muscle lengths. Contrary to the similarity in 

CAR outcome between a doublet and a tetanus reported by Behm et al4, we obtained lower CAR 

values at higher stimuli numbers. The increase in superimposed torque with stimuli number 

indicates the ineffectiveness of low stimuli number to fully activate muscle fibres left inactivated by 
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volition during MVC and explains the corresponding decreasing activation capacity calculated 

using the CAR method. However, it must be stressed that percutaneous muscle stimulation can 

activate only those muscle fibres with nerve endings in the vicinity of the electrodes14. Direct nerve 

stimulation is required to evoke the maximum force in all the inactivated muscle fibres during 

MVC, but this procedure may cause intolerable discomfort raising ethical concerns. In addition, 

antagonist muscles will co-contract if also innervated by the stimulating nerve, as is the case for the 

antagonist sartorius muscle during femoral nerve stimulation for quadriceps muscle testing. 

Nevertheless, our CAR values are likely higher than those that would have been obtained by direct 

nerve stimulation17. In contrast to the CAR method, experimental findings show that the ITT 

outcome is largely independent of stimulating site (muscle or nerve), indicating a similarity between 

protocols in the proportion of activated muscle by superimposed stimulation relative to the 

stimulation at rest37. 

Contrary to the ITT method, there was very small variation in the CAR outcome with joint angle for 

any given number of stimuli, which substantiates our hypothesis. However, the number of stimuli 

required to obtain the lowest CAR value was joint angle-dependent: While at 30 deg knee joint 

angle the lowest CAR output (highest superimposed torque) was taken with the octuplet, at 90 deg 

the quadruplet and octuplet produced similar CAR values. It is likely that the inter-angle difference 

in the number of stimuli required to obtain the lowest CAR values may have been caused by an 

increased sensitivity of the submaximally recruited muscle fibres to changes in myofibrillar calcium 

concentration at longer lengths (for a review see Stephenson & Wendt39).  

Conclusions and recommendations. To conclude, the present results show that the ITT method is 

more sensitive to changes in joint angle and less sensitive to changes in stimuli number than the 

CAR method. Based on our findings, we recommend that for a valid comparison of ITT results 

between tests corresponding to different SEC stiffness values, a number of stimuli adequate to 

similarly stretch and stiffen the resting muscle-tendon unit in all tests be delivered. Apart from tests 

at different muscle lengths, the above recommendation also applies to tests in different age 
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groups15,33, and groups with different physical activity histories and lifestyles21,22,27, tests before and 

after acute19,28 and chronic interventions20,35,36, and generally in all conditions that may alter the 

mechanical properties of tendon. Measurements of rate of torque development during stimulation 

may be used as a guide for assessing whether the criterion of similar passive SEC stiffness between 

conditions is met, especially when muscle fibre composition is similar. Comparisons of CAR results 

between tests corresponding to different SEC stiffness values are relatively immune to the above 

problem. However, to obtain a realistic CAR outcome at a given SEC stiffness state (e.g., a given 

joint angle in a given population at a given point in time) appropriate steps need to be taken to 

ensure that a substantial part of the inactivated muscle by volition is activated by the superimposed 

stimulation. 
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TABLES 
 
 
Table 1. Summarized data (mean ± SD) for maximum effort voluntary contraction (MVC), torque 

ratios of superimposed stimulation to resting stimulation (TR) and rate of torque development 

(RTD) for both joint angles and all stimuli number.  

 

 Joint angle (deg)  Singlet Doublet Quadruplet Octuplet 

MVC (Nm) 
30 129.4 ± 41.5 133.2 ± 39.9 135.3 ± 38.2 153.2 ± 49.9 

90 208.6 ± 42.7 293.3 ± 41.5 197.4 ± 37.6 181.0 ± 42.2 

TR  
30 7.5 ± 5.5 7.5 ± 5.2 4.3 ± 1.7 5.4 ± 3.8 

90 10.9 ± 6.0 8.5 ± 4.1 14.6 ± 16.1 19.8 ± 33.2 

RTD (Nm/s) 
30 273.4 ± 162.5 437.3 ± 263.6 602.5 ± 318.3 754.8 ± 424.1 

90 578.3 ± 378.5 821.5 ± 569.9 869.3 ± 628.3 805.0 ± 556.1 
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FIGURES 
 

 
 
Fig. 1. Top: Torque traces for one participant at 90 deg knee joint angle during application of a 

singlet (A) and an octuplet (B). Bottom: Time of stimuli application in the above contractions.  
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Fig. 2. Muscle activation values for the ITT (A) and CAR (B) methods at 30 and 90 deg knee joint 

angles using the four different stimuli number in the study. ITT30 and ITT90, activation values at 

30 and 90 deg angles, respectively, with the ITT method; CAR30 and CAR90, activation values at 

30 and 90 deg angles, respectively, with the CAR method. Significant differences are indicated by * 

A 

B 

* 
* 

* 

a,b,c 

d,e 

a,c 
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between joint angles, a between singlet and doublet, b between singlet and quadruplet, c between 

singlet and quadruplet, d between doublet and quadruplet and e between doublet and octuplet. 

Vertical bars denote SD. 
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