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The flash-preview moving window paradigm: Unpacking visual 

expertise one glimpse at a time 

Abstract 

How we make sense of what we see and where best to look is shaped by our 

experience, our current task goals and how we first perceive our environment. An 

established way of demonstrating these factors work together is to study how eye 

movement patterns change as a function of expertise and to observe how experts can 

solve complex tasks after only very brief glances at a domain-specific image. The 

primary focus of this paper is to introduce an innovative gaze-contingent method 

called the ‘Flash-Preview Moving Window’ (FPMW) paradigm (Castelhano & 

Henderson, 2007), which was recently developed to understand our shared expertise in 

scene perception and how our first glimpse of a scene is used to guide our eye 

movement behaviour. In keeping with this special issue on visual expertise and 

medicine, this paper will highlight how the FPMW paradigm has the potential to 

resolve long-standing theoretical issues as to how, right from the very first glance, 

experts are able to process domain-specific images and guide their eye movements 

better than novices. Since FPMW is a gaze-contingent eye-tracking method, the paper 

will first outline the current methodological and theoretical frontier, and how the 

FPMW paradigm bridges established methods used to investigate visual expertise. The 

paper will discuss a recent example in which the FPMW was employed to investigate 

medical image perception expertise for the first time (Litchfield & Donovan, 2016), 

and by discussing the insights and challenges this method offers, this should 

ultimately deepen our understanding of visual expertise. 

Keywords: flash-preview moving window; eye movements; medical image 

perception; visual expertise; eye-tracking  
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1. Introduction 

From the moment we open our eyes we see a rich visual world. We are unable to process all of this incoming 

information and so we must move our eyes several times a second to look at and process different aspects of 

our environment. How we make sense of what we see and where best to look is shaped by our experience, 

our current task goals and how we first perceive our environment (Buswell, 1935; Henderson, 2007; Rayner, 

2009; Yarbus, 1967). The common purpose of most eye tracking studies is to explore how eye movement 

behaviour is regulated and to see how eye movement behaviour during specific tasks relates to underlying 

visual and cognitive processes (Just & Carpenter, 1984). When searching for an object in a newly presented 

image, the first fixation quickly (i.e., within 40-100ms) encapsulates the initial “gist” of the scene and 

receives some pre-attentive processing of basic features (Rayner, Smith, Malcom, & Henderson, 2009; Võ & 

Henderson, 2010). At this point visual properties such as colour, contour distribution and spatial frequency 

are likely to be processed (Henderson & Hollingworth, 1999; Oliva, & Schyns, 1997; Schyns & Oliva, 

1994), with scene context and semantic information accessible depending on the duration of the first glimpse 

of the scene (Fei-Fei, Iyer, Koch, & Perona, 2007; Potter, 1976). It is within this initial glimpse of the scene 

that subsequent eye movements are guided (Castelhano & Henderson, 2007) with parafoveal and peripheral 

vision playing an important role in the early comprehension of the gist of a scene and in the detection of 

targets (Henderson, Pollatsek, & Rayner, 1989). The visual system is able to integrate this visual input from 

sensory information with top-down information, which allows us to identify and locate any task-relevant 

item(s) within the receptive field for saccadic targeting. However, the processes that underlie this integration 

of information are still heavily debated (see Cohen, Dennett, & Kanwisher, 2016; Tatler, 2009; Torralba, 

Oliva, Castelhano, & Henderson, 2006; Wolfe Evans, Võ, & Greene, 2011; Zelinsky & Schmidt, 2009). 

Understanding how these visual processes become optimised with experience not only sheds light on these 

cutting edge issues, but also provides new ways of studying the development (and potential enhancement) of 

expertise (Donovan & Litchfield, 2013; Litchfield & Donovan, 2016). Medical image perception is a domain 

of visual expertise that has long recognised the importance of processing the initial glimpse of an image 

(e.g., Kundel & Nodine, 1975), and given the rapid developments in scene perception research, it is 

fundamental that these respective research fields are reconciled as both inform each other (Donovan & 

Litchfield, 2013; Drew, Evans Võ, Jacobson, & Wolfe, 2013a).  

 

A hallmark of expertise is that experts make better and faster decisions than novices (Chase & Simon, 1973; 

de Groot, 1946/1965; Gobet, 2015) and experts in medical image perception are no exception (for an 

excellent review of eye movements and visual expertise in medicine see Reingold & Sheridan, 2011; see also 

Fox and Szulewski this issue). Moreover, examining the expertise-related differences in eye movement 

patterns reveals the types of visual processing and cognitive strategies that may underlie such expert 

performance. As mentioned above, our visual system integrates top-down information (e.g., knowledge, 

expectations) with bottom-up information (visual processing of the incoming image) to make sense of what 

we see and where to look. Accordingly, experts in a specific domain can draw on their acquired knowledge 

to be more selective in the information they use to make decisions and are less likely to look at conspicuous 

but non-informative areas of a scene (for a recent meta-analysis, see Gegenfurtner, Lehtinan, & Säljö, 2011). 

Indeed, experts in medical image perception are much more selective than novices in deciding where to look 

(Donovan & Litchfield, 2013; Krupinski, 1996; Kundel & La Follette, 1972; Manning, Ethell, & Crawford, 

2003; Manning, Ethell, & Donovan, 2004; Manning, Ethell, Donovan, & Crawford, 2006), and exhibit 

efficient scanpaths that allow abnormalities to be detected quickly (Krupinski, 1996; Kundel, Nodine, 

Conant, & Weinstein, 2007; Kundel, Nodine, Krupinski, & Mello-Thoms, 2008), whilst minimizing 

unnecessary fixations (Manning et al., 2006). Consequently, this allows experts to inspect medical images 

much faster than less experienced observers, without compromising on decision accuracy (Nodine & Mello-

Thoms, 2010; Nodine, Mello-Thoms, Kundel, & Weinstein, 2002).  

 

These expert/novice differences can be interpreted by the prominent global-focal search model (Nodine & 

Kundel, 1987) or its recent formulation, the “holistic model” (Kundel et al., 2007; see also the two-stage 

detection model by Swensson, 1980). The holistic model proposes that within the first glimpse, expert 
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observers globally processes the medical image and subsequently make efficient search-related eye 

movements to potentially abnormal areas to support diagnostic decision-making. This means that prior to 

foveal search, experts process the low-level information relating to the present image and compare this with 

their extensive experience of previously viewed normal and abnormal medical images. By drawing on their 

knowledge of domain-specific visual representations (schema), experts rapidly recognise and coordinate 

their search for abnormalities and deploy search strategies based on the global information encapsulated 

within the initial “gist” of image viewing. If nothing is perturbed from the initial global impression, then 

subsequent search and discovery processing is engaged, which is reliant on individual feature search.  

 

There is substantial converging evidence to support the holistic model, and specifically that expert observers 

can rapidly process the initial glimpse of the image. The link between globally processing the initial glimpse 

and diagnostic performance was established by Kundel and Nodine’s (1975) tachistoscopic experiments, in 

which they found that even when images were presented for just 200ms, experts could still correctly detect 

70% of abnormal images compared to 97% with no time constraints (see also Carmody, Nodine & Kundel, 

1981; Evans, Georgian-Smith, Tambouret, Birdwell, & Wolfe, 2013; Mugglestone, Gale, Cowley & Wilson, 

1995; Oestmann et al., 1988). Since these ‘flash’ studies presented images so quickly that they prevented eye 

movements and yet performance was still above chance, this provided strong evidence that rapid processing 

of medical images must be contributing to diagnostic performance, aside from what can be gained by 

subsequent search and discovery processing. Moreover this led Kundel and Nodine to argue that “visual 

search begins with a global response that establishes content, detects gross deviations from normal, and 

organizes subsequent foveal checking fixations” (Kundel & Nodine, 1975, p. 527), and this hypothesis has 

dominated medical image perception research in the decades since its inception. Indeed, Kundel et al. (2007) 

proposed that the ability to optimise the processing of the initial glimpse is a hallmark of expertise as they 

suggested that visual search in medical image perception begins as: SEARCH & DETECT–RECOGNIZE–

DECIDE but with experience, this develops into: RECOGNIZE & DETECT–SEARCH–DECIDE. 

 

However, it is important to note that in several of these ‘flash’ studies, such above-chance performance was 

only observed when they contained highly conspicuous nodules as performance was much worse for subtle 

nodules. For example, Carmody et al. (1981) reported that detection of abnormal images did not improve 

beyond 180ms, but whereas abnormal images containing high and medium visibility nodules were detected 

often (100% and 83% respectively), abnormal images containing low visibility nodules were only correctly 

detected 53% of the time. Similarly, Oestmann et al. (1988) found that images containing subtle or obvious 

cancers were correctly detected 30% and 70% respectively when shown for just 250ms, whereas with 

unlimited viewing time detection increased to 74% and 98%, respectively. Indeed, in free search conditions 

Carmody et al., (1981) established that there was a relationship between nodule visibility and the frequency 

of comparative scans: the poorer the visibility of the nodule, the more likely that eye movements would be 

directed alternately to normal and abnormal regions to help distinguish pathology from normality. These 

findings are reflected in the holistic model, in that if the observer does not recognise perturbations in the 

image then search and discovery processing is undertaken to support diagnostic decision-making. But if the 

strength of the target signal influences detection so much, how do we know that global processing is 

involved and that it is not just rapid serial feature search instead? The answer lies with experiments that 

deliberately disrupted global or ‘holistic’ processing.  

 

For example, presenting segmented images (Carmody, Nodine, & Kundel, 1980) or rotated images 

(Oestmann, Greene, Bourgouin, Linetsky, & Llewellyn, 1993) impaired diagnostic performance compared to 

‘global search’, where images were presented normally. In addition, these impairments in detection were 

independent of target conspicuity as they were found in images containing either obvious or subtle cancers 

(Oestmann et al., 1993). What is problematic, however, is that since the disruption studies and the ‘flash’ 

studies had very limited sample size (3 to 4 observers), and predominately only tested experienced observers 

(common problems with many medical imaging studies), they actually provide very little direct evidence that 

experts are the only ones reliant on global processing, or whether in fact this disruption in global processing 
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also impairs less experienced observers. This is an important distinction to make in understanding the 

development of visual expertise. For example, it is one thing to infer that experts are able to globally process 

a domain-specific image and that this helps explain their expert performance, it is another to acknowledge 

that all observers potentially have access to global processing at some point (for example, in scene 

perception), and it is just that experts may have fine-tuned an existing system to a fit a particular domain, 

rather than created a new system entirely from scratch. This has both theoretical and practical implications as 

to how global processing is used, modified, and if vital to diagnostic performance, how it may be selectively 

trained to enhance performance. That said, a broader overview of the visual expertise literature shows there 

are multiple domains where increasing expertise enables observers to shift from local feature processing to 

holistic processing and thereby take into account the overall configuration of incoming information 

(Gauthier, Tarr, & Bub, 2010), whether this is expertise in processing particular objects such as faces 

(Gauthier & Tarr, 1997) dogs (Diamond & Carey, 1986), cars (Curby, Glazek & Gauthier, 2009), 

fingerprints (Busey & Vanderkolk, 2005), or potentially whole scenes (Kelley, Chun, & Chua, 2003; Werner 

& Thies, 2000).  

 

Aside from these disruption and flash studies, expert/novice eye movement studies in medical perception 

have been broadly supportive of the holistic model. A recurring finding of expert/novice studies is that not 

only can experts correctly identify more abnormalities than novices, the time taken to first fixate 

abnormalities (search latency) is faster for experts compared to novices (Donovan & Litchfield, 2013; 

Krupinski, 1996; Kundel, et al., 2007; Kundel, Nodine, Krupinski, & Mello-Thoms 2008; Nodine & Mello-

Thoms, 2010; Reingold & Sheridan, 2011). Related to this, experts tend to make longer saccades than 

novices and these larger eye movements across the image help experts reach targets faster (Krupinski, 1996; 

Kundel, et al., 2007; Kundel et al., 2008; Manning et al., 2006). According to the holistic model the initial 

global analysis of the image is thought to initiate and guide search and so this efficiency in expert search 

behaviour is attributed to experts exploiting global processing that less experienced observers cannot 

(Kundel et al., 2007). Although low sample size is often a methodological constraint of these expertise 

studies, efforts have been made to combine time-to-first fixation data from a number of small sample 

mammography studies and this shows that faster search times are associated with expert performance 

(Kundel et al., 2008). Kundel et al. (2008) performed a mixture distribution analysis and found that over half 

of all cancers in mammography were fixated within 1 second, with the remaining cancers fixated in 

subsequent search. These two distributions of time-to-first fixations were taken as evidence to support the 

two information processing systems involved in the detection of abnormalities; 1) rapid initial holistic 

processing, and 2) the slower processing relating to search and discovery. However, as mentioned above, 

target conspicuity can drive early detection rates and so it is not clear whether these distributions reflect the 

two information processes in question, or simply the time taken to find obvious and subtle cancers 

respectively. Indeed, one of the actual studies used by Kundel et al. (2008) found that time to first fixate 

cancers is dependent on the subtlety of the targets, with subtle cancers taking longer to be fixated (Krupinski, 

1995). In addition, we recently showed that unlike mammography, with chest x-rays only 33% of cancers 

were fixated within 1 second, whereas 56% of cancers were fixated within 2 seconds (Donovan & Litchfield, 

2013). In both cases observers would have globally processed the image, but again, it is not clear whether the 

subsequent differences in search latencies arise because of the differences in how each image modality was 

globally processed, or simply because our chest x-ray images contained more subtle abnormalities which led 

to longer search times.  

 

As we have recently argued (Donovan & Litchfield, 2013; Litchfield & Donovan, 2016), the underlying 

methodological problem with using time-to-first fixation data is that it is obtained from eye tracking 

experiments under free viewing conditions, whereby the observer has constant access to the whole scene via 

peripheral vision, making it difficult to isolate the specific contribution of processing the initial glimpse of 

the scene on subsequent eye movement behaviour. Scene perception research suggests that the initial 

representation evolves during scene viewing, and may provide a frame on which subsequent information can 

be added (Friedman, 1979). Visual and semantic information obtained from successive fixations on objects 
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and other aspects of the scene can exert influence on future eye movements (Henderson, Weeks, & 

Hollingworth, 1999). This poses a problem when it comes to examining eye movements during free viewing 

as it can be difficult to discriminate how eye guidance is affected by the initial scene representation 

compared with this continuously updated representation. Kundel et al. (2008) acknowledged that input is 

continuously gathered from the periphery during search, but are unable to specify precisely how the initial 

global processing interacts with the ongoing representation and how such information is integrated to guide 

search. As it stands, our understanding of visual expertise in medical image perception has been derived 

from different methodological techniques where eye movements were prevented in tachistoscopic ‘flash’ 

studies (Kundel et al., 1975; Carmody et al., 1981; Oestmann et al., 1988), or by analysing time-to-first 

fixation data in which the initial global impression is never dissociated from the ongoing scene 

representation (Kundel et al., 2008). The recent meta-analysis by Gegenfurtner et al. (2011) confirmed that 

across a range of visual domains, experts do indeed have shorter time-to-first fixations and make longer 

saccades compared to non-experts. But whilst this provides even more compelling evidence that experts have 

faster search latencies and can process domain-specific scenes better than novices, it is still unclear whether 

it is an expertise-specific advantage in global processing that specifically contributes to search guidance.  

 

Moreover, recent research has shown that global processing may be exploited to rapidly categorize the 

image, but this does not mean such processing directly supports object recognition. Evans et al. (2013) 

adopted the traditional ‘flash’ methodology and required experts and non-experts to rate whether flashed 

images were abnormal or not under different flash durations. In addition, a subset of observers also had to 

localize where they thought the abnormality was using a blank outline of the image. By dissociating 

detection from localization decisions, Evans et al. found that experts could exploit this initial glimpse of the 

image better than non-experts regardless of the flash duration. Critically however, all groups of observers 

were only at chance level when it came to actually locating the abnormalities. Although Evans et al. did not 

measure eye movements, these findings are consistent with recent research on scene perception in that global 

processing appears to enable the gist of the scene to be extracted, but this is just part of a larger system of 

eye guidance (see Tatler, 2009), and so it is not necessarily the case that global processing itself constrains 

subsequent search. Given the aforementioned problems with flash and free viewing eye-tracking 

methodologies, we argued that a new methodology was needed that can dissociate initial scene processing 

from subsequent search and decision making (Donovan & Litchfield, 2013). We therefore proposed that the 

recently developed FPMW paradigm (Castelhano & Henderson, 2007) would be a suitable methodology for 

providing direct evidence of how the initial scene representation may guide search and decision-making and 

help isolate the contribution of domain-specific visual expertise, compared to our shared expertise at 

processing real world images in scene perception.  

 

2. Flash-Preview Moving Window 

The FPMW paradigm (Castelhano & Henderson, 2007) draws on the ‘flash’ methodology that was 

previously discussed, but also the ‘moving window’ paradigm. The gaze-contingent ‘moving window’ 

paradigm was originally developed by McConkie and Rayner (1975) to investigate the visual span in 

reading. The ‘moving window’ allows the observer to continue making eye movements whilst information 

presented at fovea, parafovea and the periphery is systematically controlled by the researcher and is one of 

the most powerful methods we have available (Rayner, 2009). This technique alters how much of the scene 

can be processed by overlying a variable size mask that is tied to the central fixation position recorded from 

an eye-tracker and occludes the rest of the scene outside the gaze-contingent moving window. Typically, the 

observer can examine a scene using their high-resolution fovea but are not able to use parafoveal and 

peripheral processing as all visual information outside the window is degraded, or simply turned into 

irrelevant material. Much to the ire of participants, this can also be reversed so that the mask occludes the 

fovea, and instead, that the scene can only be processed by parafoveal and peripheral vision. By changing the 

size of the window to the point that performance is significantly worse than no window conditions, 

researchers can systematically assess how much information can be detected and extensively processed 



 

 
 
 

 

 

6 | F L R  
 

outside the high-resolution fovea. Using this paradigm it has been established that experience in reading a 

particular language changes the size and shape of the visual span (Pollatsek, Bolozky, Well, & Rayner, 

1981), and that the visual span increases with expertise, whether this is in terms of reading skill (Rayner, 

Slattery, & Bélanger, 2010), or in other domains of visual expertise, such as chess (Charness, Reingold, 

Pomplun, & Stampe, 2001; Reingold, Charness, Pomplun, & Stampe, 2001; Reingold & Sheridan, 2011).  

 

In the FPMW paradigm (Castelhano & Henderson, 2007), observers are briefly shown a preview of the 

upcoming search scene and are subsequently asked to search for a particular target object whilst their 

peripheral vision is restricted to a gaze-contingent moving window. Observers therefore have to rely on what 

they could process from the initial glimpse of the scene and use this initial representation to guide their 

search, alongside any other knowledge they have about the target and scene-type (e.g., what the target 

typically looks like and the likely location of the target given the scene-context). This method offers unique 

insights as to how the initial glimpse guides eye movement behaviour and draws on the strengths of the 

previously discussed methodologies. With FPMW, not only is it possible to systematically control what is 

presented in the scene preview and allow subsequent search-related eye movements to be made, the type of 

visual processing (e.g., foveal, parafoveal, peripheral) can also be systematically controlled during these eye 

movements. In the standard setup (see Figure 1a for an example), observers begin by fixating a central 

fixation cross and then a preview of a scene or control image (for example a visual mask, or different scene 

type) is briefly flashed (typically for around 250ms), this is then replaced by a visual mask (for 50ms). A 

word then appears (for around 1000ms-2000ms) indicating which target object must be found. Search then 

commences and the observer has 15 seconds to find the target whilst their peripheral vision is restricted to a 

small gaze-contingent moving window (between 2° and 5°). Once the observer has found the target, they 

press a button whilst looking directly at the target (a gamepad is used to avoid latency delays from 

keyboards). Subsequent analysis is used to identify whether the target object was correctly identified. This 

can be done by creating areas of interest (AOI) around the target object and establishing whether or not the 

observers gaze was within the specified AOI when the button was pressed, with analysis usually restricted to 

those trials where targets were correctly identified. As this a gaze-contingent display method, it is important 

that the display screen is updated with as minimal delay as possible. As such, the FPMW should be presented 

on a monitor with a high refresh rate (>100hz, preferably CRT to minimise delay) using a desktop eye-

tracker with a high sampling rate (>500hz) and a chin rest should be used to maintain accuracy (calibrations 

should be accepted only if average visual angle < 0.5°).  

 

<< Insert Figure 1 about here >> 

There are a number of key parameters that can be manipulated in the FPMW depending on the research 

question (see section 3.1 below). Specific eye movement metrics and performance measures can be obtained 

to establish the effects of the initial scene preview on subsequent search and decision-making (see Table 1). 

Several studies have now used FPMW to investigate scene perception and they all largely demonstrate scene 

preview benefits in search, whereby the time-to-first fixate targets (search latency) is faster with scene 

previews compared to control conditions, and other eye movement metrics reflect greater efficiencies in how 

windowed search is initiated and executed. Note that time-to-first fixation is one of the primary metrics to 

establish how windowed search is guided by the initial glimpse of a scene using FPMW, however, this 

metric is distinct from time-to-first fixation used in free viewing conditions, as the latter do not control the 

level of parafoveal and peripheral processing during search. The FPMW paradigm (Castelhano & 

Henderson, 2007) has shown that scene preview benefits are obtained when the preview is identical to the 

subsequent search scene, and this benefit is maintained even if the preview is different in size. However, 

there is no benefit if the preview image is different to the search scene but belongs to the same scene 

category. Moreover, the scene preview benefit exists even if the target object was not visible during the 

preview (i.e., digitally removed), but only found through windowed search, thereby confirming the benefit of 

scene-context processing, irrespective of any additional local target processing that could occur when targets 

are present in previews (Castelhano & Henderson, 2007; Võ & Henderson, 2010). The FPMW has also been 
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used to demonstrate how semantically consistent and inconsistent objects are processed within scenes 

(Castelhano & Heaven 2011; Võ & Henderson, 2011), and how learned object function may guide attention 

aside from object features (Castelhano & Witherspoon, 2016). The ability to process the scene preview has 

been linked to individual differences in visual perceptual processing speed (Võ & Schneider, 2010), and the 

time-course of the initial representation derived from the scene preview has also been investigated. Although 

250ms is the standard preview duration, previews as short as 75ms can  lead to search advantages compared 

to no preview conditions, and even as low as 50ms, provided the integration time between scene preview, 

target word and search was extended from 500ms to 3000ms (Võ & Henderson, 2010). Moreover, preview 

benefits in search diminish with time, and in fact, the benefit of an initial glimpse of a scene facilitates search 

only up to the fourth fixation (Hillstrom, Schloley, Liversedge, & Benson, 2012). Indeed, based on these 

latter FPMW findings we argued that the benefit of the initial glimpse in medical image perception would 

depend on the difficulty of finding abnormalities within this short time-frame (Donovan & Litchfield, 2013). 

Taken together, this growing body of research using FPMW provides many useful insights into our shared 

expertise in scene perception and how we rapidly guide our eye movements based on just a single glimpse of 

the upcoming scene.  

 

<< Insert Table 1 about here >> 

To establish the contribution of domain-specific expertise in eye guidance, we recently applied the FPMW to 

medical image perception for the first time and examined whether experts are able to guide their eye 

movement behaviour more effectively than novices, solely upon seeing an initial glimpse (Litchfield & 

Donovan, 2016). In all experiments the scene preview was either an identical preview of the upcoming scene 

or a mask preview (i.e., random noise meaning no preview of the upcoming scene). We first compared 

performance and eye movement behaviour in a standard scene perception task that required objects to be 

found from real-world scenes. Consistent with previous FPMW studies, both expertise groups showed 

identical scene preview benefits, in that their eye movements were more efficient at finding the targets in the 

scene preview condition compared to the mask preview condition. This is consistent with previous research 

showing that experts superior visual perceptual processing is domain-specific and does not transfer to 

domain general tasks that draw on shared expertise (Nodine & Krupinski, 1998; Sowden, Davies, & Roling, 

2000).The key comparison study, however, was how well these same expert and novice observers were able 

to find lung nodules (cancer) from chest x-rays in a subsequent FPMW experiment. We found the typical 

expertise effect in diagnostic performance, with experts being able to identify more cancers than novices. 

Expert diagnostic performance was the same in scene preview as mask preview. In contrast, novice 

observers were actually worse at making diagnostic decisions when presented a scene preview. We 

interpreted these negative effects of preview on novice performance as being due to interference from 

distractors, in that by previewing the upcoming medical image novices were exposed to the potential 

‘nodule-like’ distractors that are inherent in chest x-rays, but are in fact normal features. The fact that experts 

decisions were not similarly impaired in scene preview suggested that their more elaborate knowledge of 

what nodules are ensured they were less biased by these ‘normal’ distractors. 

 

Given the holistic model (Kundel et al., 2007) suggests that experts should be better at searching for targets 

in these domain-specific scenes, we were surprised to find that there was only a weak scene preview effect in 

this medical perception task. More specifically, both novices and experts showed a slight search 

improvement with scene preview, with nodules fixated in fewer fixations and a borderline search latency 

improvement, however, with each search measure there was no expertise x preview interaction. When we 

unpacked the effect of scene preview we found that experts demonstrated more of a search benefit (-765 ms) 

than novices (-260 ms), but the scale of these scene preview search advantages were dwarfed in comparison 

to the scene preview benefits these same experts and novices demonstrated when searching for targets in 

scene perception (–1,282ms and –1,620ms respectively). Medical abnormalities are more difficult to identify 

than targets used in scene perception research and so having such difficult targets to find could have 

contributed to this weaker scene preview search benefit. However, scene preview effects are still found even 
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when the target is not even visible during scene previews (Castelhano & Henderson, 2007), and so it is likely 

that the learned spatial associations between target and scene are greatly contributing to the scene preview 

benefit and where best to look. If the targets in scene perception tasks have a more predictable location (a 

closer target-scene pairing) then previewing the scene-context would enable those learned target-scene 

spatial associations to be incorporated and guide eye movements. However, in our medical image perception 

task we highlighted that nodules may not have such a close target-scene spatial association (Båth et al., 

2005), and this may be why we observed such a weak scene preview effect in this medical image perception 

task. The broader implication to visual expertise is that experts would have learned these spatial associations 

whereas novices will have not – so whilst we only found weak expertise effects in our specific medical 

imaging study, it follows that much stronger scene preview effects should be found in tasks where there is a 

clearer target-scene spatial association for experts to learn, and subsequently exploit. Whilst these issues are 

not well specified in the holistic model at all, they are clarified in greater detail in the increasing number of 

eye guidance models in scene perception (for an overview, see Tatler, 2009). Indeed, this once again 

highlights the growing need to reconcile visual expertise research in medical image perception with current 

work in scene perception. 

 

Applying FPMW to medical image perception raised a key methodological distinction between scene 

perception and medical image perception tasks: whereas in the medical image task observers are always 

searching for the same type of target (e.g., nodule) and within the same type of scene (e.g., chest x-ray), in 

scene perception research the target and scene type are largely randomised on each trial, which maximises 

the advantage of seeing the scene preview. To rule out the possibility that our weak scene preview effects 

were simply due to observers repeatedly searching for the same type of target from the same type of scene, a 

third FPMW experiment required novice and experienced observers to search through a random presentation 

of three different types of medical images (chest x-rays, brain images, skeletal images), each with their own 

specific target abnormalities (lung nodules, brain tumors, bone fractures). The rationale was that this should 

give experienced observers the opportunity to exploit their rapid understanding of these scenes compared to 

novices and demonstrate a stronger scene preview benefit with increasing expertise. We found that 

experienced observers were better overall than novices at identifying abnormalities, and their reaction times 

were faster than novices regardless of the preview condition. Once again novices were worse at identifying 

targets if given a preview, but controversially, now even experienced observers were impaired at identifying 

target abnormalities if shown a scene preview before commencing search. Furthermore, we observed no 

scene preview benefit in search whatsoever. Although the impairments in accuracy for scene preview were 

relatively small (~3% drop in accuracy), the fact that we observed any such impairment in experienced 

observers seeing an initial glimpse of the scene goes against our conventional wisdom that processing the 

initial glimpse of the scene is beneficial to performance. To interpret these counter-intuitive findings and the 

fact that expert observers were not likewise impaired in Experiment 2, we indicated that targets in medical 

image perception are difficult to identify even if directly fixating them (Kundel et al., 1978; Donovan & 

Litchfield, 2013), and that by repeatedly searching the same type of scene expert observers may be able to 

attenuate the distractors that share similar features with pathology (cf. Kompaniez-Dunigan, Abbey, Boone, 

& Webster, 2015). Clearly, however, much more research is required to uncover the reasons behind these 

effects and to better understand what processes govern whether an initial glimpse does, or does not, lead to 

more effective search and decision-making.  

 

The purpose of this paper was to highlight the current theoretical and methodological frontier and introduce 

the FPMW paradigm as a method for investigating visual expertise. However, this is not the first time that 

gaze-contingent eye-tracking methodologies have been used in medical image perception. Not only were 

Kundel and Nodine early adopters of eye-tracking research (Kundel & La Follette, 1972; Kundel, Nodine, & 

Carmody, 1978), they also undertook 'moving window' studies of their own in a bid to dissociate the role 

central and peripheral vision has on search and decision-making (Kundel, Nodine, & Toto, 1984; Kundel, 

Nodine, & Toto, 1991). Although data was only based on 2 (Kundel et al., 1984) or 4 expert observers 

(Kundel et al., 1991), in their study a single chest x-ray was fully viewable at all times and lung nodules that 
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were artificially added to different areas of the image were only visible when they fell within the specified 

moving window (either 1.5°, 3.5°, 5.5°, 8.5°, or no window). A single chest x-ray was selected for all trials 

so that the global features of the image were controlled and that the specific role of foveal, parafoveal and 

peripheral vision could be determined (Kundel et al., 1984). Even from these early studies, it became clear 

that reducing the size of the moving window to 1.5° dramatically impaired the detection of the nodules and 

that the time to first fixate nodules decreased with larger windows, consistent with what would later be 

established more clearly in chess expertise (Reingold et al., 2001) and reading expertise (Rayner et al., 

2010). We therefore see the FPMW paradigm as a continuation of this long tradition to understand visual 

expertise using eye-tracking methodology alongside traditional ‘flash’ methodologies. Although this 

methodology clearly focuses on static image interpretation, and not on how dynamic medical images are 

interpreted (Bertram, Helle, Kaakinen, & Svedström, 2013; Drew et al., 2013b; Phillips et al., 2013) we are 

nevertheless excited to see how the FPMW methodology will force us to re-evaluate what we think we know 

about visual expertise in medical image perception. Unlike many of the other methodologies that can be used 

to investigate visual expertise and are discussed in this special issue, research has only just begun on using 

FPMW to understand visual expertise. As such, for instructive purposes the remainder of the paper provides 

an overview of the key parameters that can be manipulated in FPMW.  

 

3. Overview of key FPMW parameters 

3.1 Flash Preview (content) 

A key strength of the FPMW paradigm is that what is presented in the preview does not have to correspond 

with what is subsequently searched for using the moving window. The baseline scene preview condition 

should be identical to the subsequent search scene, but otherwise, performance can be compared to a variety 

of control preview manipulations. 

3.2 Flash Preview Duration 

This is how long the preview is presented for and the typical duration is 250ms. Shorter durations can be 

used to obtain a scene preview benefit, but if longer durations are used eye movements are likely to be made 

actually within the preview.  

 

3.3 Size of Moving Window  

This refers to the size of the moving window. The typical window size is between 2-5 degrees and reducing 

the size of window is likely to increase search times (cf. Kundel et al., 1984). It is unknown at this time 

whether there is a relationship between flash preview duration and the size of the moving window.  

 

3.4 Sequence of Preview 

In the majority of FPMW studies to date, the observer is first given a scene preview and then afterwards 

informed what target should be detected in search (Figure 1a). This setup is useful to understand how newly 

activated target knowledge can be integrated with the currently held visual representation of the scene. 

However, there are many situations where observers already know the target item they are looking for before 

they actually see the critical search scene. Indeed, in all of the medical image perception studies discussed, 

observers knew beforehand what was the target (e.g., cancer) before they actually saw the visual image. 

Accordingly, Litchfield and Donovan (2016) created a modified FPMW sequence where target knowledge 

was activated before the preview was presented (Figure 1b). Note that robust scene preview benefits were 

found for scene perception using this modified sequence, even if the same was not the case when medical 

images were used.  

 

3.5 Integration Time 

This refers to the time interval between the scene preview, the target knowledge and the onset of windowed 

search. Integration can influence the extent to which the scene preview can be exploited to guide search (Võ 

& Henderson, 2010), and will also be affected by the sequence of preview. 
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Keypoints 

 The ‘flash-preview moving window’ (FPMW) paradigm (Castelhano & Henderson, 2007) is a 

new gaze-contingent eye tracking technique that isolates the specific contribution a brief glimpse 

of a scene has on subsequent eye movement behaviour and decision-making.  

 Prevailing theories of medical image perception (Holistic model, Kundel et al. 2007) propose that 

experts exploit global processing of the initial glimpse of medical images to detect abnormalities 

and guide their eye movements better than novices. 

 The FPMW has been recently used (Litchfield & Donovan, 2016) to directly assess the 

contribution of the initial glimpse on subsequent search behaviour as a function of expertise, but 

only weak expertise-specific advantages of processing the scene preview were found. 

 Applying the FPMW to a medical image perception task demonstrated that novice observers and 

(in some situations) experienced observers, were worse at identifying targets when given a scene 

preview of the upcoming search scene. 

 Further research using FPMW in different visual expertise domains is required to build on these 

preliminary findings. 
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Figure 1.   Trial sequence of the ‘Flash-Preview Moving Window’ paradigm a) the traditional FPMW 

sequence where target information is known only after the preview has been encoded b) the adapted trial 

sequence used by Litchfield and Donovan (2016), where target information is known before the preview has 

been encoded. 
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Table 1.  

Key dependent variables obtained using the ‘Flash-preview Moving Window’ Paradigm.  

 

Dependent Variable Definition 

Performance measures:  

Accuracy (%) The % of targets correctly identified during search. 

Reaction Times (RT) 
 

The time taken from onset of windowed search until search is 

terminated via button press. 

Search-related measures:  

Time-to-first fixation  

(Search Latency) 

 

This is the total amount of time spent from the onset of the 

search scene up to (but not including) the first fixation on the 

target. This is considered one of the primary measures to 

establish that a scene preview benefit has been found in 

relation to search. 

Number of Fixations 

 

This is the total number of fixations made from the onset of 

the search scene up to (but not including) the first fixation on 

the target. Although this measure is related to latency, it can 

help show whether observers are effectively selecting target 

candidates for fixation. 

Scan Path Ratio. 

 

This is how much of the scene was explored. The scan path 

ratio is the length of the scan pattern through the scene until 

the first fixation on the target (total distance between all 

fixations from scene onset to the first fixation on target) 

divided by the most direct path to the object (distance from the 

central fixation point to the centre of the target object). As the 

ratio approaches 1 this indicates an optimal path to target 

location (Henderson et al., 1999).  

 

First eye movement of search:  

Initial Saccadic Latency 

 
This is the latency of the first eye movement of search. 

Initial Saccadic Amplitude.  This is the amplitude of the first eye movement of search. 

Target processing measures:  

First Fixation Duration 
This is the duration of the initial fixation on the target and 

reflects the initial processing of the target.  

 

First Gaze Duration 
The total duration of all fixations on the target since it was first 

fixated until the gaze moves away from the target. 

 

Total Time on Target 
This is the summation of all fixation durations on the target 

before a response button is pressed (including any refixations).  


