
Downloaded from: http://insight.cumbria.ac.uk/id/eprint/1984/

Usage of any items from the University of Cumbria’s institutional repository ‘Insight’ must conform to the following fair usage guidelines.

Any item and its associated metadata held in the University of Cumbria’s institutional repository Insight (unless stated otherwise on the metadata record) may be copied, displayed or performed, and stored in line with the JISC fair dealing guidelines (available here) for educational and not-for-profit activities provided that

• the authors, title and full bibliographic details of the item are cited clearly when any part of the work is referred to verbally or in the written form

• a hyperlink/URL to the original Insight record of that item is included in any citations of the work

• the content is not changed in any way

• all files required for usage of the item are kept together with the main item file.

You may not

• sell any part of an item

• refer to any part of an item without citation

• amend any item or contextualise it in a way that will impugn the creator’s reputation

• remove or alter the copyright statement on an item.

The full policy can be found here. Alternatively contact the University of Cumbria Repository Editor by emailing insight@cumbria.ac.uk.
Assessing grey squirrel dispersal patterns within the landscape using DNA sequence variation.

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Landscape Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>Draft</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Short Communication</td>
</tr>
<tr>
<td>Keywords:</td>
<td>least cost, mtDNA, grey squirrel, Sciurus, dispersal</td>
</tr>
</tbody>
</table>
Assessing grey squirrel dispersal patterns within the landscape using sequence variation.

ABSTRACT

The grey squirrel *Sciurus carolinensis* is thought to have contributed to the decline of red squirrel *S. vulgaris* populations in the UK through resource competition and disease spread. This study used mtDNA sequencing to assess patterns of grey squirrel dispersal in the UK. Patterns of genetic variation within the dloop sequence were characterised for seven grey squirrel populations. Infiltration directions and potential barriers to dispersal are identified and discussed, with a focus on Cumbria, a county at the forefront of grey squirrel expansion. Understanding the dynamics of grey squirrel dispersal will aid their management at a landscape scale and enhance the conservation of red squirrels.

INTRODUCTION

The Eastern grey squirrel *Sciurus carolinensis* was first introduced to Britain between 1876 and 1929 (Middleton 1931; Shorten 1954; Lloyd 1983). Subsequent successful introductions and translocations occurred within the UK and by the 1930’s populations were established in southeast England and rapidly spreading through the country (Shorten 1954). This expansion occurred simultaneously with the decline in native red squirrel *Sciurus vulgaris* populations (Lloyd 1962; Lloyd 1983). Studies suggest that interspecific resource competition occurs (Wauters et al. 2000; Gurnell et al. 2004) and that this, along with the effects of a particularly virulent squirrelpox virus (SQPV), carried by the grey squirrel, has caused the decline and extirpation of many red squirrel populations (Tompkins et al. 2003; Gurnell et al. 2004; Carroll et al. 2009).

Cumbria in North West England has been found to hold genetically unique populations of red squirrel which contain high levels of genetic diversity (Hale et al. 2004).
Concerns have been raised over the impact of expanding grey squirrel populations are having on red squirrel populations. Interspecific competition and SQPV transmission are thought to be highest at times of grey squirrel dispersal (Sainsbury et al. 2008). An understanding of the dispersal ecology and directional movements of the grey squirrel will aid grey squirrel management decisions and red squirrel conservation.

Recent work (Stevenson et al., in review) has indicated that the Cumbrian Mountain range is acting as a barrier to dispersal. Grey squirrel populations within Cumbria have been derived from the infiltration of individuals from two directions; to south Cumbria from Lancashire and to north Cumbria from Northumberland/Scottish Borders. Hale et al. (2001) and Trizio et al. (2005) both suggest genetic analysis has enabled the identification of land cover types which either facilitate dispersal or provide barriers to red squirrels over large geographic scales. In this paper we report on variation within Cytochrome b (Cytb) and Dloop DNA sequences found within grey squirrel mtDNA, the first such report to date.

METHODOLOGY

Two grey squirrel accessions were collected from each of four known introduction points (see Middleton, 1931); Balloch near Loch Long; Dalkeith in Edinburgh; Henbury in Cheshire, and from Alice Holt Forest in Surrey. In addition, samples were collected from three established/emerging populations within the UK; Doune, in Stirlingshire; Milom, in south Cumbria and Brampton, in north Cumbria (Figure 1).

DNA was extracted from the leg muscle tissue of 14 individuals using the QIAGEN DNeasy blood and tissue extraction kit and following the manufactures instructions (QIAGEN Ltd). Fragments of the two mtDNA sequence encoding Cytb and Dloop were amplified by polymerase chain reaction (PCR). Primers for *Sciurus carolinensis* Cytb were available from Meece et al. (2005), BM1 (5’-CCCCTCAGAATGATATTGTCCTCA) and...
BM2 (5'-CCATCCAACATCTCAGCATGATGAAA). Each PCR reaction had a reaction volume of 25 µl and containing 1 µl 1:10 mtDNA, 12.5 µl AmpliTaq Gold PCR master mix (Roche, USA), 1 µl 1:10 BM1 primer to distilled water, 1 µl 1:10 BM2, 9.5 µl distilled water. PCR amplification followed the protocol of Meece et al. (2005): denaturation of 3.5 min at 95°C followed by 36 cycles of 30s at 95°C, annealing 50s at 60 °C, extension 40s at 72°C, final extension of 5min at 72 °C.

Primers for Sciurus carolinensis Dloop were taken from the published sequence of the Dloop (GenBank Accession no. AF111027; Barrett et al. 1999), Dloop forward primer 5’-GCCACCCCCAACTTAAATG-3’ and Dloop reverse primer 5’-ATTCGTGCATTAATGC-3’. Each PCR reaction for Dloop contained the same relative quantities of components as outlined above for cytb amplification apart from 5 µl of each primer was used. PCR amplification for Dloop sequence followed the protocol of Trizio et al. (2005), denaturation of 1 min at 94°C followed by 40 cycles of 30s at 94°C, annealing 30s at 52 °C, extension 1min at 72°C, final extension of 5min at 72 °C.

Electrophoresis on 1% agarose gels were used to check the success of the PCR reactions for each sample. All PCR products were then cleaned following the methodology of the QIAquick PCR purification kit (QIAGEN Ltd). Sequencing of PCR products was carried out (DBS Genomics, Durham, UK).

Sequences for cytb and Dloop from each individual were aligned manually using BioEdit_R v7.0.4.1 Freeware (Ibis Therapeutics, California,USA) and Sequence Analysis 5.2.0 (Applied Biosystems) using the default settings within the programmes. A sequence from S. vulgaris (GenBank Accession no. AJ238588) was also included as an outgroup accession in the analysis. The sequences were entered into Paup 4.0 Beta 10 (Swofford, Illinois Natural History Survey, Illinois, USA) for phylogeny reconstruction and a 50%
majority rule consensus tree was created with 1000 bootstrap and jacknife replicates (Harrison and Langdale 2006).

RESULTS

MtDNA was successfully extracted from 14 grey squirrel individuals from selected locations around the UK. Cytb sequence data was analysed for all 14 accessions with no sequence variation observed. The 325bp sequence generated, demonstrated a 99% similarity match for grey squirrel cytochrome b gene in the Genbank BLAST search tool (Accession no. AY509680). Similarly, the 329bp Dloop sequence generated showed a 98% similarity match to that of grey squirrel (Accession no. AF111027). Dloop sequences were aligned in BioEdit and discrete points of variation were detected at 16 unique sites, representing 4.9 % of the overall sequence.

Parsimony analysis generated a 50% majority rule consensus tree from the grey squirrel dloop sequence data which was rooted against red squirrel (GenBank Accession no. AJ238588). The consensus tree (Figure 2) indicated that the grey squirrel samples are separated into four distinct clades; Clade I; Henbury, Balloch and accession S8 from Alice Holt; Clade II; Doune and accession S7 from Alice Holt; Clade III; Dalkeith and Brampton (north Cumbria); Clade IV; Millom (south Cumbria). The branching of samples from Dalkeith and Brampton is strongly supported with bootstrap values of 73% and jacknife values of 56%.

DISCUSSION

This study examines DNA sequence variation and its utility in assessing patterns of grey squirrel dispersal in the UK. Cytb sequences generated in this study demonstrated no detectable differences across the range of populations sampled. This may be due to the low
mutation rate within the cytb coding sequence and the relatively short time frame of
introduction and dispersal within the UK. Conversely, sequence variation was detected
within the dloop sequence for these same accessions. Dloop sequence analysis showed
significant statistical support for the distinct separation of north and south Cumbria grey
squirrel populations.

Accessions from north Cumbria grouped with accessions from Dalkeith in Edinburgh.
Individual accessions within north Cumbria may not necessarily have been derived from
individuals dispersing south from Edinburgh. However, as they are both within the same
clade they may have been derived from the same progenitor individuals from another location
such as northeast England (Stevenson et al., in review). Similar patterns of dispersal have
been seen in red squirrels, mediated by the afforestation of woodland between Cumbria and
the Northeast (Hale & Lurz 2003).

The two samples taken from each population were generally grouped together within
the phylogenetic tree, however, samples from Alice Holt Forest did not follow this pattern and
were grouped separately with samples from elsewhere. David-Gray et al. (1998) study found
high levels of genetic diversity within grey squirrel populations from Alice Holt Forest and
attributed this to numerous introduction sites and translocations from different source
populations, which could explain the results demonstrated in Figure 2 in this study.

The initial findings presented here demonstrate support for the hypotheses that the
Cumbrian Mountain range is acting as a barrier to dispersal and that invasion into the area is
coming from multiple directions. If grey squirrels colonised Cumbria with a northerly
advance as suggested (Lowe 1993; Skelcher 1997) accessions from north and south Cumbria
should be grouped together within a phylogenetic reconstruction. However, this is not the
case, and the two populations separate out in the tree. This points towards separate
populations and the effectiveness of the Cumbrian Mountain range as a barrier. Whilst it is
acknowledged that a small number of individuals may try to disperse over this mountain barrier, the majority of individuals will choose a lower cost dispersal route. Further validation of prospective incursion directions will require an increase in the sample size for each of the seven locations and additional accessions from within Cumbria and adjoining areas.

This study has provided the first evidence of Dloop sequence variation within UK grey squirrel populations. Despite the small sample size, it supports the suggestion that the Cumbrian Mountains provide a barrier to grey squirrel dispersal and infers both northerly and southerly grey squirrel incursion routes into the county. Ultimately, further knowledge of dispersal and colonisation of grey squirrels will inform conservation policy and can be used to target resources for grey squirrel control and enable better protection for vulnerable red squirrel populations. We have shown here, that landscape genetics can provide evidence of population origin and genetic differences. Although this study has focused on grey squirrels in Cumbria, the techniques are equally applicable to other landscapes, validating and highlighting dispersal routes of invasive species and species of conservation concern.

REFERENCES

Middleton, A. D. 1931. The grey squirrel. The introduction and spread of the American grey squirrel in the British Isles, its habits, food, and relations with the native fauna of the country. Sidgwick and Jackson, London.

Figure 1. Geographical location of grey squirrel sample sites within the UK.

186x273mm (300 x 300 DPI)
Figure 2. Phylogenetic tree showing Bootstrap and Jacknife analysis results above and below each group separation.

254x190mm (96 x 96 DPI)