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Homogeneity of fascicle architecture following repeated 

contractions in the human gastrocnemius medialis 
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Abstract  

This investigation sought to determine the effects of fatigue on fascicle architecture 

across the length of the human gastrocnemius medialis (GM). With institutional ethical 

approval, fifteen healthy males performed repeated isometric plantar flexion maximal 

voluntary contractions (MVC) until peak force fell 30% below baseline. Brightness-mode 

ultrasound was used to determine fascicle length and pennation angle at rest and during 

MVC prior to and following the fatiguing contractions. The results show a significant 

increase in fascicle length during MVC in the distal (2.8 mm, 8.1%) middle, (4.9 mm, 

14.1%), and proximal (5.2 mm, 14.7%) regions post-fatigue compared to pre-fatigue (p 

< 0.05). There was also a significant decrease of pennation angle during MVC in the 

distal (3.3°, 8.8%), middle (3.9°, 9.4%), and proximal (2.9°, 6.9%) regions post-fatigue 

compared to pre-fatigue (p < 0.05). These changes, however, were not region specific. 

These are the first results to show that fascicle shortening within the GM remains 

homogeneous following fatigue, suggesting that the fascicles were fatigued in a similar 

pattern throughout the muscle. The significant reduction of fascicle shortening may 

reflect an additional strategy to maintain an optimal force output in fatigued conditions, 

although future work is needed to confirm this notion. 

 

1. Introduction 

Muscle architecture during isometric contractions changes as a function of the force 

generated by the muscle and the compliance of the tendon (Maganaris et al., 2002, 

Narici et al., 1996). Less force transferred from the fascicles to the tendon implies less 

fascicle length change, and vice versa. Fatigue, defined as a reduction in a muscle’s 

force-generating capacity (Kawakami et al., 2000), has been shown to reduce fascicle 

length change between rest and contraction in the gastrocnemius medialis (GM) 

(Maganaris et al., 2002, Mitsukawa et al., 2009). This finding, however, only accounts 

for fascicle architecture in the middle region of the muscle. Recently there have been 

preliminary data which point towards a greater representation of faster motor units in 

the proximal region and slower motor units in the distal region (Hodson-Tole et al., 

2013). As slower twitch muscle fibres exhibit a higher level of fatigue resistance 

(Vydevska-Chichova et al., 2005), fascicles in the proximal region might fatigue more 

rapidly than their distal counterparts. Thus, any reductions of fascicle shortening might 

be more pronounced in the proximal region of the muscle. 

Region specific changes of fascicle architecture have been demonstrated following 

fatigue in animal specimens (Higham and Biewener, 2009). Indeed this was thought to 

be related to a higher concentration of fast twitch fibres in the affected region. It was 

also thought that proximal-distal variations of aponeuroses stiffness may have played a 

role, with fascicle shortening in the stiffer region being constrained and ultimately 



shielded from the effects of fatigue (Higham and Biewener, 2009). In humans, regional 

variations of strain patterns in both the deep and superficial GM aponeuroses tissues 

have been demonstrated with magnetic resonance imaging (MRI) (Kinugasa et al., 

2008), and there are indications that the compliance of aponeurotic tissues can be 

altered following repeated contractions (Cronin et al., 2011). Acute modifications of 

muscle and tendon stiffness have also been demonstrated (Ditroilo et al., 2011), which 

may in part be related to increases in tissue temperature (Strickler et al., 1990), which 

are known to occur in humans during contractions (Barcroft and Millen, 1939, Kubo et 

al., 2001). This raises the additional possibility of regional effects of aponeuroses, 

tendon, and muscle stiffness on fascicle behaviour. 

A method commonly utilised in the literature to estimate changes in length of the GM 

series elastic element, particularly relevant in situations where MRI is not feasible, 

assumes that the fascicles shorten homogenously throughout the muscle (Fukunaga et 

al., 2001, Ishikawa et al., 2007, Ishikawa and Komi, 2007, Lichtwark et al., 2007, Mian 

et al., 2007). Although this assumption has been shown to be accurate in non-fatigued 

conditions (Maganaris et al., 1998, Shin et al., 2009), it has previously not been 

considered following fatigue. Potential non-uniform fascicle shortening in the GM 

following fatigue would thus have important implications for the modelling of muscle–

tendon unit (MTU) function (Cronin and Lichtwark, 2013). 

To assess muscle fascicle behaviour across the length of the GM, we used Brightness-

mode (B-mode) ultrasound to image muscle fascicle length and pennation angle at 

distal, middle, and proximal regions at rest and during maximal voluntary contractions 

before and following a fatiguing protocol. It was hypothesised there would be a reduction 

in the magnitude of fascicle shortening following fatigue, and this would be more 

pronounced in the proximal region of the muscle. 

 

 

2. Methods 

2.1. Participants 

Fifteen physically active male participants (mean ± SD: age 21.9 ± 4.1 years, height 1.80 

± 0.1 m, mass 84.0 ± 13.6 kg) were recruited. The participants were free from conditions 

which may have affected normal lower limb function or prevented them from completing 

the testing safely. All procedures were in accordance with the ethical standards of the 

institutional research committee. Written informed consent was obtained from all 

individual participants included in the study. 

 

2.2. Testing procedures 

Prior to testing, the GM measurement sites on each participant were identified, and an 

echo-absorptive marker placed on the surface of the skin. This created a vertical shadow 

across the ultrasound image to allow for monitoring of movement of the probe relative to 

the skin, and for accurate probe relocation following fatigue. The middle region was 

defined as the point at which the anatomical cross sectional area of the muscle was 



maximal. Here, the position at one half of the mediolateral width was used as a 

measurement site, with distal and proximal regions 35 mm longitudinally from this point 

(Lichtwark et al., 2007). 

Each participant lay in a prone position with the ankle joint angle at 90° measured with a 

manual goniometer. A non-elastic sling was positioned around the ball of the right foot 

and attached to a force gauge (Myometer, MecMesin, West Sussex, UK). The participants 

were fixed above the hip joint in order to minimise any extraneous movement during the 

contractions. The force gauge was connected to a PC and force output was recorded and 

displayed in real time to the experimenter. No visual feedback regarding the exerted 

force was provided to the participants. Three practice isometric plantar flexion maximal 

voluntary contractions (MVC) were performed with a rest time of 30 s between trials. 

Following this, 2 more MVCs were performed (also 30 s rest between trials), and the 

highest force output recorded (from the latter 2) was used as a baseline MVC. No muscle 

imaging occurred during this initial stage. 

For pre-fatigue muscle architecture measurements, a clear ultrasound image was 

obtained (more detail below) in the middle region and fascicle characteristics were 

recorded at rest and during an MVC which was held for 3 s (total trial time of 4 s). This 

process was then repeated at the distal region, and then the proximal region (always in 

this order), with 30 s rest between trials. The ultrasound probe was positioned during the 

rest period so as to not add additional time between trials. Only 1 MVC attempt was 

performed during imaging at each muscle region. Following this, the participants 

performed a fatiguing protocol which consisted of repeated MVCs (10 s contraction, 3 s 

rest) until peak force output consistently fell 30% below baseline. 30 s after the last MVC 

of the fatiguing protocol, the same process utilised for pre-fatigue muscle architecture 

measurements was implemented for post-fatigue muscle architecture measurements. 

 

2.3 Muscle architecture measurements 

A PC based ultrasound system (Voluson-i, GE Medical Systems, Zipf, Austria) was used 

to image the muscle with a linear probe operating at a frequency of 7.2 MHz and with a 

field view of 35 mm in B-mode. To ensure orientation of the probe with regards to the 

true fascicle plane, the probe was positioned at the distal end of the GM and orientated 

so that the deep aponeurosis was parallel to the bottom of the image. The probe was 

then rotated 90° and manoeuvred along the longitudinal fascicle plane to the desired 

measurement site (Bénard et al., 2009). All measurements were then performed with a 

researcher holding the ultrasound probe securely in place. Ultrasound image sequences 

were recorded in a cineloop at 25 Hz and saved as a video file. Frames of interest (one at 

rest and one at MVC from each region, pre- and post-fatigue) were digitised using 

Kinovea open source video analysis software (Kinovea for Windows, Version 0.8.15, 

Kinovea.org). Measurements of fascicle length and pennation angle from at least 3 

fascicles in the middle of each image were taken, and the average, from each image, 

was used for further analysis. Fascicle length was defined as the straight line orientated 

along the fascicle between the deep and the superficial aponeuroses and pennation angle 

was defined as the angle between the deep aponeurosis and the line of the muscle 

fascicle (Fig. 1). GM fascicles remain straight at rest (Shin et al., 2009) and errors 

associated with ignoring fascicle curvature during MVC (present method) are ⩽6% 

(Muramatsu et al., 2002). If whole fascicles could not be viewed, fascicle length was 



determined by linear extrapolation of the visible portion of the fascicle and the 

aponeurosis. 

[FIG. 1] 

Ultrasound image of a longitudinal section of human GM muscle, (A) the superficial 

aponeurosis, (B) the deep aponeurosis, (C) striations of fat and connective tissue 

between the fascicles, (D) digitised markers representing fascicle length and pennation 

angle, (E) shadow running vertically through the image resulting from an echo 

absorptive marker placed on the surface of the skin. 

 

2.4 Statistical analysis 

In order to assess test–retest reliability of our ultrasound measurements, fascicle length 

and pennation angle was measured in the middle region of the GM at rest and during 

MVC 5 min before pre-fatigue measurements. This data (referred to as baseline) was 

then compared to pre-fatigue (rest and MVC respectively) measurements from the 

middle region. Reliability was assessed by calculating the coefficient of variation (CV) 

and intraclass correlation coefficient (ICC3,1) (Atkinson and Nevill, 1998, Weir, 2005). 

The typical error (TE) of the measurements was also calculated to assess whether any 

changes in muscle architecture were real or due to measurement error (Hopkins, 2004). 

 

The muscle region (distal, middle, and proximal) and fatigue state (pre- and post-

fatigue) were considered as two independent factors. The effects of these two factors on 

fascicle length at rest and during MVC and on pennation angle at rest and during MVC 

were assessed using 2 × 3 repeated measures analysis of variance (RM ANOVA). 

 

As a different MVC was required for ultrasound measurements at each region of the 

muscle, it was necessary to ensure MVC force output was consistent across the repeated 

contractions. A 2 × 3 RM ANOVA was thus used to examine the effects of muscle region 

(distal, middle, and proximal) and fatigue state (pre-and post-fatigue) on MVC force 

output. Post hoc analysis with Bonferroni adjustments were used following all RM ANOVA 

analyses where applicable. 

 

All statistical analyses were completed with the SPSS software statistical package (IBM 

SPSS Statistics for Windows, Version 19.0. Armonk, NY: IBM Corp). Assumptions of 

normality were checked and confirmed for all variables. Data are presented as means ± 

standard deviation (SD). Statistical significance was set at p < 0.05. 

 

3. Results 

3.1 Reliability 



Test–retest reliability data and typical error values for baseline and pre-fatigue 

measurements of fascicle length and pennation angle are presented in Table 1. All 

reliability measurements were seen to have a CV of <5% and an ICC3,1 of ⩾0.9, 

indicating high reliability (Atkinson and Nevill, 1998). 

[TABLE 1] 

3.2 Force output 

Isometric plantar flexion MVC force output when making ultrasound measurements at 

various regions of the GM pre- and post-fatigue is shown in Table 2. There was no 

significant effect of muscle region on force output. There was however a significant main 

effect of fatigue state on force output (p = 0.001), with average force when imaging the 

3 regions of the GM being 38.1% lower post-fatigue compared to pre-fatigue. There was 

no significant interaction effect between muscle region and fatigue state. 

[TABLE 2] 

3.3 Fascicle length at rest pre- and post-fatigue 

Fascicle length data from all regions for all measurement points can be seen in Table 3. 

There was no significant main effect or interaction of muscle region or fatigue state on 

fascicle length at rest. 

[TABLE 3] 

3.4. Fascicle length during MVC pre and post fatigue 

There was no significant main effect of muscle region on fascicle length during MVC. 

There was however a significant main effect of fatigue state on fascicle length (p = 

0.029), with post hoc analysis showing fascicles were longer in distal (2.8 mm, 8.1%), 

middle (4.9 mm, 14.1%), and proximal (5.2 mm, 14.7%) regions post-fatigue compared 

to pre-fatigue. There was no significant interaction effect between muscle region and 

fatigue state on fascicle length during MVC. Changes in fascicle length between rest and 

MVC (delta values) at all regions pre-and-post fatigue are presented in Fig. 2A. 

[FIG 2] 

3.5. Pennation angle at rest pre- and post-fatigue 

Pennation angle data from all regions for all measurement points is shown in Table 3. A 

significant main effect was found when comparing pennation angles of the different 

muscle regions at rest (p = 0.019). Post hoc analysis revealed smaller pennation angles 

in the distal region compared to the proximal region (p = 0.027). There was also a 

significant main effect of fatigue state on pennation angle at rest, with larger pennation 

angles post-fatigue compared to pre-fatigue (p = 0.031). Post hoc analysis revealed a 

significant increase in the middle region (1.6°, p = 0.039) of the GM from pre- to post-

fatigue, whilst the distal and proximal regions remained unaffected. There was no 

significant interaction effect between muscle region and fatigue state on pennation angle 

at rest. 

3.6. Pennation angle at MVC pre- and post-fatigue 



A significant main effect was found when comparing pennation angles of the different 

muscle regions during MVC (p = 0.002). Post hoc analysis revealed smaller pennation 

angles in the distal region compared to the middle and proximal regions (p = 0.003, p = 

0.024 respectively). There was also a significant main effect of fatigue state on 

pennation angle during MVC (p = 0.047), with post hoc analysis revealing pennation 

angles were smaller in distal (3.3°, 8.8%), middle (3.9°, 9.4%), and proximal (2.9°, 

6.9%) regions post-fatigue compared to pre-fatigue. There was no significant interaction 

effect between muscle region and fatigue state on pennation angle during MVC. Changes 

in pennation angle between rest and MVC (delta values) at all regions pre- and post-

fatigue are presented in Fig. 2B. 

 

4. Discussion 

The present investigation sought to determine the effects of fatigue on human GM 

fascicle behaviour. Here we show that fascicle shortening was homogeneous pre- and 

post-fatigue, while being significantly reduced at all regions of interest following the 

repeated contractions. 

Previous examination of GM fascicle architecture during non-fatigued isometric plantar 

flexion MVC showed fascicle shortening to be uniform at distal, middle, and proximal 

regions (Maganaris et al., 1998). The current results support these findings, however, 

fascicle lengths at rest and during MVC (pre-fatigue) were longer in all regions than 

Maganaris et al. (1998)). As the percentage change between rest and MVC in the 

present study (pre-fatigue), (43.2%, 47.2%, and 44.1% in the distal, middle, and 

proximal regions respectively), is in line with Maganaris et al. (1998)) (46%, 48%, and 

45.5% respectively), this is likely a result of the participants, on average, possessing 

longer muscle fascicles. The present results do show regional differences in pennation 

angles, with smaller pennation angles in the distal region compared to the proximal 

region at rest, and smaller pennation angles in the distal region compared to the middle 

and proximal regions during MVC, pre- and post-fatigue. This demonstrates proximal-

distal variations in pennation angles inherently found in human GM muscle, previously 

shown with MRI (Shin et al., 2009). The data of Maganaris et al. (1998)) do not show 

these regional differences, as the fascicle measurement sites were located closer to the 

middle region of the muscle, where pennation angles are not significantly different. 

The relative uniformity of fascicle behaviour post-fatigue in our results was surprising 

and suggests that the fascicles were fatigued in a homogeneous pattern, regardless of 

any potential regional differences in muscle fibre type. The fatiguing protocol may have 

been sufficient to induce fatigue in the slower twitch fibres as well as the fast twitch 

fibres, thus bringing the distal fascicles in line with their proximal counterparts. An 

assessment of fascicle shortening throughout the time course of a fatiguing protocol or 

additional measures of myoelectric activity in different muscle regions may shed further 

light on this. The present findings additionally suggest that regional variations of 

aponeuroses strain patterns as shown by Kinugasa et al. (2008)) are not reflected in 

heterogeneous fascicle behaviour. Previous MRI results demonstrating uniform fascicle 

shortening in the GM in non-fatigued conditions (Shin et al., 2009) corroborate this 

notion, however, our findings are the first to show this following fatigue. 



The reduction of fascicle shortening in our study post-fatigue supports the findings of 

Mitsukawa et al. (2009)) who showed the same phenomenon in the middle region of the 

GM. In their investigation, the change of fascicular geometry over time significantly 

correlated with a decrease in plantar flexion MVC torque, whilst no such relationship was 

found for the synergistic soleus muscle. The authors suggest therefore that fatigue 

caused a decline in GM force output which was reflected by the change in fascicle 

architecture. Although we did not monitor fascicle shortening within the soleus and 

therefore cannot rule out its contribution to the decline in plantar flexion MVC force, the 

change of fascicle behaviour in our study must have been a consequence of fatigue and 

likely also reflects a decline in GM force production. In other words, a decrease of 

fascicle force generation resulted in less force being transferred through the tendon, less 

tendon elongation, and subsequently less fascicle shortening. 

This may have been related to some of the conventional mechanisms of muscular 

fatigue, such as impaired excitation–contraction coupling, or reduced cross-bridge 

cycling, which limited the fascicles in their ability to elongate the tendon with the same 

magnitude as before (Place et al., 2009, St Clair Gibson and Noakes, 2004). However, 

according to force–length relationships detailed by Maganaris (2003)), the increase of 

fascicle length in the middle region of the muscle in our study during MVC (from 29.9 to 

34.8 mm) would mean the fascicles were closer to their optimal lengths for force 

production (39 mm). In addition, the decrease of pennation angle in the middle region of 

the muscle (from 41.6° to 37.7°) would have put the pennation angles closer to their 

optimal angle for force production (34.6°) (Manal et al., 2006). Is it possible that this 

could be an additional mechanism utilised by the central nervous system to help 

maintain an optimal force output in fatigued conditions? 

Mitsukawa et al. (2009)) recorded electromyographic (EMG) activity of the soleus and 

the GM and found that although it decreased in both, there was no significant difference 

between the two, despite the change of fascicle architecture in the GM and not in the 

soleus. The authors suggested that surface EMG may not be able to fully evaluate the 

magnitude of neural drive during repeated maximal contractions in fatigued muscle. 

Nordlund et al. (2004)) assessed intramuscular EMG activity in the GM and soleus over 

nine bouts of 10 isometric plantar flexion MVCs lasting for 2 s with 1 s rest (10 s interval 

between bouts) and found central drive to the GM decreased whilst there was no change 

in central drive to the soleus. Muscle architecture was not assessed. Neither of these 

findings can wholly support nor reject the above notion, and hence the possibility of this 

being a central nervous system mechanism to optimise force production during fatigue 

remains unknown. Future studies integrating twitch interpolation techniques, 

examination of fascicle length changes, and measures of muscle force are needed for 

further investigation. 

Muscle fascicle architecture during isometric contractions can be affected by tendon 

stiffness. Previous findings have shown tendon creep to occur during 5 isometric plantar 

flexion MVCs, which led to an increase of fascicle shortening (Maganaris et al., 2002). 

Although the protocol used by Maganaris et al. (2002)) was different from ours (1 s 

contraction with 1 s rest), longer duration isometric contractions have also been shown 

to induce tendon creep in the GM MTU (Mademli and Arampatzis, 2005). It is likely, 

therefore, that the 5 MVCs performed before ultrasound measurements in our study did 

induce tendon creep. However, Maganaris et al. (2002)) found no further changes after 

the fifth contraction, which suggests that any effect of tendon creep on fascicle 



architecture in our study was the same for pre- and post-fatigue measurements, and can 

thus be eliminated as a cause of the difference in fascicle length between pre- and post-

fatigue MVCs. This is supported by the high concordance between the baseline (used to 

assess reliability) and pre-fatigue fascicle measurements. 

Additionally, in the present results, there was an increase in pennation angle (1.4°) at 

rest in the middle region of the muscle following fatigue. It is possible that an increase in 

blood volume or intracellular and extracellular fluid in the affected area, which has been 

shown to occur following isometric exercise (Sejersted et al., 1984), caused this 

increase. On the other hand, as the typical error of pennation angle measurements 

between baseline and pre-fatigue was 1.5°, this may have been due to measurement 

error rather than a real change (Atkinson and Nevill, 1998, Hopkins, 2004). This is 

supported by the fact there were no changes in resting fascicle length following fatigue. 

The use of ultrasonography to measure fascicle characteristics has its limitations. 

Muscles and tendinous tissue for example are known to move in three-dimensional 

planes (Azizi and Roberts, 2009, Iwanuma et al., 2011) and if the plane of a contraction 

shifts from the field of view of two-dimensional ultrasound, the same muscle fascicles 

may not be visualised throughout the entire contraction (Klimstra et al., 2007). The 

ultrasound probe in our experiment was also re-positioned (with an echo absorptive 

marker) at each measurement site following fatigue. Therefore, the same fascicles may 

not have been directly imaged across conditions. However, our results show that force 

output was consistent when imaging the GM at different regions during different MVCs, 

the repeated measures of fascicle length and pennation angle demonstrated high 

reliability, and all of the fascicle length changes were greater than the typical error of the 

same measurements between baseline and pre-fatigue. Furthermore, previously outlined 

MRI and ultrasound data showing uniform fascicle shortening in non-fatigued conditions 

is in line with our findings (Maganaris et al., 1998, Shin et al., 2009). We are therefore 

confident in our results. 

In summary, we have demonstrated that fascicle shortening in the human GM remains 

homogeneous during isometric MVC pre- and post-fatigue, despite being significantly 

reduced as a result of repeated contractions. The relative uniformity of fascicle behaviour 

suggests that the fascicles were fatigued in a uniform manner throughout the muscle, 

and lends support to the accuracy of GM MTU modelling implemented in fatigued 

conditions. The reduction of fascicle shortening may reflect an additional mechanism 

utilised by the central nervous system to maintain optimal fascicle force in fatigued 

conditions, although future investigations will be needed to confirm or reject this idea. 
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Table 1 

 
Test–retest reliability data and typical error values for baseline and pre-fatigue measurements of fascicle length 
and pennation angle. 
 

 
CV (%) ICC3,1 TE 

Fascicle length 

Rest 2.9 0.98 1.9 mm 

MVC 4.7 0.91 2.1 mm 

 
Pennation angle 

Rest 4.1 0.91 1.5° 

MVC 3.9 0.96 1.8° 

Coefficient of variation (CV), intraclass correlation coefficient (ICC3,1), typical error (TE), maximal voluntary 

contraction (MVC). 

 

 

Table 2 

 
Isometric plantar flexion MVC force output when making ultrasound measurements at various regions of the GM 
pre- and post-fatigue. Values are mean ± SD, n = 15 participants, ∗significant reduction post-fatigue compared to 

pre-fatigue (p < 0.05, with Bonferroni correction). 

 

 
Pre-fatigue (N) Post-fatigue (N) 

Distal 415.1 ± 158.1 248.9 ± 74.9∗ 

Middle 411.5 ± 165.0 264.5 ± 84.9∗ 

Proximal 417.8 ± 159.9 257.3 ± 80.3∗ 

Maximal voluntary contraction (MVC), gastrocnemius medialis (GM). 

 

 

Table 3 

 
Fascicle length and pennation angle at rest and during MVC pre- and post-fatigue at various regions of the GM. 

Values are mean ± SD, n = 15 participants, ∗significant difference post-fatigue compared to pre-fatigue, 
#significant difference compared to the distal region (p < 0.05, with Bonferroni correction). 

 

 
Pre-fatigue 

Post-fatigue 

Rest MVC Rest MVC 

Fascicle length, mm 

Distal 56.1 ± 13.0 31.9 ± 8.6 55.9 ± 10.2 34.7 ± 11.3∗ 

Middle 56.6 ± 11.7 29.9 ± 5.9 54.4 ± 11.3 34.8 ± 9.6∗ 

Proximal 54.2 ± 13.4 30.3 ± 6.8 51.8 ± 14.0 35.5 ± 9.7∗ 

Pennation angle, ° 

Distal 21.1 ± 3.9 37.4 ± 8.2 21.2 ± 4.0 34.1 ± 9.5∗ 

Middle 21.6 ± 4.5 41.6 ± 8.4# 23.2 ± 4.7∗ 37.7 ± 8.9∗# 

Proximal 22.9 ± 5.8# 41.8 ± 10.2# 25.3 ± 7.3# 38.9 ± 11.0∗# 

Maximal voluntary contraction (MVC), gastrocnemius medialis (GM). 


