1	Geographic variation in the time-frequency characteristics of high-
2	frequency whistles produced by killer whales (Orcinus orca)
3	
4	Filipa I. P. Samarra ^{1,2,a} , Volker B. Deecke ^{1,3} , Anne E. Simonis ⁴ and Patrick J. O.
5	Miller ¹
6	
7	¹ Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St
8	Andrews, Fife KY16 8LB, UK
9	² Current address: Marine Research Institute, Skúlagata 4, 121 Reykjavík, Iceland
10	³ Current address: Centre for Wildlife Conservation, University of Cumbria, Rydal
11	Road, Ambleside, Cumbria, LA22 9BB. UK
12	⁴ Scripps Institution of Oceanography, University of California, San Diego, 9500
13	Gilman Drive, La Jolla, California 92093-0205, USA
14	
15	^a email: filipa@hafro.is
16	

17	Abstract
18	Investigating intra-specific variation in acoustic signals can indicate the extent of
19	isolation and divergence between populations and adaptations to local
20	environments. Here we analyze the variation in killer whale high-frequency (>17
21	kHz) whistles recorded off Norway, Iceland, and the North Pacific. We used a
22	combination of methods including multivariate comparisons of spectral and
23	temporal parameters and categorization of contours to types. Our results show that
24	spectral and temporal characteristics of high-frequency whistles recorded in the
25	North Pacific show significant differences from whistles recorded in the Northeast
26	Atlantic, being generally stereotyped, lower in frequency, and slightly longer in
27	duration. Most high-frequency whistles from the North Pacific were downsweeps,
28	while this was one of the least common types recorded in the Northeast Atlantic.
29	The repertoire of whistles recorded in Norway was similar to Iceland, but whistles
30	produced in Norway had significantly lower maximum frequency and frequency
31	range. Most methods were able to discriminate between whistles of the North
32	Pacific and the Northeast Atlantic, but were unable to consistently distinguish
33	whistles from Iceland and Norway. This suggests that macro- and
34	microgeographic differences in high-frequency whistles of killer whales may
35	reflect historical geographic isolation between ocean basins and more recent
36	divergence between adjacent populations.
37	
38	Keywords: ultrasonic whistles, orcas, geographic variation
39	

Introduction

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

When describing geographic variation in acoustic signals it is useful to divide differences into macrogeographic or microgeographic variation, depending on whether populations being compared are neighboring, making interbreeding and social interaction a possibility, or geographically separated, and thus socially and reproductively isolated (Mundinger 1982). Comparative studies of odontocete whistles have shown more pronounced inter- than intra-specific variation in whistle spectral parameters, which could arise if intra-specific variability is constrained to occur within a species-specific framework (Steiner 1981, Ding et al. 1995a, Matthews et al. 1999, Rendell et al. 1999, Podos et al. 2002). Variation in whistle structural parameters has previously been described for populations of the same dolphin species both at microgeographic (e.g., Azevedo and Van Sluys 2005, Morisaka et al. 2005) and macrogeographic levels (e.g., Camargo et al. 2006, Baron et al. 2008). Intraspecific geographic variations may occur due to genetic divergence, adaptations to local environments or cultural differences (Janik 2009). A general correlation of whistle variation with distance has been proposed whereby neighboring populations appear to have more similar whistle structure than geographically distant populations (Ding et al. 1995b, Azevedo and Van Sluys 2005, Rossi-Santos and Podos 2006, May-Collado and Wartzok 2008), although this is not always the case (Camargo et al. 2006). Within populations, there is often variation in duration and complexity of signals (i.e., number of inflection points) (Steiner 1981, Azevedo and Van Sluys 2005, Morisaka et al. 2005), while the time-frequency contour of whistles often varies among individuals, providing information on individual identity (e.g., bottlenose dolphin, Tursiops truncatus; Janik et al. 2006; common dolphin, Delphinus delphis: Caldwell and Caldwell 1968; Pacific humpback dolphin, Sousa chinensis: Van Parijs

65	and Corkeron 2001). Understanding the variation in the acoustic repertoire within and
66	between different populations may shed light on the evolution, movements, and
67	cultural traditions of a species.
68	There are known differences in the structure and use of pulsed calls and whistles
69	between different killer whale populations. In the North Pacific, pods of resident
70	(fish-eating) killer whales produce unique and stable repertoires of stereotyped pulsed
71	calls (Ford 1989, 1991). These calls differ between matrilines within pods (Ford 1991,
72	Miller and Bain 2000, Deecke et al. 2010), and to a lesser degree between individuals
73	within the same matriline (Nousek et al. 2006). The stability of resident pods may
74	explain why the variation in pulsed calls primarily encodes group, rather than
75	individual, identity (Tyack 1986). Killer whale whistles are generally more complex
76	and longer than other delphinid whistles (Thomsen et al. 2001) and some have
77	stereotyped frequency contours that are often produced in complex sequences (Riesch
78	et al. 2006, 2008). Resident killer whale groups in British Columbia that do not share
79	pulsed calls share stereotyped whistles, which may provide a community-level means
80	of recognition, facilitating social interactions (Riesch et al. 2006). Transient
81	(mammal-eating) killer whales in the North Pacific also produce stereotyped whistles
82	and the repertoire seems to be shared by all members of the population (Riesch and
83	Deecke 2011). Despite being sympatric with resident killer whales, transients have
84	distinct, population-specific repertoires of both pulsed calls and whistles (Ford and
85	Fisher 1982, Riesch and Deecke 2011).
86	In Iceland and Norway, early studies suggested that killer whales also produce
87	group-specific call repertoires (Moore et al. 1988, Strager 1995). A common ecotype,
88	known as the "herring-eating Scandinavian killer whale" (Simon et al. 2007) has been
89	suggested for killer whales in this region due to close genetic relatedness (Foote et al.

2009b, Morin et al. 2010) and similar acoustic and foraging behavior. K	iller whales
are thought to have regularly migrated between these two locations (Jo	onsgård and
Lyshoel 1970) due to the distribution of their main prey, Atlantic herr	ring <i>Clupea</i>
harengus (Sigurjónsson et al. 1988, Similä et al. 1996, Simon et al.	2007). The
migration route of the Atlanto-Scandian herring stock spanned from west	ern Norway
to eastern Iceland prior to the stock collapse in the 1960's (Jakobsson a	and Østvedt
1999). The migration patterns of the Icelandic and Norwegian herring stoo	cks changed
following the collapse and remained closer to each country's coast (Jak	cobsson and
Stefánsson 1999, Kvamme et al. 2003). Photo-identification studies da	ating to the
1980's show no matches between Iceland and Norway (Sigurjónsson	et al. 1988,
Foote et al. 2009a), suggesting that if killer whales migrated between	n those two
locations in the past, there is currently little to no interaction bet	ween these
populations. Nevertheless, some Icelandic killer whales have been re-iden	ntified as far
east as Shetland (Foote et al. 2009a), showing that the movement	ts of some
individuals do extend beyond coastal waters. The suggested historic cont	act of killer
whales between Iceland and Norway may have influenced their acoustic	c repertoire.
However, comparisons of their pulsed call type repertoire have found apparent	arently little
repertoire sharing between the two locations (Moore et al. 1988, Str	rager 1995,
Stenersen and Similä 2004, Shamir et al. 2014). If killer whales in	Iceland and
Norway were in contact in the past and their acoustic repertoires were s	similar, it is
possible that sufficient time has passed for call repertoires to have	diverged -
explaining the pattern observed today. We might then expect that of	ther signals
produced by these whales may also show divergence. A divergent call rep	pertoire may
serve as a population-identifier, however, the extent of stereotypy and	geographic
variation in other signals is little understood.	

High-frequency whistles ranging up to 75 kHz were first reported from herring-
eating Northeast Atlantic killer whales (Samarra et al. 2010). High-frequency whistles
have since been described from killer whale recordings made in the North Pacific
(referred to as 'high-frequency modulated signals' and 'ultrasonic whistles'; Simonis
et al. 2012, Filatova et al. 2012) and in the Antarctic (Trickey et al. 2014), indicating
that this is a widespread sound type produced by several populations although they do
not appear to be ubiquitous (Samarra et al. 2010, Filatova et al. 2012). In the North
Pacific, whistles were consistently downsweeps and, in some cases, highly
stereotyped (Simonis et al. 2012, Filatova et al. 2012). Here, we analyze qualitatively
and quantitatively the variation in time-frequency contours of high-frequency whistles
recorded from herring-eating killer whales in Norway and Iceland, and compare them
to stereotyped high-frequency whistles recorded in the North Pacific. Our objectives
were: 1) to investigate the degree of micro and macro-geographic variation of time-
frequency parameters and; 2) to investigate whether high-frequency whistles
produced by killer whales in Iceland and Norway were also stereotyped and, if so,
evaluate the spatial distribution of different whistle types. This study of geographic
variation is a starting point to considering the potential function(s) of these poorly
understood signals.

Methods

In the Northeast Atlantic, acoustic recordings were collected in Tysfjord, Vestfjord and Ofotfjord (Northern Norway) between 2005 and 2009 and off the Vestmannaeyjar archipelago and the Reykjanes peninsula in 2004, 2008 and 2009 (Iceland, Fig. 1). In both locations, recordings were collected during the day and most sounds were recorded from feeding or socializing whales. No other cetaceans were concurrently

sighted. Recording systems used varied with year and location and included towed
and vertical hydrophone arrays, as well as sound recording tags attached to whales
using suction cups ("Dtags"; Johnson and Tyack 2003). All systems sampled at 96 or
192 kHz (Table 1). Further details of all systems used and data collected are given in
Samarra et al. (2010). High-frequency whistles analyzed here are the same as those
reported in that study, including whistles with frequency contours at least partially
below 48 kHz (up to 48 kHz whistles) and whistles with frequency contours entirely
above 48 kHz (>48 kHz whistles), when available. Only 2.6% of whistles at least
partially below 48 kHz recorded at 192 kHz sampling rate crossed 48 kHz, i.e. had
minimum frequency below 48 kHz and maximum frequency above 48 kHz. This
suggests that the lower sampling rate of 96 kHz likely resulted in a negligible loss of
whistles with frequency contours at least partially below 48 kHz that could be
sampled. High-frequency whistles were defined as signals with contours entirely
above 17 kHz (Samarra et al., 2010), as this was the maximum frequency previously
reported for killer whale whistles (Thomsen et al. 2001).
To compare whistles produced in the Northeast Atlantic with those produced by killer
whales in the North Pacific, we analyzed high-frequency whistles described by
Simonis et al. (2012). The recordings were collected at sampling rates of 192 or 200
kHz from either a ship-based hydrophone array or a high-frequency acoustic
recording package (HARP) and were scanned for high-frequency whistles through the
use of Long-Term Spectral Averages (LTSAs) (Wiggins and Hildebrand 2007). To
date, recordings from 19.9 cumulative years at 18 different sites across the North
Pacific have been examined by analysts trained to recognize the presence of these
signals (Fig. 1). There have been 19 acoustic encounters of killer whales at 9 different
locations that included HFM signals, of which the temporal and spectral

characteristics of a subset from 6 locations are described here. The recording locations
of signals described here include: Aleutian Islands, Washington Coast, Southern
California Bight, Hoke Seamount, Kauai, and Pearl and Hermes Atoll (Table 1, Fig.
1). High-frequency whistles were attributed to killer whales by their clear association
with other sounds known to be produced by killer whales or by visual observations of
killer whales present in the area (Simonis et al. 2012). To ensure the data sets from
the two ocean basins were comparable we only used signals detected in the North
Pacific where contours were also entirely above 17 kHz. Table 1 shows the total
number of whistles analyzed from each location. We pooled all data from the North
Pacific for subsequent analyses, as sample sizes were too small to compare each
location separately. Following inspection of recordings using Adobe Audition 2.0©
(Blackmann-Harris window; FFT=2048 and 4096, for 96 kHz and 192 or 200 kHz
sampling rates, respectively; 100% window width) whistle contours were traced from
visual inspection of the spectrogram using a peaks contour extraction algorithm as
developed by Buck and Tyack (1993; Hann window; frequency resolution=46.875
Hz; time resolution=0.667 ms). The following descriptive parameters were measured
from the extracted fundamental frequency contour: start, half-way duration point
(mid) and end frequency, minimum and maximum frequency, frequency range
(maximum-minimum frequency) and duration.
All high-frequency whistles were assigned a quality score based on visual
assessment of signal to noise ratio and overlap with other sounds, between 1 (poor,
when the signal was barely detectable in the spectrogram) and 3 (high, when the full
contour was clearly visible). Only clearly visible contours (of quality 3) with
sufficient signal-to-noise ratio to extract the measurements required were extracted in
our data sets from both ocean basins. It is likely that some whistles in our sample

were produced by the same group or the same individuals (mean \pm stdv [min; max] of
number of whistles per recording day: 22.4 ± 22 [1; 95]). Photographs of whales were
opportunistically collected while recordings were made in Iceland and Norway.
Estimates of group size were not consistently collected across recording sessions in
these two locations, but in general varied between 4-15 animals to large aggregations
containing 50-100 individuals. Photo-identification was particularly challenging in
Norway due to low-light conditions in winter and analysis has not been completed. In
Iceland, on average 17 ± 14 [2; 41] individuals were identified per recording session
and for those individuals that were resighted at least once (52 of 86) the number of
resightings was 4 ± 2 [1; 9]. Recordings in the North Pacific were mostly from a
single day in each location, and group sizes were generally not available (Table 1). It
was not possible to identify which individuals produced high-frequency whistles
recorded in this study, however, it is unlikely that the sampling procedure across
different days or across wide geographic areas (such as for the North Pacific data)
biased the repeated sampling of a small number of individuals within each location.

- Stereotypy of high-frequency whistles
- To investigate whether, like pulsed calls, high-frequency whistles fell into stereotyped categories, the data set was categorized using two different methods: 1) visual categorization by human observers as commonly used to identify whistle types and; 2) automated categorization using ARTwarp (Deecke and Janik 2006).

- 212 1) Categorization by a human observer
- We first conducted visual classification by a human observer using the entire sample of high-frequency whistles to identify differences in the repertoires of different

whistle types across locations. Spectrograms of all whistles were generated in
MATLAB (version 7.0.4; spectrogram parameters: FFT=2048 or 4096, for 96 kHz
and 192 or 200 kHz sampling rates, respectively; overlap=87.5%; window
function=Hann). The observer was blind to the origin of high-frequency whistles
being classified. High-frequency whistles seemed to show continuous rather than
discrete variation, and as a result were grouped into broad categories (e.g., Azevedo
and Van Sluys 2005): upsweeps (rise in frequency with no inflection points),
downsweeps (decrease in frequency with no inflection points), ascending-descending
(rise in frequency followed by one inflection point and then a decrease in frequency),
descending-ascending (decrease in frequency followed by one inflection point and
then an increase in frequency), constant (small or no change in frequency and no
inflection point), and other (if a contour did not fit any of the previous categories, Fig.
2).

2) Categorization using an automated method

To inspect variation at a finer scale, we conducted an independent automated categorization in MATLAB (version 7.11). A subset of the extracted fundamental frequency contours were analyzed by an adaptive resonance theory neural network that uses dynamic time-warping to calculate contour similarity (ARTwarp; Deecke and Janik 2006). Computation time constraints meant that it was impossible to input all extracted contours unless whistles were downsampled, reducing their time resolution. However, downsampling by a factor of 3 resulted in severe misclassification of the data (18 out of 19 categories included misclassified whistles) based upon visual inspection of generated categories. Therefore, the original time

resolution was used (0.667 ms), but only a subset of randomly chosen whistle contours was categorized.

ARTwarp compares the similarity between an input contour and a contour that defines each category (reference contour) to a user-defined similarity value, called the vigilance parameter, to decide how each input contour should be categorized (Deecke and Janik 2006). To find the categorization that would explain most variation in high-frequency whistles with the least number of categories, the vigilance parameter was set to values between 0% and 100% in 50 logarithmic steps, and the subset of contours was categorized for each vigilance parameter value. The optimal categorization should have the highest variance ratio, calculated as the ratio of average within-category similarity over average between-category similarity as in Deecke and Janik (2006). This method was adopted because it has successfully classified the signature whistles of bottlenose dolphins and pulsed calls of killer whales (Deecke and Janik 2006).

Multivariate analysis of variation in time-frequency parameters

We conducted a multivariate discriminant function analysis (DFA) to investigate differences between whistles from different locations. All frequency and time parameters were included, except frequency range, as it is already represented by minimum and maximum frequency. We used location as the grouping variable ('Iceland', 'Norway' or 'North Pacific') and used a jackknife cross-validation technique implemented in the lda function of package MASS version 7.3-16 (Venables and Ripley 2002) in R 2.11.1 for Mac OS (R Development Core Team 2011). The overall proportion of correct classifications and the proportion of correct classifications by location were calculated. These were compared to the proportion of

by-chance accuracy, calculated as the sum of the squares of all prior probabilities, assumed to be equal for all locations.

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

264

265

Results

We measured the parameters of 985 high-frequency whistles ($n_{Iceland} = 570$; $n_{Norway} = 256$; $n_{Pacific} = 159$). One of the whistles in our sample (from Norway) was a clear outlier, with duration of 4.2 s, much longer than the majority of remaining whistles and was removed from the analyses. Table 2 presents the descriptive statistics of all contour parameters measured. Duration and frequency range showed the highest coefficients of variation across all locations. All other frequency parameters had much lower coefficients of variation, however variation for Iceland and Norway was consistently larger than variation in the North Pacific. This could be due to the smaller sample size of whistles from the Pacific. However, in the North Atlantic very high-frequency whistles were recorded that likely explain the larger coefficients of variation observed here. There was a clear gap in the distribution of frequency parameters between whistles with fundamental contours up to 48 kHz and whistles with fundamental frequency contours entirely above 48 kHz (Fig. 3). Whistles with contours entirely above 48 kHz were recorded in a small number of encounters ($n_{Iceland} = 4$; $n_{Norway} = 2$). They appeared as clear outliers in the distributions and were thus removed from the comparisons of parameter distributions (Fig. 3). There was considerable overlap between the distributions of some of the contour parameters from Iceland and Norway (Fig. 3). To compare these parameters across locations, we employed a Mann-Whitney U test, due to the non-normality of most distributions (Shapiro-Wilk normality tests: P<0.0001, except for frequency range in

the North Pacific with p=0.09). We used Bonierroni correction to adjust the
significance level to account for multiple comparisons (0.05/21=0.002). Despite the
apparent overlap, comparisons between the parameter distributions from Iceland and
Norway revealed significant differences in end frequency (Mann-Whitney U test:
W=74148; <i>P</i> =0.0004), frequency range (Mann-Whitney U test: W=81867; <i>P</i> <0.0001)
and maximum frequency (Mann-Whitney U test: W=74203; P =0.0003). End
frequency and maximum frequency were significantly correlated within the two
locations (Pearson correlation; Iceland: end vs. maximum frequency: r=0.96,
P<0.001; Norway: end vs . maximum frequency: r=0.98, P <0.001), which likely
reflects a whistle upsweep shape. Whistles recorded in the North Pacific tended to
have lower start, mid, end, minimum, and maximum frequencies, a slightly longer
duration and a greater frequency range. The start frequency was not significantly
different between Iceland and the Pacific (Mann-Whitney U test: W=49578;
P=0.008), while all other parameters were (P -values<0.0001). All parameters were
also significantly different between the North Pacific and Norway, with the exception
of duration (Mann-Whitney U test: W=16777; P=0.11).

Categorization by a human observer

The visual classification of whistles showed that in Iceland the majority of whistles were upsweeps, followed by descending-ascending whistle types, while in Norway, upsweeps and descending-ascending whistles were equally common (Table 3). Overall, the different whistle types recorded from Norway and Iceland largely resembled each other in spectral and temporal characteristics (Fig. 2), in agreement with the similarities suggested by the overlapping parameter distributions. In contrast, whistles from the North Pacific were all downsweeps, with only one whistle being

classified as 'Other'. These clear differences in repertoire correspond to the
differences in extracted frequency parameters (above). Nevertheless, the simple
structure of downsweeps recorded in the North Pacific was similar to that of the few
downsweeps recorded in the Northeast Atlantic (Fig. 2).

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

317

314

315

316

Categorization using an automated method

An assessment of the geographic variation of whistles was also completed using 50 randomly chosen whistles from each location. The results of the ARTwarp categorization showed that an increase in the vigilance parameter resulted in an increase in the number of categories generated. The chosen categorization divided the 150 high-frequency whistles into 27 categories, containing between 1 and 18 contours (mean \pm standard deviation of contours in each category: 6 ± 4.6). This categorization corresponded to the local maximum in variance ratio achieved when the vigilance parameter was 95.6%. All but five categories included more than one whistle. Of the five categories containing only one whistle one category contained one whistle from the Pacific, two categories contained single whistles from Norway, and two categories contained single whistles from Iceland. Of the 22 categories with more than one whistle, five included only high-frequency whistles from the Pacific. The remaining high-frequency whistles from the Pacific were grouped into three more categories that also included whistles from Norway: two categories containing only two whistles (one from the Pacific and one from Norway) and; one category including 17 whistles from the Pacific and one whistle from Norway. All remaining categories included whistles from both Norway and Iceland.

337

Multivariate analysis of variation in time-frequency parameters

The multivariate DFA showed high macrogeographic variation between the
Northeast Atlantic and North Pacific groups, with the first discriminant function
accounting for 98.9% of between group variability. The loadings of the first
discriminant function revealed that duration, maximum frequency, and end frequency
were the main discriminating predictors (Loadings: duration = -2.81; maximum
frequency = 0.33; end frequency = -0.46). The cross-validated classification showed
an overall correct classification of 62.4% of whistles to the correct location, compared
to a by-chance proportion of 33.3%, calculated as the sum of the squares of all prior
probabilities. Correct classification scores per location revealed that the North Pacific
was the location with the highest score (95.0%), with only 8 of its 159 whistles
misclassified as being from Norway. Lower correct classification scores (63.9% and
52.4%) were achieved for whistles from Norway and Iceland, respectively. Most
misclassifications for Norway (77 of 84) were assigned to Iceland and conversely,
most misclassifications for Iceland (254 of 261) were assigned to Norway. The
remaining 7 misclassifications from each location were assigned to the North Pacific.
Figure 4 shows the first two discriminant functions and illustrates how the first
discriminant function achieved the most discrimination between locations, with
whistles from the North Pacific being clearly different from those recorded in the
Northeast Atlantic, while whistles from Norway and Iceland overlapped to a much
greater extent. However, at high values of the second discriminant function there was
little overlap between Iceland and Norway (Fig. 4). Inspection of these whistles
revealed that these have high frequency range and possibly are driving observed
statistically significant differences in this parameter between locations.

To investigate whether discrimination between Iceland and Norway was more apparent within whistle types, discriminant function analyses were carried out for the two most common whistle types (upsweeps and descending-ascending) at these locations. Descending-ascending whistles were correctly classified at rates of 60% and 66.7% for Iceland and Norway, respectively. Overall correct classification was of 62.7%, compared to a by-chance proportion of 50%, suggesting a slight improvement in classification when using this whistle type, but still considerable similarity between locations. The overlap in the distribution of the discriminant scores resulting from the first discriminant function is presented in Figure 5, illustrating how the discrimination between these two locations was poor. Correct classification of upsweeps was 58.7% and 58.5% for Iceland and Norway, respectively. For upsweeps, overall correct classification was 58.6%, compared to a by-chance proportion of 50%, which also suggests an overlap in the discriminant scores within this type (Fig. 5).

Discussion

We found clear macrogeographic variation between high-frequency whistles recorded in the North Pacific and the Northeast Atlantic, while within the Northeast Atlantic only subtle microgeographic variation was observed. In all locations whistles could be manually classified into broad stereotyped categories, but the diversity of whistle types identified varied between ocean basins. While the majority of whistles recorded in the North Pacific consisted of only one whistle type, the Northeast Atlantic repertoires included more types and the repertoires were similar between locations. In all locations the within-location variation in most frequency parameters was small in comparison to variation in frequency range and duration. It is possible that some degree of this variation is due to varied signal-to-noise ratio conditions

under which recordings were collected. Nevertheless, in other delphinids intra-
specific variation in frequency parameters was generally low, while variation in
whistle duration tended to be comparatively higher (e.g., Ding et al. 1995b, Morisaka
et al. 2005). It is possible that frequency parameters are constrained by morphology,
while the variability of whistle duration may be related to social and non-social
behavior or environmental factors, or random individual variation (e.g., May-Collado
and Wartzok 2008).

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

387

388

389

390

391

392

393

Macrogeographic variation in high-frequency whistles

Within the North Pacific, acoustic encounters of killer whales were not common at any of the recording sites, and high-frequency whistles were infrequently observed. There was broad similarity in the recorded whistles despite the considerable geographic range covered by the recordings. The consistency in whistle type (downsweeps) and similarities in frequency characteristics to those reported by Filatova et al. (2012) suggests that within the Pacific Ocean there may be little variability in high-frequency whistles. However, not all populations appear to produce these signals; both Northeast Pacific resident and transient killer whales apparently do not produce high-frequency whistles (Samarra et al. 2010, Filatova et al. 2012) but the ecotypes of those whales that do produce them in the North Pacific remain largely unknown, with the exception of North Pacific offshores (Simonis et al. 2012, Filatova et al. 2012). While Pacific offshore, resident and Northeast Atlantic killer whales are all closely related genetically (Morin et al. 2010), it is curious that Pacific resident killer whales have not been recorded using the signals shared by their nearest relatives. In contrast to the apparent similarity within the Pacific Ocean, there were clear differences between whistles recorded in the Pacific and Atlantic Ocean basins.

Whistles recorded in the North Pacific had consistently lower frequency
parameters, while frequency range was significantly higher in the North Pacific than
in either of the Northeast Atlantic populations. Differences in duration were less
pronounced and significant differences were only detected in comparison to Iceland.
The discriminant function analysis was able to correctly classify the vast majority of
whistles from the North Pacific, assigning duration and maximum and end frequency
as main discriminating predictors. Whistle types identified were also considerably
different between ocean basins; while downsweeps were the most common whistle
type in the North Pacific, this whistle type was uncommon in the Northeast Atlantic.
The automated categorization also grouped most whistles from the Pacific into
distinct categories. This divergence in whistle types will likely influence some of the
observed differences in frequency parameters particularly the start, mid and end
frequency but does not explain differences in minimum and maximum frequencies,
which should not be affected by whistle shape. Thus, we believe that the observed
differences in frequency parameters between ocean basins are not exclusively due to
differences in whistle type usage but reflect a real divergence in the whistle frequency
produced.
Divergence in frequency at macrogeographic scales could reflect divergence in
geographically isolated populations that could originate from a wide range of genetic
and social mechanisms. Indeed genetic data suggests considerable variation between
populations in the Atlantic and the Pacific in comparison to variation between Iceland
and Norway (Morin et al. 2010, Foote et al., 2011). Differences in the acoustic
environment, such as background noise or transmission properties (e.g., Morisaka et
al. 2005, May-Collado and Wartzok 2008), have also been proposed as factors
explaining variations in signal frequency characteristics between populations. In both

ocean basins recordings were collected over wide geographic areas, and we therefore
cannot identify large and consistent habitat differences that could clearly explain the
patterns of variation observed in this study. Body size, however, is known to vary
between the two ocean basins; killer whales in the Northeast Atlantic in general have
smaller body sizes than killer whales in the Northeast Pacific (Christensen 1984,
Stenersen and Similä 2006), but Northeast Pacific offshores have smaller body size
than resident and transient killer whales (Ford et al. 2000, Dahlheim et al. 2008).
Nevertheless, we cannot exclude the possibility that divergence in frequency
characteristics between these ocean basins may be related to morphological
constraints. The reasons behind the consistent production of downsweeps in the North
Pacific in contrast to the more variable repertoires recorded in the Northeast Atlantic
are unknown. Although intriguing, to fully understand the reasons behind variations
in frequency and usage of whistle types across ocean basins more effort is required to
record killer whales with adequate sampling rates in other locations. This will reveal
the extent of the consistent downsweep repertoire across the North Pacific or the
existence of variable repertoires in other ocean basins as well as how frequency
characteristics may vary in other habitats.

455 Microgeographic variation in high-frequency whistles

Within the Northeast Atlantic, we found similarities in the repertoire and characteristics of high-frequency whistles produced by killer whales in Norway and Iceland. None of the quantitative methods employed was able to distinguish between whistles from Iceland and Norway as clearly as between whistles from Northeast Atlantic and North Pacific, suggesting different levels of divergence between locations. Despite the apparent overlap in parameter distributions in the Northeast

Atlantic, whisties from Norway snowed significantly lower end frequency, maximum
frequency and frequency range when compared to Iceland. The discriminant function
analysis showed some degree of correct classifications, although many whistles from
both locations were misclassified, while the automated categorization included
whistles from both locations in most of the categories generated. Although the overall
repertoire was similar between the two locations, there were some differences in the
usage of whistle types. Upsweeps were the most common whistle type in Iceland,
while in Norway both upsweeps and descending-ascending whistles were equally
common. Even when trying to discriminate between locations within whistles of the
same type, discriminant function analyses still misclassified a large proportion of
whistles, suggesting similarity between whistles produced. The similarity in both
time-frequency parameters and overall repertoire of high-frequency whistles between
Norway and Iceland is in striking contrast to the divergence in pulsed call repertoires
(Moore et al. 1988, Strager 1995, Stenersen and Similä 2004, Shamir et al. 2014). At
present we have little evidence of contextual production of high-frequency whistles to
help us identify their function. Nevertheless, this divergence between pulsed calls and
high-frequency whistles possibly reflects different functions of these different signal
types.
Microgeographic variation in acoustic signals may be shaped by genealogy, the
timing of separation, ranging behavior of individuals, or cultural divergence in the
case of learned acoustic signals (e.g., Ding et al. 1995b, Azevedo and Van Sluys
2005, Papale et al. 2013). For killer whales in Norway and Iceland evidence for (a
recent) common ancestor comes from historic ranging patterns of prey, genetics
(Jonsgård and Lyshoel 1970, Foote et al. 2009a), and high-frequency whistle
repertoires, while the unique pulsed call repertoires of each region may reflect more

recent divergence (Moore et al. 1988, Strager 1993, Stenersen and Simila 2004,
Shamir et al. 2014). A small number of high-frequency whistles have also been
recorded from killer whales in Shetland (Samarra et al. 2010), an archipelago situated
between Iceland and Norway where some Icelandic killer whales are known to travel
(Foote et al. 2009a). Further recordings from this location and others should provide
an interesting comparison to evaluate the degree of divergence between adjacent
populations. Although the function(s) of these high-frequency whistles remain
unclear, the signals analyzed in this study offer a window to understanding how
acoustic behavior may relate to ancestry and dispersal patterns of killer whale
populations on multiple scales.

We would like to thank the many people who were involved in the fieldwork and
Woods Hole Oceanographic Institution, especially A. Bocconcelli, M.P. Johnson, and
P.L. Tyack for support with tagging projects. Part of the Atlantic data was collected as
part of the 3S collaborative research program, and 2005 data were collected in
collaboration with A. D. Shapiro. We would like to thank the International Fund for
AnimalWelfare/The Song of the Whale Team, particularly C. Lacey, for providing
recordings from Iceland 2004. Funding for HARP data collection and analysis was
provided by the Office of Naval Research, US Navy Living Marine Resources
(former CNO-N45), US Pacific Fleet, Pacific Life, Ocean Foundation. We would like
to thank S. Baumann-Pickering, R. Gottlieb, S. Wiggins and J. Hildebrand from
Scripps Institution of Oceanography for fieldwork, data processing, data analysis and
assistance. The Pacific Islands Fishery Science Center (PIFSC) supplied recordings
from Kauai and the Pearl and Hermes Atoll under a permit from the
Papahanaumokuakea Marine National Monument, number PMNM-2010-041 issued
to E. Oleson. We would specifically like to thank C. Yoshinaga for managing the
deployment and recovery of instruments in these remote locations. We are grateful to
S. Kuningas for providing the photo-identification information from Norway and P.
Wensveen for providing helpful comments on the manuscript. Funding was provided
by Fundação para a Ciência e a Tecnologia studentship to F.I.P.S. (grant
SFRH/BD/30303/2006), Office of Naval Research and Russell Trust Award (U. St
Andrews). All field research was carried in compliance with local regulations. This
manuscript was improved by helpful comments from the editors and anonymous
reviewers.

523	Literature cited
524	Azevedo, A. F. and M. Van Sluys. 2005. Whistles of tucuxi dolphins (Sotalia
525	fluviatilis) in Brazil: comparisons among populations. Journal of the Acoustical
526	Society of America 117:1456-1464.
527	Baron, S. C., A. Martinez, L. P. Garrison and E. O. Keith. 2008. Differences in
528	acoustic signals from delphinids in the western North Atlantic and northern Gulf
529	of Mexico. Marine Mammal Science, 24(1): 42-56.
530	Buck, J. R. and P. L. Tyack. 1993. A quantitative measure of similarity for <i>Tursiops</i>
531	truncatus signature whistles. Journal of the Acoustical Society of America
532	94:2497-2506.
533	Caldwell, M. C. and D. K. Caldwell. 1968. Vocalization of naïve dolphins in small
534	groups. Science 159:1121-1123.
535	Camargo, F. S., M. M. Rollo, V. Giampaoli and C. Bellini. 2006. Whistle variability
536	in South Atlantic spinner dolphins from the Fernando de Noronha Archipelago
537	off Brazil. Journal of the Acoustical Society of America 120(6):4071-4079.
538	Christensen, I. 1984. Growth and reproduction of killer whales, Orcinus orca, in
539	Norwegian coastal waters. Report of the International Whaling Commission
540	6:253-258.
541	Dahlheim, M. E., Schulman-Janiger, A., Black, N., Ternullo, R., Ellifrit, D. and K. C.
542	Balcomb. 2008. Eastern temperate North Pacific offshore killer whales (Orcinus
543	orca): occurrence, movements, and insights into feeding ecology. Marine
544	Mammal Science 24(3):719-729.
545	Deecke, V. B. and V. M. Janik. 2006. Automated categorization of bioacoustic
546	signals: Avoiding perceptual pitfalls. Journal of the Acoustical Society of
547	America 119:645-653.

548	Deecke, V.B., L. G. Barrett-Lennard, P. Spong and J. K. B. Ford. 2010. The structure
549	of stereotyped calls reflects kinship and social affiliation in resident killer whales
550	(Orcinus orca). Naturwissenschaften 97:513-518.
551	Ding, W., B. Würsig and W. Evans. 1995a. Comparisons of whistles among seven
552	odontocete species. Pages 299-323 in R. A. Kastelein, J. A. Thomas and P. E.
553	Nachtigall, eds. Sensory systems of aquatic mammals. De Spil Publishers,
554	Woerden, The Netherlands.
555	Ding, W., B. Würsig and W. E. Evans. 1995b. Whistles of bottlenose dolphins:
556	comparisons among populations. Aquatic Mammals 21.1:65-77.
557	Filatova, O.A., J. K. B. Ford, C. O. Matkin, L. G. Barrett-Lennard, A. M. Burdin and
558	E. Hoyt. 2012. Ultrasonic whistles of killer whales (Orcinus orca) recorded in the
559	North Pacific (L). Journal of the Acoustical Society of America 132:3618-3621.
560	Ford, J. K. B. and H. D. Fisher. 1982. Killer whale (Orcinus orca) dialects as an
561	indicator of stocks in British Columbia. Reports of the International Whaling
562	Commission 32:671-679.
563	Ford, J. K. B. 1989. Acoustic behavior of resident killer whales (Orcinus orca) off
564	Vancouver Island, British Columbia. Canandian Journal of Zoology 67, 727-745.
565	Ford, J. K. B. 1991. Vocal traditions among resident killer whales (Orcinus orca) in
566	coastal waters of British Columbia. Canadian Journal of Zoology 69:1454-1483.
567	Ford, J. K. B., Ellis, G. M. and K. C. Balcomb. 2000. Killer whales: the natural
568	history and genealogy of Orcinus orca in British Columbia and Washington.
569	Second Edition. Vancouver: University of British Columbia Press.
570	Foote, A. D., T. Similä, G. A. Víkingsson and P. T. Stevick. 2009a. Movement, site
571	fidelity and connectivity in a top marine predator, the killer whale. Evolutionary
572	Ecology 24:803-814.

5/3	Foote, A. D., J. Newton, S. B. Piertney, E. Willerslev and M. T. P. Gilbert. 2009b.
574	Ecological, morphological and genetic divergence of sympatric North Atlantic
575	killer whale populations. Molecular Ecology 18:5207-5217.
576	Foote, A. D., J. T. Vilstrup, R. de Stephanis, et al. 2011. Generic differentiation
577	among North Atlantic killer whale populations. Molecular Ecology 20(3):629-
578	641.
579	Jakobsson, J. and O. J. Østvedt. 1999. A review of joint investigations on the
580	distribution of herring in the Norwegian and Iceland Seas 1950-1970. Rit
81	Fiskideildar 16:209-238.
82	Jakobsson, J. and G. Stefánsson. 1999. Management of summer-spawning herring off
583	Iceland. ICES Journal of Marine Science 56:827-833.
84	Janik, V. M., L. S. Sayigh and R. S. Wells. 2006. Signature whistle shape conveys
885	identity information to bottlenose dolphins. Proceedings of the National Academy
886	of Sciences 103:8293-8297.
87	Janik, V. M. 2009. Acoustic communication in delphinids. Advances in the Study of
888	Behavior 40:123-157.
89	Johnson, M. P. and P. L. Tyack. 2003. A digital acoustic recording tag for measuring
90	the response of wild marine mammals to sound. IEEE Journal of Oceanic
591	Engineering 28:3-12.
592	Jonsgård, Å. And P. B. Lyshoel. 1970. A contribution to the knowledge of the biology
593	of the killer whale Orcinus orca (L.). Nytt Magasin for Zoologi 18:41-48.
594	Kvamme, C., L. Nøttestad, A. Fernö, et al. 2003. Migration patterns in Norwegian
95	spring-spawning herring: why young fish swim away from the wintering area in
596	late summer. Marine Ecology Progress Series 247:197-210.

597	May-Collado, L. J. and D. Wartzok. 2008. A comparison of bottlenose dolphin
598	whistles in the Atlantic Ocean: factors promoting whistle variation. Journal of
599	Mammalogy 89(5):1229-1240.
600	Matthews, J. N., L. E. Rendell, J. C. D. Gordon and D. W. Macdonald. 1999. A
601	review of frequency and time parameters of cetacean tonal calls. Bioacoustics
602	10:47-71.
603	Miller, P. J. O. and D. E. Bain. 2000. Within-pod variation in the sound production of
604	a pod of killer whales, Orcinus orca. Animal Behaviour 60:617-628.
605	Moore, S. E., J. K. Francine, A. E. Bowles and J. K. B. Ford. 1988. Analysis of calls
606	of killer whales, Orcinus orca, from Iceland and Norway. Rit Fiskideildar
607	11:225-250.
608	Morin, P. A., F. I. Archer, A. D. Foote, et al. 2010. Complete mitochondrial genome
609	phylogeographic analysis of killer whales (Orcinus orca) indicates multiple
610	species. Genome Research 20:908-916.
611	Morisaka, T., M. Shinohara, F. Nakahara and T. Akamatsu. 2005. Geographic
612	variations in the whistles among three Indo-Pacific bottlenose dolphin Tursiops
613	aduncus populations in Japan. Fisheries Science 71:568-576.
614	Mundinger, P. C. 1982. Microgeographic and macrogeographic variation in the
615	acquired vocalizations of birds. Pages 147-208 in D. E. Kroodsma, E. H. Miller,
616	and H. Ouellet, eds. Acoustic Communication in Birds: Song learning and its
617	consequences. Vol. 2, Academic Press, New York, NY.
618	Nousek, A. E., P. J. B. Slater, C. Wang and P. J. O. Miller. 2006. The influence of
619	social affiliation on individual vocal signatures of northern resident killer whales
620	(Orcinus orca). Biology Letters 2:481-484.

021	Papaie, E., M. Azzolin, I. Cascao, et al. (2014). Macro- and micro-geographic
622	variation of short-beaked common dolphin's whistles in the Mediterranean Sea
623	and Atlantic Ocean. Ethology, Ecology and Evolution 26:392-404.
624	Podos, J., V. M. F. da Silva and M. R. Rossi-Santos. 2002. Vocalizations of Amazon
625	river dolphins, Inia geoffrensis: insights into the evolutionary origins of delphinid
626	whistles. Ethology 108:601-612.
627	R Development Core Team. 2011. R: A language and environment for statistical
628	computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-
629	900051-07-0, URL http://www.R-project.org/ .
630	Rendell, L.E., J. N. Matthews, A. Gill, J. C. D. Gordon and D. W. Macdonald. 1999.
631	Quantitative analysis of tonal calls from five odontocete species, examining
632	interspecific and intraspecific variation. Journal of Zoology 249:403-410.
633	Riesch, R., J. K. B. Ford and F. Thomsen. 2006. Stability and group specificity of
634	stereotyped whistles in resident killer whales, Orcinus orca, off British Columbia.
635	Animal Behaviour 71:79-91.
636	Riesch, R., J. K. B. Ford and F. Thomsen. 2008. Whistle sequences in wild killer
637	whales (Orcinus orca). Journal of the Acoustical Society of America 124:1822-
638	1829.
639	Riesch, R. and V. B. Deecke. 2011. Whistle communication in mammal-eating killer
640	whales (Orcinus orca): further evidence for acoustic divergence between
641	ecotypes. Behavioral Ecology and Sociobiology 65:1377-1387.
642	Rossi-Santos, M. R. and J. Podos. 2006. Latitudinal variation in whistle structure of
643	the estuarine dolphin Sotalia guianensis. Behaviour 143:347-364.

644	Samarra, F. I. P., V. B. Deecke, K. Vinding, M. H. Rasmussen, R. J. Swift and P. J.
645	O. Miller. 2010: Killer whales (Orcinus orca) produce ultrasonic whistles. Journal
646	of the Acoustical Society of America 128:EL205-EL210.
647	Sigurjónsson, J., T. Lyrholm, S. Leatherwood, E. Jónsson and G. Víkingsson. 1988.
648	Photoidentification of killer whales, Orcinus orca, off Iceland, 1981 through
649	1986. Rit Fiskideildar 11:99-114.
650	Similä, T., J. C. Holst and I. Christensen. 1996. Occurrence and diet of killer whales
651	in northern Norway: seasonal patterns relative to the distribution and abundance
652	of Norwegian spring-spawning herring. Canadian Journal of Fisheries and
653	Aquatic Sciences 53:769-779.
654	Simon, M., P. K. McGregor and F. Ugarte. 2007. The relationship between the
655	acoustic behaviour and surface activity of killer whales (Orcinus orca) that feed
656	on herring (Clupea harengus). Acta Ethologica 10:47-53.
657	Simonis, A. E., S. Baumann-Pickering, E. Oleson, M. L. Melcón, M. Gassmann, S.
658	M. Wiggins and J. A. Hildebrand. 2012. High-frequency modulated signals of
659	killer whales (Orcinus orca) in the North Pacific. Journal of the Acoustical
660	Society of America 131:EL295-EL301.
661	Shamir, L., C. Yerby, R. Simpson, A. M. von Benda-Beckmann, P. Tyack, F.
662	Samarra, P. Miller and J. Wallin. 2014. Classification of large acoustic datasets
663	using machine learning and crowdsourcing: application to whale calls. Journal of
664	the Acoustical Society of America, 135(2):953-962.
665	Steiner, W. W. 1981. Species-specific differences in pure tonal whistle vocalizations
666	of five Western North Atlantic dolphin species. Behavioral Ecology and
667	Sociobiology 9(4):241-246.

668	Stenersen, J. and T. Similä. 2004. Norwegian killer whales. Henningsvær: Tringa
669	Forlag.
670	Strager, H. 1995. Pod-specific call repertoires and compound calls of killer whales,
671	Orcinus orca, Linnaeus, 1758, in the waters of northern Norway. Canadian
672	Journal of Zoology 73:1037-1047.
673	Thomsen, F., D. Franck and J. K. B. Ford. 2001. Characteristics of whistles from the
674	acoustic repertoire of resident killer whales (Orcinus orca) off Vancouver Island,
675	British Columbia. Journal of the Acoustical Society of America 109:1240-1246.
676	Thomsen, F., D. Franck and J. K. B. Ford. 2002. On the communicative significance
677	of whistles in wild killer whales (Orcinus orca). Naturwissenschaften 89:404-407.
678	Trickey, J. S., M. V. R. Reyes, S. Baumann-Pickering, M. L. Melcón, J. A.
679	Hildebrand and M. A. Iñíguez. 2014. Acoustic encounters of killer and beaked
680	whales during the 2014 SORP cruise. IWC report SC/65b/SM12.
681	Tyack, P. 1986. Population Biology, Social behavior and communication in whales
682	and dolphins. Trends in Ecology and Evolution 1:144-150.
683	Van Parijs, S. M. and P. J. Corkeron. 2001. Vocalizations and behaviour of Pacific
684	humpback dolphins Sousa chinensis. Ethology 107:701-716.
685	Venables, W. N. and B. D. Ripley. 2002. Modern applied statistics with S. Fourth
686	Edition. Springer, New York. NY.
687	Wiggins, S. M. and J. A. Hildebrand. 2007. High-frequency acoustic recording
688	package (HARP) for broad-band, long-term marine mammal monitoring. Pages
689	551-557 in International Symposium on Underwater Technology and Workshop
690	on Scientific Use of Submarine Cables and Related Technologies (2007).

Table 1. Specifications of recordings containing high-frequency whistles analyzed in this study (further details are given in Samarra *et al.* 2010 and Simonis *et al.* 2012).

Ocean	Location	Recording	Recording	Sampling	Recording method	Whistles
basin		days	time (h)	rate (kHz)		analyzed
Northeast	Iceland	19	64	96 and 192	Vertical hydrophone array	570
Atlantic					Towed hydrophone array	
					Dtag	
	Norway	18	104	96 and 192	Towed hydrophone array	257
					Dtag	
North Pacific	Aleutian islands	2	3.1	200	HARP (depth 783 m)	44
	Hoke Seamount	1	0.6	200	HARP (depth 770 m)	22
	Kauai	1	0.6	200	HARP (depth 706 m)	36
	Pearl and Hermes Atoll	1	0.6	200	HARP (depth 753 m)	10
	Southern California	1	1.9	200	HARP (depth 1295 m)	22

Bight Southern California	1	0.5	200	Ship-based hydrophone	11
Bight				array	
Washington Coast		0.7	192	Ship-based hydrophone array	14

Table 2. Descriptive statistics of high-frequency whistles analyzed in this study. Sample sizes for each location are included in brackets. For each parameter, values given are mean ± standard deviation [minimum – maximum], with coefficient of variation (calculated as the ratio of the standard deviation to the mean) given as a percentage within brackets. All frequency parameters are presented in kHz and duration is presented in milliseconds (ms).

696

697

698

699

Location	Iceland	Norway	North Pacific
	(n=570)	(n=256)	(n = 159)
Start frequency	32.6 ± 9.1	34.7 ± 11.0	29.6 ± 5.1
	(27.9%)	(31.7%)	(17.2%)
	[16.9 - 71.2]	[18.3 - 71.0]	[19.3 – 44.0]
End frequency	38.2 ± 8.7	37.4 ± 9.0	20.8 ± 3.2
	(22.8%)	(24.1%)	(15.4%)
	[19.4 – 74.7]	[21.5 – 68.3]	[17.1 - 33.4]
Mid frequency	33.8 ± 8.6	34.6 ± 9.6	25.3 ± 4.3
	(25.4%)	(27.7%)	(16.9%)
	[17.6 - 68.8]	[19.0 - 64.3]	[18.4 - 39.4]
Minimum	31.7 ± 8.6	33.0 ± 9.2	20.8 ± 3.2
frequency	(27.1%)	(27.9%)	(15.3%)
	[16.9 - 68.3]	[18.1 - 64.3]	[17.1 - 33.4]
Maximum	38.4 ± 8.7	38.4 ± 10.2	29.7 ± 5.1
frequency	(22.7%)	(26.6%)	(17.1%)
	[19.4 – 74.7]	[22.3 - 71.0]	[19.3 - 44.0]
Frequency range	6.8 ± 3.7	5.4 ± 2.9	8.9 ± 3.8
	(54.4%)	(53.7%)	(42.6%)

[0.7 - 21.2]	[1.0 - 19.9]	[1.6 - 20.2]
138.1 ± 135.9	143.6 ± 143.1	142.6 ± 74.2
(98.4%)	(99.7%)	(52.1%)
[6 - 814]	[10 - 1300]	[37.8 - 371.2]
	138.1 ± 135.9 (98.4%)	138.1 ± 135.9 143.6 ± 143.1 (98.4%) (99.7%)

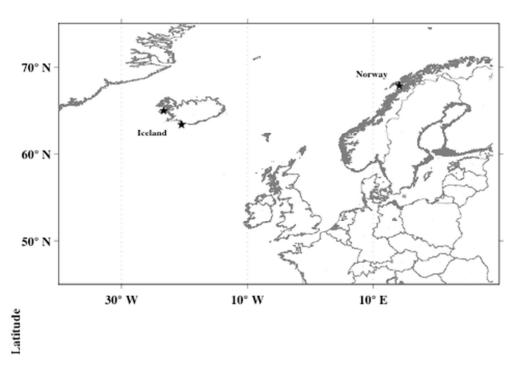
Table 3. Proportion of high-frequency whistle types produced in different locations.

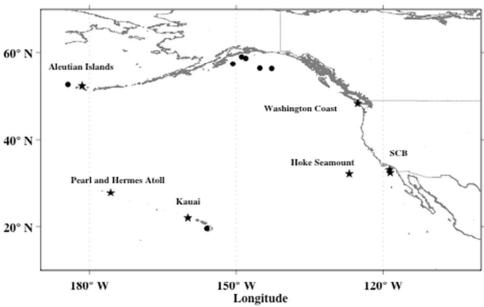
Desc-Asc stands for descending-ascending and Asc-Desc stands for ascending-

descending whistles.

			Whistle cate	egories			
Location	Upsweep	Downsweep	Desc-Asc	Asc-Desc	Constant	Other	Total
Iceland	68.4%	1.4%	28.6%	0%	0.2%	1.4%	570
Norway	41.2%	9.3%	42.8%	0.8%	0%	5.8%	257
North	0%	99.4%	0%	0%	0%	0.6%	159
Pacific							
Total	50.3%	19.3%	27.7%	0.2%	0.1%	2.4%	986

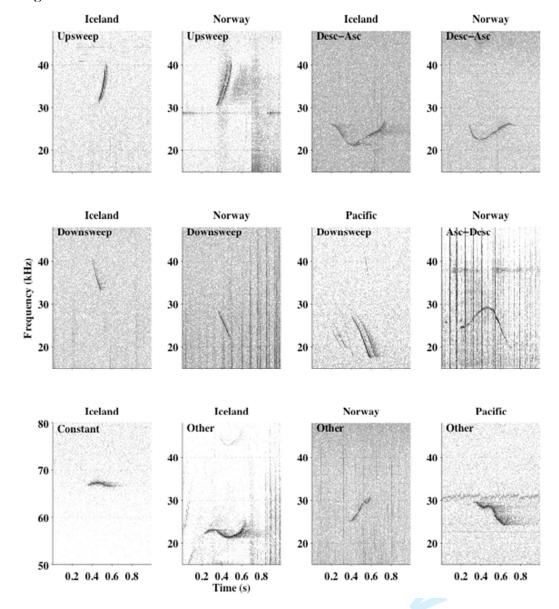
706

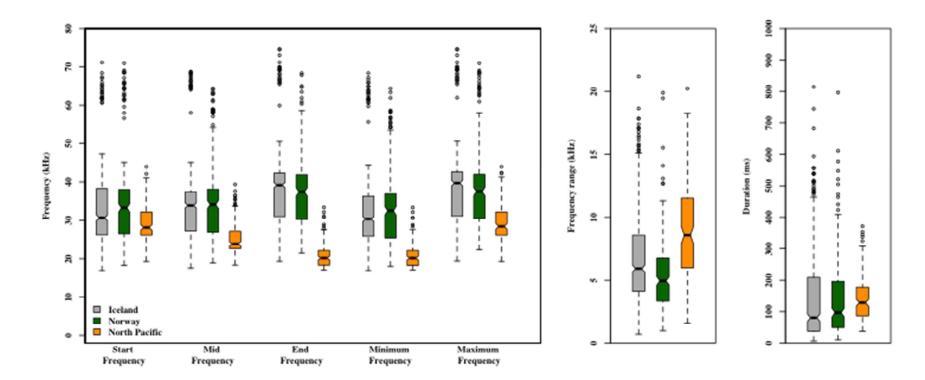

703


704

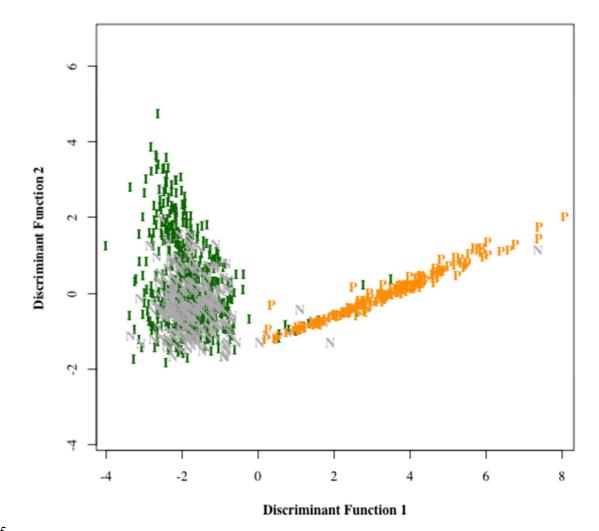
708	Figure captions
709	Figure 1. Map illustrating the approximate locations (stars) where recordings
710	containing high-frequency whistles were collected in: top) the Northeast Atlantic and;
711	bottom) the North Pacific. SCB stands for Southern California Bight. Locations where
712	recordings were conducted but no high-frequency whistles were detected are also
713	shown (circles).
714	
715	Figure 2. Spectrograms showing examples of different high-frequency whistle types
716	from Iceland, Norway and the North Pacific. If a specific whistle type was only
717	produced in one location only one example was shown. Note the different y-axis
718	scaling for the Constant whistle type.
719	
720	Figure 3. Distribution of all frequency parameters extracted from whistle contours.
721	Horizontal lines represent medians, boxes represent inter-quartiles, and whiskers
722	represent values within 1.5 times the inter-quartile range from the boxes. Outliers are
723	plotted as single points. Frequency range is plotted separately due to its different y-
724	axis scale, as is duration.
725	
726	Figure 4. Plot of the first two discriminant functions for the comparison between
727	whistles recorded in Iceland (I), Norway (N) and the North Pacific (P). Colors follow
728	the same legend as in Figure 2. Note the overlap between whistles from Norway (N)
729	and Iceland (I) in contrast to discrimination between whistles from the NE Atlantic
730	and whistles from the Pacific (P).
731	

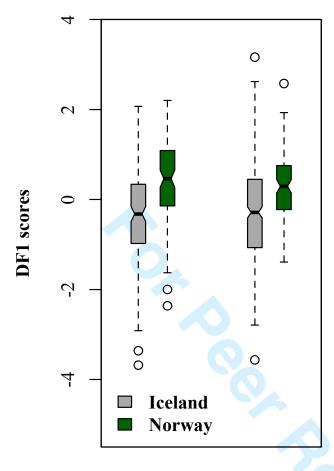
732	Figure 5. Boxplots illustrating the distribution of discriminant scores (DF1) for
733	descending-ascending whistles (Desc-Asc) for the two groups (Iceland and Norway)
734	and discriminant scores for upsweep whistles for the two groups. Colors follow the
735	same legend as in Figure 2.


737 Figure 1



738


740 Figure 2


742 Figure 3

744 Figure 4

746 Figure 5

Desc-Asc Upsweeps