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Abstract 24 

Voluntary activation assessment using the interpolation twitch technique (ITT) has almost 25 

invariably been applied using maximal stimulation intensity, i.e., an intensity beyond which 26 

no additional joint moment or external force is produced by increasing further the intensity 27 

of stimulation. The aim of the study was to identify the minimum stimulation intensity at 28 

which percutaneous ITT yields valid results. Maximal stimulation intensity and the force 29 

produced at that intensity were identified for the quadriceps muscle using percutaneous 30 

electrodes in eight active men. The stimulation intensities producing 10 to 90% (in 10% 31 

increments) of that force were determined and subsequently applied during isometric 32 

contractions at 90% of maximum voluntary contraction (MVC) via twitch doublets. Muscle 33 

activation was calculated with the ITT and pain scores were obtained for each stimulation 34 

intensity and compared to the respective values at maximum stimulation intensity. Muscle 35 

activation at maximal stimulation intensity was 91.6 (2.5)%. The lowest stimulation 36 

intensity yielding comparable muscle activation results to maximal stimulation was 50% 37 

(88.8 (3.9)%, p < 0.05). Pain score at maximal stimulation intensity was 6.6 (1.5) cm and it 38 

was significantly reduced at 60% stimulation intensity (3.7 (1.5) cm, p < 0.05) compared to 39 

maximal stimulation intensity. Submaximal stimulation can produce valid ITT results while 40 

reducing the discomfort obtained by the subjects, widening the assessment of ITT to 41 

situations where discomfort may otherwise impede maximal electrostimulation. 42 

 43 

44 
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Introduction 45 

Muscle strength, measured as joint moment or force applied externally during a maximum 46 

voluntary contraction (MVC), is determined by a number of biological factors, including 47 

the size of the agonist muscles and their moment arms, the joint angle tested which affects 48 

muscle length, the specific tension of the muscle, antagonist muscle co-contraction, and the 49 

level of voluntary agonist muscle activation during the test. The assessment of this last 50 

factor, voluntary activation, requires the application of artificial stimulation and this has 51 

been routinely applied in several populations, including children [O’Brien et al, 2010; 52 

O’Brien et al, 2008], older individuals [Morse et a,. 2008; Reeves et al, 2003], patients with 53 

musculoskeletal disorders [Rutherford et al, 1986; Suter et al, 1998] and in intervention 54 

studies involving various types of exercise training [e.g., Knight and Kamen, 2001; 55 

Maffiuletti et al, 2000; Selkowitz, 1985] and disuse [e.g., de Boer et al, 2007; Lewek et al, 56 

2001; Sisk et al, 1987]. 57 

Voluntary activation is typically assessed by some variant of the interpolated twitch 58 

technique (ITT [Merton, 1954]), according to the equation: 59 

Activation level (%) = (1 – SI / R) × 100       (eq. 1) 60 

where, SI is the additional joint moment (or external force) produced by superimposing the 61 

electrical stimulus on the MVC and R is the joint moment (or external force) produced by 62 

the same stimulus applied at rest.  Investigators generally strive to use maximal stimulation 63 

for the ITT [Babault et al, 2003; Bampouras et al, 2006; Behm et al, 2001; De Serres and 64 

Enoka, 1998; Kent-Braun and Le-Blanc, 1996; Morse et al, 2008; O’Brien et al, 2008], but 65 

there is often some confusion as to what maximality means and whether it is essential for 66 

the reliable estimation of voluntary activation. To obtain the maximum force from a muscle 67 
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it is necessary that all motor units are activated and that they are stimulated at frequencies, 68 

generally in the order of 30-100 Hz [Gerritts et al, 1999], that generate maximum force.  69 

Percutaneous stimulation of a large muscle such as the quadriceps is unlikely ever to 70 

activate all motor units.  Activation of all motor units can be achieved with direct 71 

stimulation of the femoral nerve. Possibly the only time that true maximality of stimulation 72 

was achieved during a voluntary contraction was with tetanic stimulation of the femoral 73 

nerve with increasing stimulus intensity [Bigland-Ritchie et al, 1978], but this is not a 74 

procedure that is well tolerated by most subjects.  Irrespective of whether all motor units 75 

are activated, it is very unlikely that they will be producing their maximum force since most 76 

ITT tests involve using twitches or doublets rather than tetanic trains.  77 

One issue associated with using twitches or doublets to stimulate the resting muscle is that 78 

the relatively small and transitory forces will be recorded as smaller tension transients due 79 

to stretching of the series elastic components of the apparatus and in the muscle-tendon 80 

unit.  When superimposed on a voluntary contraction where the series elements are already 81 

stretched the tension transient will more faithfully reflect the force produced by the muscle. 82 

This will tend to increase the SI/R ratio and thus give a false low value for voluntary 83 

activation.  One way of reducing the series compliance of the quadriceps is to flex the knee 84 

and it has been shown that the ITT value for the quadriceps muscle was higher by 9-18% 85 

(depending on the stimuli number) at more flexed (more stretched muscle-tendon unit) than 86 

extended (slacker muscle-tendon unit) knee positions [Bampouras et al, 2006]. 87 

Another possible way of avoiding the problems associated with comparing twitches of 88 

resting with active muscle is by using the Central Activation Ratio (CAR) which only 89 

depends on the superimposed force or joint moment during MVC and not the stimulation at 90 
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rest (CAR = MVC/(MVC+SI)) [Bampouras et al, 2006].  However, it is very unlikely that 91 

the superimposed stimulation will maximally activate all the muscle. 92 

The question is therefore how much of the muscle needs to be activated to achieve a 93 

reliable answer using the ITT. Behm et al [1996] and de Ruiter et al [2004] suggest that it is 94 

necessary to stimulate nearly all the muscle.  However, Rutherford et al [1986] compared 95 

femoral nerve stimulation, which was assumed to activate all motor units, and percutaneous 96 

quadriceps muscle stimulation that activated only a portion of the muscle, and found no 97 

differences in the SI/R ratio between the two stimulation modes.  When using percutaneous 98 

stimulation, Rutherford et al [1986] state that they adjusted the stimulus intensity used for 99 

the superimposed twitches in relation to the proportion of the MVC force generated when 100 

stimulating at 30 Hz.  However, they did not specify what that force was nor present any 101 

evidence as to what the minimum required force might be.  Consequently, the aim of the 102 

present study was to identify the minimum stimulation intensity at which muscle activation 103 

could be validly assessed, reducing the discomfort associated with high intensity 104 

stimulation and thus widening the applicability of ITT assessment to a greater range of 105 

subjects and patients. 106 

107 
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Methods 108 

Subjects 109 

Eight healthy, physically active men (mean (SD): age 28.9 (5.0) years, height 1.80 (0.09) 110 

m, body mass 83.9 (15.3) kg) volunteered to participate in the study. To ensure consistency 111 

in performance, all subjects were familiar with the experimental procedures involved 112 

[Button and Behm, 2008] and were tested in the laboratory on a single occasion.  113 

Ethical approval for the study was granted by the Ethics Committee of the Institute for 114 

Biomedical Research into Human Movement and Health of Manchester Metropolitan 115 

University, UK. All subjects provided written informed consent prior to any testing.  The 116 

study complied with the Declaration of Helsinki. 117 

Isometric knee extension test  118 

The mechanical output of isometric knee extension was measured as force applied 119 

externally in the sagittal plane at the level of the ankle, at right angles to the longitudinal 120 

axis of the lower leg. The subjects sat in the chair of a custom-made dynamometer [de 121 

Ruiter et al, 2004; Kooistra et al, 2007], with the hip joint angle at 85o (supine position = 122 

0o) and the right leg at a knee joint angle of 90o (full knee extension = 0o). Straps were 123 

positioned over the hips and tested thigh to prevent extraneous movement and the lower leg 124 

was securely strapped to a force-transducer (KAP, E/200 Hz, Bienfait B.V. Haarlem, The 125 

Netherlands) at the ankle. Force signals were corrected for passive tension of the knee 126 

extensors and real-time force readings were displayed online and recorded for further 127 

analysis (Matlab, The Mathworks, Natick, MA). 128 

Electrical stimulation  129 
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Two 7 x 12.5-cm self-adhesive carbon rubber electrodes (Versa-Stim, ConMed, New York, 130 

USA) were placed on the proximal and distal regions of the quadriceps muscle group with 131 

the cathode being the proximal electrode. Stimuli of 200-μs pulse width and 10-ms inter-132 

stimulus gap were generated by an electrical stimulator (model DS7, Digitimer stimulator, 133 

Welwyn, Garden City, UK) modified to deliver a maximum of 1,000 mA output. Electrical 134 

stimuli application was displayed online along with the force signal.  135 

Procedures  136 

Maximal stimulation intensity  137 

Maximal stimulation intensity was determined by application of single twitches at rest, with 138 

the voltage set at 300 V and the current intensity increasing by 50 mA for each application. 139 

Maximal stimulation intensity (hereafter called the maximal intensity) was determined as 140 

that beyond which a further increase in current by 50 mA failed to increase the twitch force 141 

further.  142 

Percentages of the maximal intensity twitch force  143 

The stimulation intensities required to produce 10 to 100% (in 10% increments) of the force 144 

at maximal intensity were determined in a randomized order. Typically, this procedure 145 

required application of 2-3 twitches at each percentage of the maximal intensity to identify 146 

the appropriate current. Duration of rest between stimuli applications was 2-3 min. These 147 

stimulation intensities were then used for the rest of the experiment (hereafter called 148 

percentage intensities).    149 

Stimulation during voluntary contractions  150 

Subjects performed an MVC and all subsequent test contractions were performed at 90% of 151 

MVC. This contraction level was selected as our laboratory and others have found it to be a 152 
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near-maximal contraction level that subjects can achieve consistently [Bampouras et al, 153 

2006; Behm et al, 1996; Bülow et al, 1993]. A target line indicating 90% of MVC was 154 

displayed on the same screen as the force from which the subjects received visual feedback 155 

to help them maintain a steady and consistent force.  156 

The subjects were required to perform 9 trials at 90% of MVC with 3-4 min rest interval. 157 

Typically, these trials lasted ~2 s. During each trial, two stimuli (doublet) were applied as 158 

soon as a force plateau occurred (determined visually) while a second doublet was applied 159 

exactly three seconds later, during complete relaxation (resting doublet). The doublet was 160 

selected over a higher number of stimuli based on our previous finding of no differences 161 

between a doublet and a quadruplet or an octuplet on the ITT value for the quadriceps 162 

muscle (Bampouras et al, 2006).  The ITT (eq.1) value for each percentage intensity was 163 

calculated.  164 

To assess the level of discomfort associated with a given percentage intensity, an unmarked 165 

10 mm visual analog pain intensity scale (VAS [Collins et al, 1997]), with ‘No pain’ at one 166 

end and ‘Worst pain’ at the other end, was used to record the level of discomfort 167 

experienced by the subjects after each stimulus intensity. Scores above 5.4 cm indicate 168 

severe pain, while scores above 3 cm indicate moderate pain [Collins et al, 1997].   169 

Statistical analysis  170 

Normality of data was examined using the Shapiro-Wilk test and was subsequently 171 

confirmed for all variables (90% MVC, activation level, VAS pain scores). A repeated 172 

measures analysis of variance was used to ascertain comparability of 90% MVC force 173 

across the trials with the different percentage intensities.  174 
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Differences between percentage intensities and maximal intensity for activation level and 175 

VAS scores were examined using Dunnett’s test. This test is more appropriate in situations 176 

where several treatments are to be compared against a control or reference treatment only, 177 

rather than comparisons between all treatments [Dunnett, 1955]. The smallest percentage 178 

intensity for which muscle activation did not differ significantly from that of the maximal 179 

intensity was considered to be the minimum intensity able to yield valid results. 180 

Significance was set at p < 0.05. Values are presented as mean (SD), unless otherwise 181 

indicated.   182 

183 
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Results 184 

The subjects’ MVC force was 748 (130) N. The 90% MVC force was not significantly 185 

different (p = 0.477) between the trials with the different percentage intensities (Table 1) 186 

and demonstrated low variability (coefficient of variation 2.5 (1.2) %). The resting stimulus 187 

force at maximal intensity was 302 (62) N (Figure 1).  188 

Table 1 189 

Figure 1 190 

Muscle activation at maximal stimulation intensity was 91.6 (2.5)%. Percentage intensities 191 

of 90-50% yielded similar muscle activation values compared to the maximal intensity (p > 192 

0.05). However, the percentage intensities of 40-10% produced significantly different 193 

muscle activation values (p < 0.05) than maximal intensity (Figure 2). Therefore, 50% of 194 

maximal intensity was the mean lowest percentage intensity yielding a valid ITT outcome 195 

(muscle activation 88.8 (3.9) %).However, visual inspection of individual graphs indicated 196 

that in some subjects a valid ITT outcome  could be obtained with intensities around  30% 197 

of maximal intensity.    198 

Figure 2 199 

Figure 3 200 

VAS indicated that pain at percentage intensities of 90-70% was similar to the pain 201 

experienced at maximal intensity. However, pain at 60-10% stimulation intensities was 202 

significantly lower (p < 0.05). The pain scores were reduced from 6.6 (1.5) cm at maximal 203 

intensity to 3.7 (1.5) cm at 60% percentage intensity (Table 1).  204 

 205 

206 
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Discussion 207 

The aim of the study was to identify the minimum stimulation intensity that will yield valid 208 

muscle activation values, similar to those obtained with maximal intensity. We found that 209 

stimulation at 50% of maximal intensity is sufficient to obtain a valid ITT outcome. The 210 

discomfort experienced by the subjects at this stimulation intensity was also reduced from 211 

severe to moderate compared to maximal stimulation. 212 

Many previous authors have used what they term “maximal” stimulation intensities in an 213 

attempt to activate the largest portion of muscle possible and avoid erroneous ITT estimates 214 

[Behm et al, 2001; de Ruiter et al, 2004; Kent-Braun and Le-Blanc, 1996; Knight and 215 

Kamen, 2001; Kooistra et al, 2007; Morse et al, 2008; O’Brien et al, 2008; Reeves et al, 216 

2003]. However, a comparison between percutaneous muscle stimulation, which only 217 

activates a proportion of the muscle, and nerve stimulation, which activates all the motor 218 

units [Rutherford et al, 1986], showed no differences in the ITT outcome between the two 219 

techniques, suggesting that valid results can be achieved as long as the portion of the 220 

muscle activated at rest and during contraction remains the same. The findings of the 221 

current study support those of Rutherford et al [1986], indicating that reliable ITT results 222 

can be obtained even when activating relatively small portions of the quadriceps muscle.  223 

The mechanisms underlying the pattern of the ITT and the results obtained in the present 224 

study can be better understood by considering the changes with percentage intensity and the 225 

magnitude of the corresponding mean values of the superimposed and resting doublets 226 

independently (Figure 1). At lower stimulation intensities (10% and 20% of maximal 227 

intensity), a very small proportion of inactive muscle would become activated by the 228 

superimposed doublet. Although this stimulation intensity suffices to produce a detectable 229 
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force increment when the doublet is applied at rest, it is difficult to detect the superimposed 230 

doublet since any force increment is small in relation to the oscillation of the voluntary 231 

force trace.  This results in zero SI/R ratios and a misleading conclusion of complete 232 

activation. At 30% and 40% of maximal intensity a larger portion of muscle becomes 233 

activated and the magnitude of the superimposed doublet increases rapidly. Following that 234 

point the stimulation intensity reaches a level that is sufficiently high to induce both 235 

detectable increases in the superimposed stimulus as well as sufficiently stretch the series 236 

elastic components at rest, resulting in a constant SI/R ratio and, thus, in valid ITT results. 237 

Maximal stimulation is an imprecise term since it can vary with the type of stimulator, the 238 

type, size and position of the electrodes as well as the conductivity of the skin and 239 

subcutaneous fat and the size of the muscle.  It is therefore more useful to define the 240 

minimum requirements for testing activation in terms of the force generated by the 241 

electrical stimulation as a percentage of the likely MVC force.  In our subjects the mean 242 

90% of MVC was 635 N and reliable estimates of ITT were obtained with a percentage 243 

intensity that generated a mean force of 181 N in the resting muscle.  Consequently, we 244 

recommend that the stimulation intensity should be set to generate at least one third of the 245 

estimated MVC.  246 

A concern with electrical stimulation is sometimes the discomfort experienced by subjects 247 

[Behm et al, 2001; Chae et al, 1998; Delitto et al, 1992; Han et al, 2006; Miller et al, 2003; 248 

Valli et al, 2002].   Two studies have indicated high levels of discomfort in older subjects 249 

[Valli et al, 2003] and patients [Chae et al, 1998], subject groups where it is particularly 250 

important to assess the ability to activate their muscles [Bampouras et al, 2006; Chae et al, 251 

1998]. Subject discomfort was investigated by Miller et al [2003] by inducing pulse trains 252 
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of different lengths and durations. Less discomfort was reported with shorter pulse 253 

durations without a change in the activation results. Suggestions were made for more 254 

research into protocols that can assess muscle activation reliably, with reduced discomfort 255 

of the subjects. The present findings suggest that discomfort was significantly reduced at 256 

percentage intensities below 60%. The average difference in VAS scores was reduced by 257 

2.9 cm. Previous studies suggested 2 cm as the minimum clinically significant change when 258 

using VAS [DeLoach et al, 1998]. Therefore, our results indicate a reduction from severe 259 

pain to moderate pain, which is important because it widens the applicability of ITT 260 

assessment to subjects who are less tolerant of high intensity stimulation.   261 

Another potential problem with the application of transcutaneous electrical stimulation for 262 

assessing activation capacity using the ITT method is co-contraction of: a) nearby agonist 263 

muscles due to current spread [Taylor, 2009], b) antagonist muscles due to activation of 264 

cutaneous receptors [Belanger and McComas, 1981; Poumarat et al, 1991] and c) 265 

antagonist muscles due to discomfort [Paillard et al, 2005]. The latter effect will be less of a 266 

problem with submaximal stimulation. Nevertheless, electromyography can be used to 267 

detect any artifactual co-contractions from non-studied muscles and make appropriate 268 

relevant adjustments (e.g., alter size or position of stimulating electrodes).   269 

In conclusion, this study shows that maximal stimulation is not necessary to obtain a valid 270 

ITT outcome. Our results for the knee extensor muscles of healthy young adults show that 271 

valid ITT results for contractions at 90% of MVC can be obtained with just 50% of 272 

maximal intensity. Practically, a more useful guide is that the force generated by 273 

stimulation of the resting muscle should be approximately one third of the anticipated MVC 274 

force.   275 
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Figure captions 

 

Figure 1. Mean superimposed (left y axis) and resting (right y axis) doublet magnitudes 

across all percentage intensities. Vertical bars denote SD.   

 

Figure 2. Mean muscle activation values across all percentage intensities. Vertical bars 

denote SD. * indicates significant difference (P<0.05) compared to maximal intensity.  

 

Figure 3. Muscle activation values across all percentage intensities for a single subject, 

showing a plateau in muscle activation occurring below 30% percentage intensity. 
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Figure 3.  
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Tables  

Table 1. 90% of MVC force values and VAS pain scores for each percentage intensity. 

Data are presented as mean (SD). * indicates significant difference between a given 

percentage intensity and the maximal intensity.  

 

 10 20 30 40 50 60 70 80 90 100 

90% MVC (N) 639 

(102)* 

643 

(110)* 

631 

(119)* 

631 

(116)* 

628 

(114) 

641 

(108) 

626 

(106) 

639 

(108) 

634 

(115) 

636 

(117) 

VAS (cm) 1.5 

(1.9)* 

1.4 

(1.3)* 

1.6 

(1.2)* 

3.0 

(1.7)* 

4.0 

(2.2)* 

3.7 

(1.5)* 

4.4 

(1.7) 

4.9 

(2.3) 

6.4 

(2.5) 

6.6 

(1.5) 


