

Kotre, John ORCID: https://orcid.org/0000-0002-1890-1160 (2023) Towards quantitative justification. In: British Institute of Radiology IR(ME)R Update, 28 September 2023, London, UK. (Unpublished)

Downloaded from: http://insight.cumbria.ac.uk/id/eprint/7481/

Usage of any items from the University of Cumbria's institutional repository 'Insight' must conform to the following fair usage guidelines.

Any item and its associated metadata held in the University of Cumbria's institutional repository Insight (unless stated otherwise on the metadata record) may be copied, displayed or performed, and stored in line with the JISC fair dealing guidelines (available <u>here</u>) for educational and not-for-profit activities

provided that

- the authors, title and full bibliographic details of the item are cited clearly when any part of the work is referred to verbally or in the written form
 - a hyperlink/URL to the original Insight record of that item is included in any citations of the work
- the content is not changed in any way
- all files required for usage of the item are kept together with the main item file.

You may not

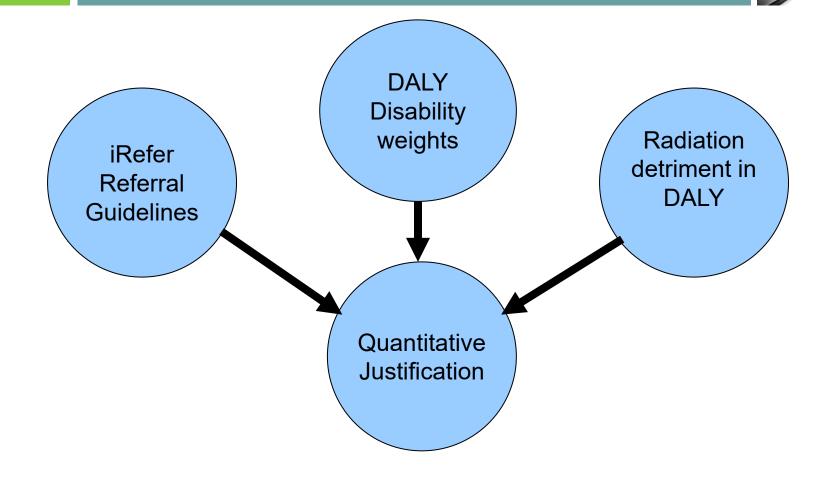
- sell any part of an item
- refer to any part of an item without citation
- amend any item or contextualise it in a way that will impugn the creator's reputation
- remove or alter the copyright statement on an item.

The full policy can be found <u>here</u>.

Alternatively contact the University of Cumbria Repository Editor by emailing insight@cumbria.ac.uk.

Towards Quantitative Justification

Dr John Kotre Visiting Research Fellow University of Cumbria john.kotre@cumbria.ac.uk



Declarations:

Winner of BIR/GE Radiation Safety Travel Award 2023

Disability-adjusted life years

The disability-adjusted life year (DALY) is a measure of overall disease burden adopted by WHO. It quantifies the impact of a disease on a population by combining mortality and morbidity into a single metric:

DALY = YLL + YLD = Nm x LE + Ni x DW x YD

- DALY Disability-adjusted life year
- YLL Years of life lost due to premature mortality (year)
- YLD Years lived with a disability (year)
- Nm Number of deaths (person)
- LE Standard life expectancy at age of death (year/person)
- Ni Number of incident cases (person)
- DW Disability Weight (DALY/year)
- YD Mean years of disability (year/person)

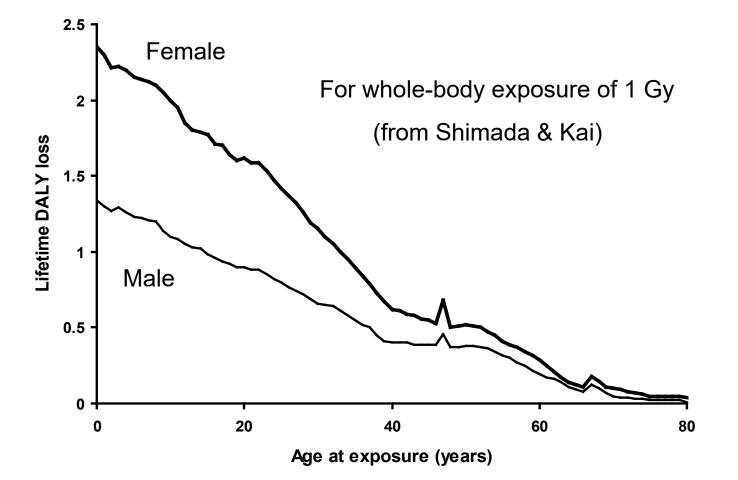
Disability-adjusted life years

For an individual experiencing a period of non-fatal disease, the loss of years of good health in DALY is made up just of the YLD term for the individual:

DALY_(individual, non-fatal) = DW x YD

- DALY Disability-adjusted life year
- DW Disability Weight (DALY/year)
- YD Years of disability (years)

WHO health state	Disability Weight	iRefer code	iRefer disease description	Indicated examination(s)	
Dental caries (symptomatic)	0.01	(none)		Intra-oral dental XR	
Stroke: long term consequences, mild	0.019	N02	TIA	CT head	
Fractured foot	0.026	T24	Foot injury	XR foot	
Fractured clavicle/scapula/humerus	0.035	T19	Shoulder injury	XR orthogonal views	
Dislocation of shoulder	0.062	T19	Shoulder injury	XR orthogonal views	
Face bone	0.067	T06	Middle-third facial injury	XR facial bones	
Stroke: long term consequences, moderate	0.070	N01	Acute Stroke	CT head	
Traumatic brain injury (minor)	0.094	T01	Head injury	CT head	
Fractured sternum/ribs	0.103	T31	Sternal injury	CXR PA and lateral	
Hearing loss: severe	0.167	E01	Conductive hearing loss and other	CT head	
			middle ear symptoms		
Concussion	0.214	T01	Head injury	CT head	
Cancer diagnosis and therapy	0.288	CA06	Lung cancer diagnosis	CXR and CT chest	
Fractured neck of femur	0.402	T16	Pelvic injury with suspected femoral	XR pelvis and lateral hip	
	0.400	~~~ 1	neck fracture		
Acute MI days 1-2	0.432	CC01	Acute chest pain: ST elevation	CXR and Catheter coronary	
	0.451	G 1 9 9	myocardial infarction (STEMI)	angiography & intervention	
Cancer metastatic	0.451	CA23	Metastatic malignant disease of	CXR and possible CT chest,	
			unknown primary origin: diagnosis	abdomen, pelvis plus possible PET-CT	

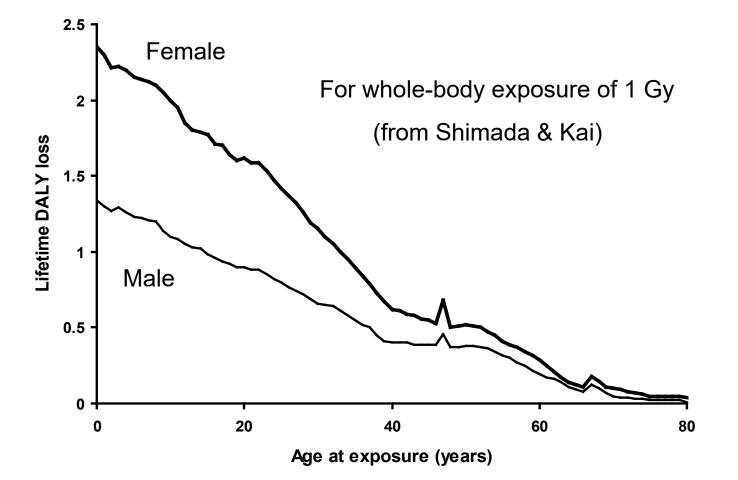

K Shimada and M Kai, 2015

"ICRP defined the detriment in Publication 60.....However, the detriment has the disadvantage that it can neither be appropriately interpreted nor used."

In their paper *Calculating disability-adjusted life years (DALY) as a measure of excess cancer risk following radiation exposure*, Shimada and Kai calculate revised weighting factors for effective dose and give average lifetime detriment factors for the Japanese population of 0.84 DALY lost per 1 Gy whole-body exposure for males and 1.34 lost per 1 Gy for females.

Vaillant et al separately calculated a loss of 1 DALY per person per Sv for a combined male and female non-Japanese population.

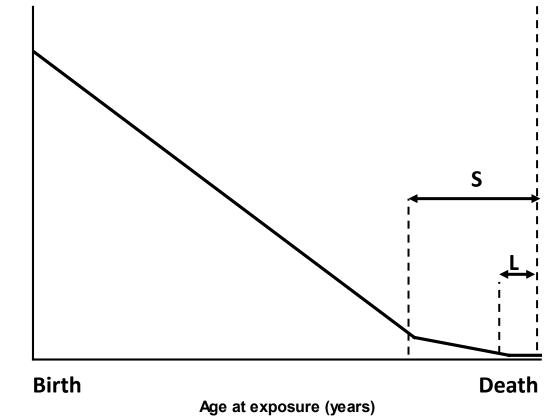
Life-tables and spreadsheets

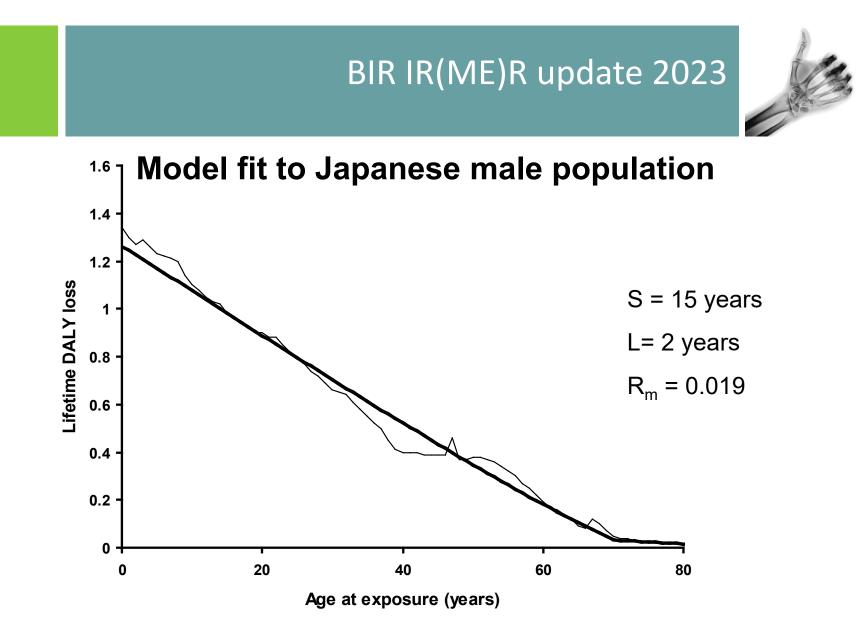

Using Japanese life-tables we can work out the net life-time DALY gain and loss using the constant 0.84 and 1.34 DALY loss per Sv.

Using the graphs of DALY loss at year of exposure we can perhaps get a better result. Need to know age at exposure in both methods.

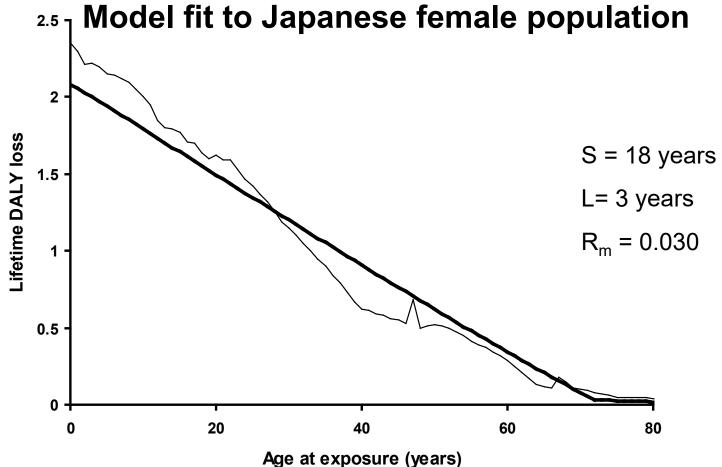
The problem with these approaches is it all depends on population statistics not the outcome of the individual.

Let's take another look at those graphs.....

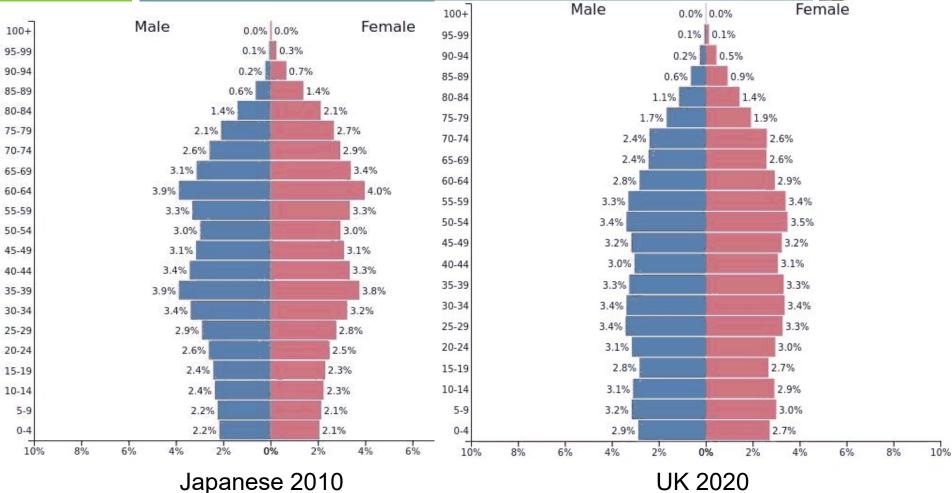




A Linear Model for the individual?



Lifetime DALY loss



A disability weight due to exposure to ionising radiation, DW_R , can now be defined as:

$DW_R = R_{m/f} \times E$

- DW_R Disability Weight due to exposure from ionising radiation
- R_{m/f} DALY lost per year due to exposure to 1 Sv of ionising radiation (male or female)
- E Effective dose defined in terms of DALY detriment (Sv)

From the curve fits, $R_m = 0.019$ and $R_f = 0.030$ for Japanese population Multiplying by E retains linear-no-threshold philosophy Age > approximately 70, DW_R value too high. Does this matter?

Proposal for a Justification Factor, J

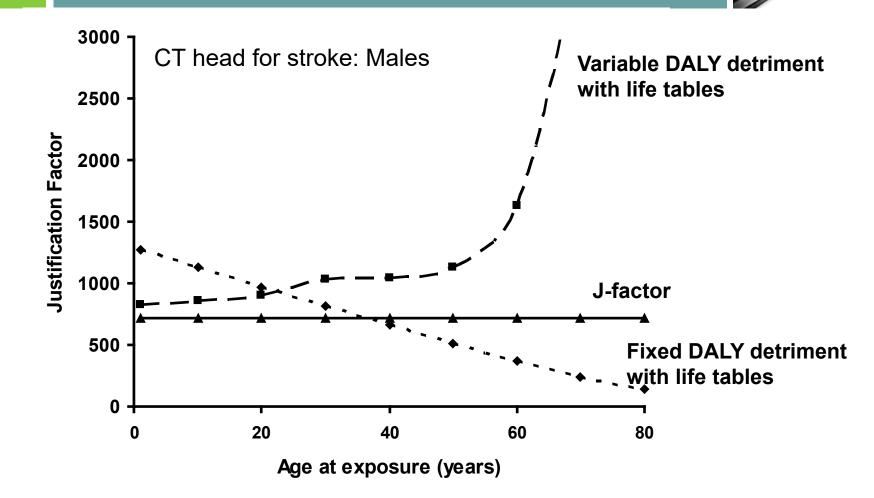
Instead of attempting to sum over a lifetime, consider a justification factor defined in terms of rates of change:

Justification factor = Rate of change of benefit following diagnosis & treatment Rate of change of radiation detriment from diagnosis (& treatment)

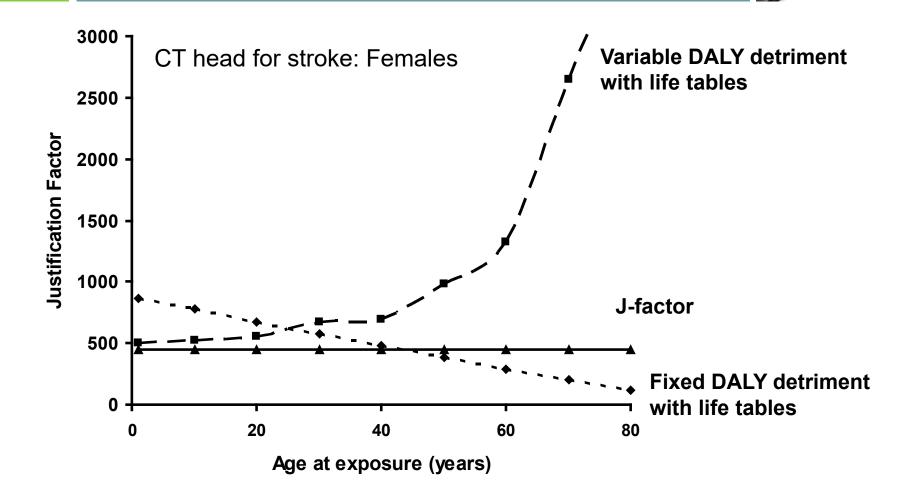
These rates of change are all Disability Weights (DALY/year)

Dimensionless and independent of age and subsequent related or unrelated death No consideration of missed diagnosis, failed treatment or self healing.

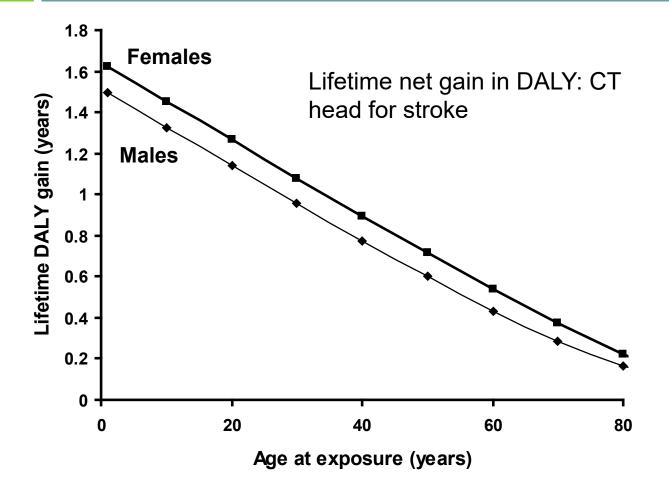
Proposal for a Justification Factor, J

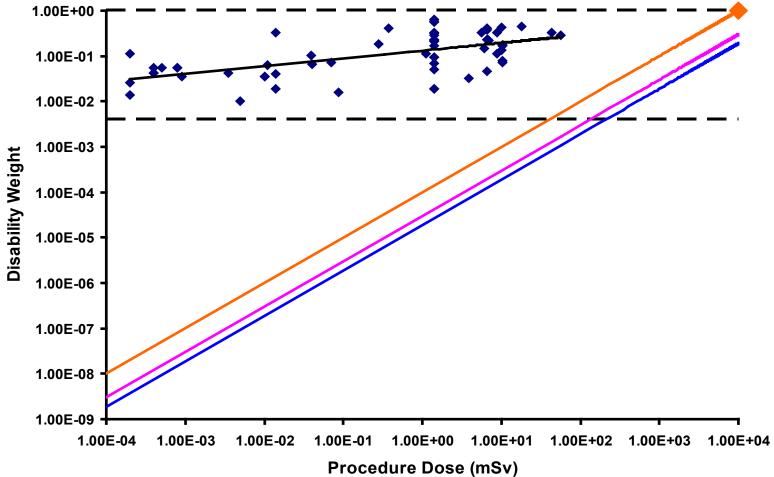

This justification factor, J, can be defined as:

$J = (DW_B - DW_A) / DW_R$


- J Justification factor
- DW_B Disability weight of disease being diagnosed before treatment
- DW_A Residual disability weight of disease after treatment
- DW_R Disability weight due to radiation exposure

The term $(DW_B - DW_A)$ quantifies the change in disability weight carried by the individual before and after treatment if the residual DW_A is known. For a successful treatment and restoration to full health DW_A will be zero and this is the assumption used in the results given below.





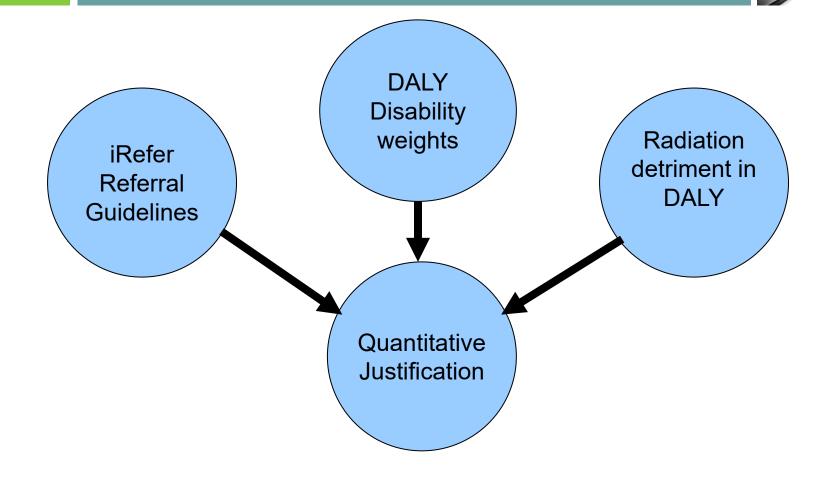
WHO health state	Indicated examinations	Disability Weight	Typical Effective Dose (mSv)	Justification factor, J Male	Justification factor, J Female
Dental caries (symptomatic)	Intra-oral dental XR	0.01	0.005	105000	67000
Stroke: long term consequences, mild	CT head	0.019	1.4	714	452
Fractured foot	XR foot	0.026	0.0002	6840000	4330000
Fractured clavicle/scapula/humerus	XR orthogonal views	0.035	0.011	168000	106000
Dislocation of shoulder	XR orthogonal views	0.062	0.011	297000	188000
Face bone	XR facial bones	0.067	0.04	88100	55800
Stroke: long term consequences,	CT head	0.070	1.4	2630	1670
moderate	'				
Traumatic brain injury (minor)	CT head	0.094	1.4	3530	2240
Fractured sternum/ribs	CXR PA and lateral	0.103	0.039	139000	88000
Hearing loss: severe	CT head	0.167	1.4	6280	3980
Concussion	CT head	0.214	1.4	8050	5100
Cancer diagnosis and therapy	CXR and CT chest plus planning CT and 10 thorax cone-beam CT	0.288	57	266	168
Fractured neck of femur	XR pelvis and lateral hip	0.402	0.37	57200	36200
Acute MI days 1-2	1 1		10	2270	1440
2	angiography & intervention				
Cancer metastatic	CXR and possible CT chest,	0.451	18	1320	835
	abdomen, pelvis plus possible PET-CT				

Justification Factor – fag packet version

This justification factor, J, still defined as:

 $J = (DW_B - DW_A) / DW_R$

DW_B Disability weight of disease being diagnosed before treatment
DW_A Residual disability weight of disease after treatment
DW_R Disability weight due to radiation exposure


 DW_R just based on LD_{100} value (~10 Sv) at DW = 1 (death) and linear no threshold

$DW_{R} = E / LD_{100}$

E Procedure effective dose (Sv)

Has advantage of using present (ICRP 103) definition of effective dose throughout and general population but depends on (limited) precision of LD_{100} value. Gives J factors 4.3 times smaller than version based on DALY loss rates of change but still >>1.

References

World Health Organization 2020. WHO estimates and data sources for global burden of disease estimates 2000-2019. Technical paper WHO/DDI/DNA/GHE/2020.3 https://cdn.who.int/media/docs/default-source/gho-documents/global-health-estimates/ghe2019_daly-methods.pdf

Shimada K and Kai M 2015. Calculating disability-adjusted life years (DALY) as a measure of excess cancer risk following radiation exposure. *J. Radiol. Prot.* **35** 763-775

Vaillant L, Kai M and Hauptmann M 2021. Radiation detriment methodology: review of current non-radiation-related parameters and perspectives. ICRP Future of Radiological Protection Digital Workshop https://www.icrp.org/page.asp?id=549

