
Kozhin, Foma (2022) The Ising model as a discovery tool in cognitive sciences.
PsyArXiv . (Submitted to Publisher) 

Downloaded from: https://insight.cumbria.ac.uk/id/eprint/6850/

Usage of  any items from the University  of  Cumbria’s institutional repository ‘Insight’ must  conform to the
following fair usage guidelines.

Any item and its associated metadata held in the University of Cumbria’s institutional repository Insight (unless
stated otherwise on the metadata record) may be copied, displayed or performed, and stored in line with the JISC
fair dealing guidelines (available here) for educational and not-for-profit activities

provided that

• the authors, title and full bibliographic details of the item are cited clearly when any part
of the work is referred to verbally or in the written form 

• a hyperlink/URL to the original Insight record of that item is included in any citations of the work

• the content is not changed in any way

• all files required for usage of the item are kept together with the main item file.

You may not

• sell any part of an item

• refer to any part of an item without citation

• amend any item or contextualise it in a way that will impugn the creator’s reputation

• remove or alter the copyright statement on an item.

The full policy can be found here. 
Alternatively contact the University of Cumbria Repository Editor by emailing insight@cumbria.ac.uk.

http://www.ukoln.ac.uk/services/elib/papers/pa/fair/
mailto:insight@cumbria.ac.uk
http://insight.cumbria.ac.uk/legal.html#section5


The Ising model as a discovery tool in cognitive sciences

Foma Kozhin

Institute of Science and Environment. University of Cumbria.

For  decades,  physicists  have  pursued  the  use  ideas  from  statistical  mechanics  to  capture  the

collective phenomena of life. Biological systems have a subtle structure that is not described neither

by ordered crystals nor disordered gases. Moreover, these states are far-from-equilibrium, being

maintained by a constant flow of energy and matter through the system. There are special states for

a  functional  living  system and,  at  the  same time,  their  activity  cannot  rely  on  fine-tuning the

parameters  of  the  system.  Of  the  many  ideas  originated  in  statistical  physics  that  have  been

suggested to characterize these states, perhaps the most suggestive and speculative is the idea of

self-organized criticality. The theory of self-organized criticality originated in models of inanimate

objects (sand mountains, earthquakes, etc.)  [1], [2], but then the theory was to include biological

systems through the analysis of simple toy models [3]. A simple model the evolution of interacting

species can self-organize into a critical state where the quiescent period is interrupted by avalanches

of all sizes [4], describing a behavior similar to the idea of punctuated equilibrium in evolution [5].

Similarly,  the  brain  has  been suggested  to  be in  a  self-organized  critical  state  at  the  boundary

between being nearly dead and becoming completely epileptic [6]. 

Currently,  some of the early ideas don't seem correct (for example,  real sand-piles behave very

differently from the model). However, the idea of biological systems operating near a critical point

remains interesting. Over the last decade or so, there have been significant advances in experimental

research on biological networks, suggesting a very different route to the use of ideas from statistical

physics. Monitoring the activity or state of individual elements in a network has long been the

traditional  method,  but  now it  is  possible  to  monitor  many elements  in  parallel.  Technology is

unique  to  each class  of  system.  Large  arrays  of  electrodes  recording in  parallel  from multiple

neurons [7], [8], high-throughput sequences probing large populations of amino acid sequences [9],

accurate  imaging to track individual  animals  in large groups  [10],  [11] — And of course each

measurement has its  own limitations.  Nonetheless,  as these new experiments became available,

several groups tried to build statistical physics models directly from the data. These notable features

Analysis scattered at many levels of the organization is the emergence of signatures of importance.

Twenty-five years ago there was a grand theory that had little relevance to the data, but now there

are many isolated arguments about specific experiments that suggest similar conclusions. Our goal

here is to put together these analyzes. Perhaps it rekindles expectations for a more general theory.



The Ising model is a mathematical model of physical ferromagnetic material, used to study phase

transitions, such as the transition from a ferromagnetic to a paramagnetic state in a material [12]. It

can also be used to study the ordering of spins in a material, and to model spin glasses. The Ising

model has been used to study the coordination of neural activity in the brain and to model learning

and memory retrieval in neural networks  [13]. In this contribution we will explore how the Ising

model can connect different physical phenomena with the cognitive sciences.

Self-organized  criticality  (SOC)  is  a  concept  in  physics  and  systems  theory  where  a  system

spontaneously evolves towards a critical  state.  In a  critical  state,  the system is  "at  the edge of

chaos",  meaning  that  it  is  highly  sensitive  to  small  perturbations  and  can  exhibit  large-scale

fluctuations  [1],  [2].  SOC is  thought  to  be  a  mechanism by which  complex systems can  self-

organize and evolve. Many natural systems are thought to exhibit SOC, including earthquakes, solar

flares,  and  forest  fires.  The  Ising  model  has  been  a  canonical  example  to  study  criticality  in

biological and neural systems. Using inverse learning methods to model neural activity using the

Ising model, it has been suggested that the brain operates near a critical point, and that this could be

a mechanism for the brain to self organize and evolve [14]. These methods have been later extended

to  broader  classes  of  biological  systems  [15]–[17] and larger  neural  systems  [18].  In  addition,

simple  algorithms  have  shown  how  robotic  agents  can  be  driven  to  be  near  critical  points

spontaneously generating a diversity of complex behaviours, suggesting that criticality might be a

simple mechanism to generate a diverse range of interactions with the environment [19].

Integrated information theory is a theory of consciousness developed by Giulio Tononi  [20]. The

theory is based on the idea that consciousness arises from the integration of information. The theory

posits  that  consciousness is  a  measure of the amount  of information that is  integrated across a

system [21], [22]. The more information that is integrated, the more conscious the system is. The

theory has been used to explain a variety of phenomena, including the binding problem, the unity of

consciousness, and the relationship between consciousness and the brain. Generally, the theory is

difficult to explore in large systems due to its computational complexity. However, studies using the

Ising model  [23], [24] show that integrated information is maximized at critical phase transitions,

suggesting a connection between self-organized criticality and integrated information in the brain.

Nonequilibrium thermodynamics is a branch of thermodynamics that deals with systems that are not

in equilibrium. The field is concerned with the behaviour of systems that are far from equilibrium,

such as those that are undergoing a chemical reaction or are subject to a strong external force.

Nonequilibrium thermodynamics is a relatively new field, and it is still being developed. Some of



the key concepts in the field include entropy production, irreversibility, and dissipative structures

[25].  Nonequilibrium thermodynamics  has  been  used  to  study  a  variety  of  systems,  including

chemical reactions, biological systems, and economic systems. Specially, it has been shown that

irreversibility is a signature of the level of conscious activity in cognitive systems [26]. While the

classical Ising model is a model of equilibrium thermodynamics, extensions of the model include

irreversible  dynamics  with  asymmetric  connections  [27].  Recent  research  shows  that  the  Ising

model  can  maximize  its  irreversibility  when  it  is  near  a  critical  point  [28],  [29],  suggesting  a

connection between nonequilibrium properties of neural networks and the capacity to self organize

near critical points.

In conclusion,  the Ising  model  shows the  potential  to  connect  different  properties  of  cognitive

systems  with  concepts  from  physics,  exemplifying  how  new  mathematical  and  statistical

descriptions  could  be  useful  in  capturing  mental  properties  that  are  usually  hard  to  trace

analytically.
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