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Abstract

Objective: Transforming growth factor beta (TGFh)-activated kinase 1 (TAK1) is a MAP kinase kinase kinase involved in numerous

signalling pathways and is strongly implicated in cardiac hypertrophy and heart failure. TGFh is also associated with hypertension and heart

disease, and evidence suggests that TGFh1 and TAK1 act together in a cardiac stress signalling pathway. Canonical TGFh signalling is

mediated through Smad transcription factors, but TGFh can also rapidly activate TAK1. The activation of the Smad cascade is well

characterised, but little is known about how TAK1 is activated in response to TGFh, and no direct link between any MAPK kinase pathway

and the TGFh receptors has yet been established. Since TAK1 is activated by TGFh within 1 min in cardiomyocytes, we hypothesised there

might be a direct interaction between TAK1 and one of the TGFh receptors.

Methods: We used a combination of in vitro binding assays and co-immunoprecipitation (IP) experiments to investigate whether TAK1

interacted with the type I (ALK1 or ALK5) or type II (TBRII) TGFh receptors. Interactions between endogenous proteins were tested using

mouse myoblast and rat cardiomyocyte cells.

Results: Immunoprecipitation and in vitro binding assays show that TAK1 binds directly to TBRII. Precipitation of endogenous TAK1

protein in rat cardiomyocytes shows that, in addition to a direct association with TBRII, it also interacts indirectly with ALK5.

Conclusions: We describe a novel and specific interaction between TAK1 and TBRII which, for the first time, directly links TAK1 to the

TGFh signalling cascade and potentially explains how TGFh signalling in cardiomyocytes mediates a hypertrophic response.

D 2005 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The molecular pathways that couple increased haemody-

namic load to myocardial hypertrophy, cardiomyocyte

apoptosis and subsequent heart failure are complex and

represent an important challenge in current cardiovascular

medicine [1–4]. Recently, an important cytokine, trans-

forming growth factor h1 (TGFh1), has been shown to be

pivotal in mediating the cardiac hypertrophic response

induced by angiotensin II [5–8]. TGFh1 expression is
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stimulated by Angiotensin II and it becomes highly

expressed in hypertrophic myocardium, where it regulates

a wide range of cellular functions including proliferation,

differentiation, apoptosis and fibrosis [9,10].

To promote signalling, TGFh first binds to the TGFh
type II receptor (TBRII) at the cell surface stimulating it to

activate the TGFh type I receptor (TBRI), which in turn

phosphorylates downstream Smad proteins. These activat-

ed Smad complexes translocate to the nucleus where they

regulate the transcription of TGFh target genes [11,12]. In

addition to the canonical TGFh signalling pathway, TGFh
has been shown to rapidly activate TGFh activated kinase

1 (TAK1), a MAP kinase kinase kinase [13]. In cardio-

myocytes, TAK1 is activated within a minute of exposure
69 (2006) 432 – 439
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Fig. 1. TAK1 immunoprecipitates with the Type II TGFh receptor. The two

upper panels show immunoblot (IB) analysis of 293T cell lysates

expressing Flag-TAK1 and HA-ALK1, HA-ALK5 (type I TGFh receptors)

or HA-TBRII (Type II TGFh receptor), as indicated. Immunoprecipitation

(IP) of TAK1 with anti-Flag antibody followed by immunoblot analysis

with anti-HA antibody (3rd panel) detects TBRII but not ALK1 or ALK5.

Reciprocal immunoprecipitation of the TGFh receptors using anti-HA

antibody, followed by immunoblot analysis with anti-Flag (bottom panel),

detects TAK1 protein only in the TBRII precipitate.

Fig. 2. (A) Cellular co-localisation of TAK1 and TBRII in Cos7 cells. Immunoflu

TBRII proteins. Cells were immunostained with (i) anti-TAK1 antibody and (ii

localisation in yellow (nuclei were detected with DAPI staining). Arrows indicate a

TAK1 and the cytoplasmic domain of TGFh receptor proteins, TBRII and endoglin

vitro transcription and translation and mixed with either glutathione S-transferase

binding assay. (i) Autoradiograph shows that 35S-TAK1 in the binding assay inpu

Endoglin. (ii) Coomassie staining of GST, GST–Endoglin fusion protein and G

fusion proteins were present in the binding assays.
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to TGFh1 [13,14] and there is clear evidence that TAK1 is

also an important regulator of the hypertrophic response.

Firstly, TAK1 is activated in cardiomyocytes following

pressure overload generated by aortic constriction; second-

ly, cardiac specific over-expression of activated TAK1 in a

transgenic mouse leads to cardiac hypertrophy and heart

failure; and thirdly, dominant negative TAK1 protein can

inhibit TGFh-induced hypertrophic events in mouse

cardiomyocytes and fibroblasts [14,15]. This particularly

illustrates the importance of TAK1 as a mediator of cardiac

TGFh signalling, although TAK1 also interacts with the

BMP and IL-1 signalling pathways and is arguably a

central protein in the cellular signalling network [16–18].

Active TAK1 phosphorylates MKK3 and/or MKK6, which

in turn phosphorylate p38. Increased p38 activity is

strongly associated with typical hypertrophic responses

including inflammation, fibroblast proliferation, hypertro-

phy and apoptosis [19–22].

The mechanism of intracellular TAK1 activation by

extracellular TGFh stimulation is not well understood.
orescence microscopy of Cos7 cells co-expressing recombinant TAK1 and

) anti-TBRII antibody. The merged images (iii and iv) show areas of co-

reas of co-localisation at the cell membrane. (B) In vitro binding assay with

(a Type III TGFh receptor). 35S-labelled TAK1 protein was generated by in

(GST) alone, GST–Endoglin fusion protein or GST–TBRII in an in vitro

t fraction (IF) is seen after pull down (PD) of GST–TBRII, but not GST–

ST–TBRII fusion protein after SDS-PAGE, confirmed that GST and GST

c.oup.com
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Fig. 3. Immunoprecipitation of TBRII with three different isoforms of

TAK1. (A) Immunoblot analysis of Cos7 cell lysates expressing three

TAK1 isoforms (A, B and D) and TBRII. TBRII is detected by

immunoblotting after immunoprecipitation of all three TAK1 isoforms.

(*)=Non-specific IgG band. (B) Diagrammatic representation of the three

TAK1 isoforms used.
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Early work showed that TAK1 is activated by TAK1-

binding protein (TAB1), which is required for normal

cardiac development [23,24], but this does not explain the

rapid activation response to extracellular TGFh. Here we

describe a specific interaction between TAK1 and the type

II TGFh receptor (TBRII), which directly links TAK1 to

the primary step of the TGFh signalling cascade. This

work is important not only as the first demonstration of a

direct connection between a TGFh receptor and TAK1 but

also because of its potential importance in the early

signalling events leading to cardiac hypertrophy and heart

failure.
Fig. 4. TBRII and TAK1 interact specifically. Immunoblot analysis of Cos7

cell lysates co-expressing TBRII with either HA-MLTKh or HA-TAK1

shows that TBRII is not detectable after immunoprecipitation of MLTKh,
but is detectable after immunoprecipitation of TAK1. (*)=Non-specific IgG

band.

 January 2023
2. Methods

2.1. Plasmids and antibodies

HA-TAK1 and FLAG-TAK1 were cloned into pcDNA3.1+

(Invitrogen). The following plasmids were kind gifts:

pCMV.HA-ALK1, pCMV.HA-ALK5, and pcDNA.HA-

TBRII (P. ten Dijke), pCMV.myc-TAB1 (T. Ishitani),

pGEX4T.mTBRII (P. Eyers), pXpressTAK1A, pXpres-

sTAK1B and pXpressTAK1D (F. Guesdon), pcDL.HA-

MLTKh (E. Nishida). TAK1 was cloned into vector pFTX9

[25] to generate pFTX9.mTAK1 for in vitro transcription/

translation. pGEX2T.mEndoglin GST-fusion plasmid was

generated by PCR cloning of Endoglin cytoplasmic region

cDNA into pGEX2T (Pharmacia). Primary antibodies were
anti-TAK1 (sc-7967), anti-TBRII (sc-220) and anti-ALK5

(sc-398) antibodies (Santa Cruz), anti-Myc antibody (On-

cogene Research Products), 3F10 anti-HA antibody

(Roche), M2 anti-Flag antibody (Sigma) and anti-Xpress

antibody (Invitrogen). Secondary antibodies were con-

jugated to HRP (DAKO) or FITC/Texas Red (Vector

Laboratories).

2.2. Cell culture and transient transfections

Cos7 (African green monkey kidney) and 293T (Human

embryonal kidney) cells were used for transfection studies

and were cultured in Dulbecco’s Modified Eagles Medium

(DMEM) supplemented with 10% Foetal Calf Serum (FCS)

and 4 mM glutamine. Cells were transfected with 1 Ag of

plasmid using FuGene6 (Roche) and incubated for 24 to 48

h before appropriate treatment.

To examine endogenous protein interactions, C2C12

(mouse muscle myoblast) cells were cultured in DMEM

supplemented with 15% FCS and 4 mM glutamine, whilst

H9C2 (rat cardiomyocyte) cells were cultured in high

glucose (4500 mg/ml) DMEM supplemented with 10%

FCS and 4 mM glutamine.

2.3. Immunofluorescence microscopy

Cos7 cells were co-transfected with pcDNA3.1+FLAG-

TAK1 and pcDNA.HA-TBRII plasmids and fixed in 100%

methanol after 24 h. Cells were permeabilised in PBS/0.5%

Triton X-100 for 30 min at 4 -C, blocked in PBS/0.1%

Tween-20/10% FCS for 30 min at 37 -C and treated with

anti-TAK1 antibody for 1 h at 37 -C before washing in PBS/

0.1% Tween-20 and incubation with FITC-conjugated

secondary antibody for 1 h (37 -C). For double staining,

cells were washed thoroughly again and incubated with goat

polyclonal anti-TBRII primary antibody, followed by Texas
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Red-conjugated secondary antibody, as before. Slides were

mounted in Vectashield with DAPI (Vector laboratories).

Images were acquired using a Zeiss Axioplan II microscope

and Axiovision software.

2.4. Preparation of cell extracts and GST fusion proteins

To prepare protein extracts for immunoprecipitation,

cells were harvested in ice-cold NTT lysis buffer (100

mM NaCl, 50 mM Tris–HCl pH 8, 1% Triton X-100, 10

mM NaF, +protease inhibitor cocktail [bestatin, leupeptin,

pepstatin A, aprotinin, E64; Sigma]) and homogenized

through a 25 Gauge syringe needle. Cell debris was

removed by microcentrifugation and supernatant was used

for immunoprecipitation experiments. GST, GST–Endoglin

and GST–TBRII fusion proteins were purified from BL21

Escherichia coli extracts using Glutathione Sepharose 4B

resin followed by elution with 10 mM reduced glutathione,

50 mM Tris pH 8.

2.5. Immunoblotting and immunoprecipitation

For immunoblot analysis, protein was transferred to

nitrocellulose membrane, blocked with PBS/0.3% Tween-

20/3% skimmed milk before incubation with primary

antibody. Washed membranes were incubated with HRP-

conjugated secondary antibody and proteins visualised

using ECL. For immunoprecipitation, cell lysates were

incubated for 2 to 12 h at 4 -C with the indicated antibody.

IgG was precipitated by incubation with sepharose-conju-

gated protein A (Sigma) for 1 to 2 h at 4 -C followed by

microcentrifugation. The immunoprecipitate was washed in

high salt NTT buffer (400 mM NaCl, 50 mM Tris–HCl pH

8.0, 1% Triton X-100, 10 mM NaF, +protease inhibitor
Fig. 5. Endogenous TBRII and TAK1 co-immunoprecipitate. (A) Immunobl

immunoprecipitation of endogenous TAK1 and (ii) endogenous TAK1 after immu

cardiomyocyte cell lysates with anti-TBRII antibody detects endogenous TBRII

analysis of TAK1 precipitates from H9C2 cells with anti-ALK5 antibody also de
cocktail) and analyzed by SDS polyacrylamide gel electro-

phoresis (PAGE) and immunoblotting.

2.6. In vitro binding assay

[35S]-methionine labelled TAK1 protein was prepared

using a TnT T7 Quick coupled transcription/translation

system (Promega) mixed with purified GST and GST fusion

proteins, and then precipitated with Glutathione Sepharose

4B resin. GST pull down proteins were washed three times

in NTT buffer, separated by SDS-PAGE and radioactivity

was detected with a BAS 2000 image analyzer (Fuji).
3. Results

3.1. TAK1 protein interacts specifically with the type II

TGFb receptor (TBRII)

The role of TAK1 in cardiac hypertrophy and its

extremely rapid activation by TGFh1 [14] led us to

hypothesise that there may be a direct interaction between

TAK1 and a ligand-binding TGFh receptor. In order to test

this hypothesis we performed immunoprecipitation (IP)

experiments on 293T cells that co-expressed TAK1 with

one of the type I TGFh receptors (ALK5 or ALK1) or the

type II TGFh receptor (TBRII). Ectopically expressed

FLAG-tagged TAK1 protein was immunoprecipitated using

monoclonal anti-FLAG antibody. The type I receptors

(ALK5 and ALK1) and type II receptor (TBRII) all carried

Haemaglutinin (HA) epitope tags at their N-terminus and

were all detected in the cell lysates (Fig. 1, 2nd panel).

However, immunoblot analysis of the TAK1 immunopre-

cipitate detected only the TBRII protein and not the ALK5
ot analysis of C2C12 cell lysates detects (i) endogenous TBRII after

noprecipitation of endogenous TBRII. (B) (i) Immunoblot analysis of H9C2

after immunoprecipitation of endogenous TAK1. (ii) Further immunoblot

tects endogenous ALK5.

52 by guest on 04 January 2023



Fig. 6. Model of integrated Smad-dependent and TAK1-dependent TGFh
signalling. TGFh1 is induced by angiotensin II and binds to the type II

TGFh receptor (TBRII) on the cell membrane. TBRII phosphorylates and

activates ALK5 (the type I receptor), which can then propagate the signal

via Smad proteins to the nucleus where Smad-dependent TGFh responsive

genes are regulated. ALK5 also binds to the X-linked inhibitor of apoptosis

(XIAP), which associates with TAB1 the major binding partner for TAK1

[32] and therefore indirectly links TAK1 to the type I receptor. TAK1 also

associates directly with the cytoplasmic domain of TBRII forming a TGFh-
receptor protein complex at the cell membrane. Upon exposure to TGFh,
the TBRII/TAK1 interaction would allow rapid activation of TAK1 via the

TGFh receptor complex. Active TAK1 phosphorylates MKK3/6, which in

turn activates p38 [20]. Smad-dependent and TAK-dependent signals may

act separately or in conjunction to affect a variety of cell functions. TAK1

signalling appears to be particularly important in regulating cardiomyocyte

hypertrophy.
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or ALK1 type I receptor proteins (Fig. 1, 3rd panel).

Conversely, when all three TGFh receptors were immuno-

precipitated with anti-HA antibody, TAK1 protein could

only be detected in the TBRII immunoprecipitate and not in

the ALK5 or ALK1 immunoprecipitate (Fig. 1, bottom

panel). These results demonstrate that TAK1 interacts with

TBRII but not with type I TGFh receptors. Immunofluo-

rescence microscopy of Cos7 cells co-transfected with both

TAK1 and TBRII plasmids showed that cells clearly

expressed both TAK1 and TBRII proteins and that there

was a significant amount of co-localisation both in the

cytoplasm and at areas of the cell membrane (Fig. 2A).

3.2. TAK1 protein can interact directly with TBRII

In order to determine that the TAK1 interaction with

TBRII was not due to the presence of any specific inter-
mediate binding proteins, an in vitro binding assay was

performed. 35S-labelled TAK1 protein was generated by in

vitro transcription and translation and then mixed directly

with GST fusion proteins of the cytoplasmic domains of

TBRII and the type III TGFh receptor, Endoglin. GST

fusion proteins were precipitated with Glutathione Sephar-

ose resin and precipitates were analyzed for the presence of
35S-TAK1. Radiolabelled TAK1 protein was clearly detect-

able after precipitation of GST–TBRII protein but not in

precipitates of GST–Endoglin or GST alone (Fig. 2B). The

in vitro binding assay strongly suggests that TAK1 is

capable of directly interacting with the cytoplasmic domain

of TBRII and that the co-immunoprecipitation results

were not due to the action of an intermediary binding or

scaffold protein.

3.3. Three isoforms of TAK1 can interact with TBRII

There are four isoforms of human TAK1 (TAK1A, B, C

and D) and all are very similar to each other but vary

significantly at their C-Terminal ends [26]. TAK1A is the

most abundant across all tissue types and the one we have

used in all other experiments. TAK1A, B and C are

ubiquitously expressed whereas TAK1D has a more res-

tricted pattern of expression. All four isoforms are ex-

pressed in cardiac tissue with TAK1A and B expressed at

the highest levels [26]. In order to further characterise the

TAK1/TBRII interaction we selected three TAK1 iso-

forms—A and B (due to their abundance in heart) and D

(which differed most at the C terminus—Fig. 3B) and co-

expressed them with TBRII in Cos7 cells. All three

isoforms carried N-terminal Xpress epitope tags (Promega)

and were immunoprecipitated from whole cell extracts

with an anti-Xpress antibody (Fig. 3A). Immunoblot ana-

lysis with anti-TBRII antibody detected TBRII protein

equally in all three immunoprecipitates (Fig. 3A—bottom

panel). TBRII therefore interacted with all three TAK1

isoforms tested.

3.4. TBRII interacts specifically with TAK1

To confirm that the TAK1/TBRII interaction is specific to

TAK1, TBRII protein was co-expressed in Cos7 cells with

either TAK1 or MLK-like triple kinase h (MLTKh—[27]), a

closely related MAPKKK with 45% homology to TAK1.

Both TAK1 and MLTKh proteins were immunoprecipitated

from whole cell lysates. Immunoblot analysis with anti-

TBRII antibody detected TBRII protein in the TAK1

precipitate but not in the MLTKh precipitate (Fig. 4). The

results confirm that TBRII specifically interacts with TAK1

and not with a related kinase.

3.5. TAK1 and TBRII proteins interact endogenously

Endogenous interactions between TAK1 and TBRII were

investigated in both mouse myoblast (C2C12) and rat
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cardiomyocyte (H9C2) cell lines. C2C12 cell lysates were

immunoprecipitated with anti-TAK1 monoclonal antibody

in order to pull down endogenous TAK1 protein.

Immunoblot analysis with anti-TBRII antibody clearly

detected endogenous TBRII protein in the TAK1 precip-

itate (Fig. 5A, i). A reciprocal immunoprecipitation with

anti-TBRII antibody on C2C12 cell lysate also precipitated

endogenous TAK1 protein as detected by immunoblot

analysis (Fig. 5A, ii). These experiments confirmed an

interaction between TAK1 and TBRII proteins at endog-

enous levels. Similar experiments were also performed

on H9C2 cardiomyocyte cells. Immunoblot analysis with

anti-TBRII antibody again clearly detected endogenous

TBRII protein in the TAK1 precipitate (Fig. 5B, i). The

results confirmed that TAK1 and TBRII proteins interact at

endogenous protein levels in cardiomyocyte cells. We

also tested whether endogenous TAK1 protein interacted

with ALK5 indirectly, perhaps through the known associ-

ation of ALK5 with TBRII. This was tested in the

cardiomyocyte cells by immunoblot analysis of the endo-

genous TAK1 precipitate with anti-ALK5 antibody and

clearly shows that endogenous ALK5 is indeed present in

association with TAK1 (Fig. 5B, ii). As TAK1 did not

interact directly with ALK5 when both were over-

expressed (Fig. 1) it is likely to be an indirect interaction,

as indicated in Fig. 6.
 scres/article/69/2/432/283652 by guest on 04 January 2023
4. Discussion

Angiotensin II has been well characterised as a pro-

moter of cardiac hypertrophy [28–30] and more recently it

has been shown to trigger the hypertrophic response

through TGFh1 signalling [5,6]. Of the downstream

proteins known to be activated by TGFh signalling, in

vivo data suggests that TAK1 is critically important in the

cardiac hypertrophic response [14] and TAK1 inhibitors

can reduce fibrosis and inflammation [15,16]. However,

the mechanism by which (intracellular) TAK1 is rapidly

activated in cardiomyocytes by (extracellular) TGFh ligand

remains unresolved. Here we report an important step

forward, as we have discovered a novel interaction be-

tween TAK1 and the cytoplasmic domain of TBRII that

potentially explains the swift response of TAK1 to TGFh.
We used reciprocal co-immunoprecipitations (co-IPs) and

in vitro GST pull down assays to show that TBRII binds

to TAK1. Consistent with this interaction, immunofluores-

cence microscopy showed that transiently over-expressed

TAK1 and TBRII proteins co-localise in transfected cells.

Unfortunately, the detection limits of fluorescent immuno-

cytochemistry in our hands meant that we were unable to

ascertain co-localisation of endogenous proteins. The

specificity of the interaction was confirmed in that there

was no detectable interaction between TBRII and MLTKh,
a kinase closely related to TAK1. Importantly, the

interaction was also observed between endogenous TAK1
and TBRII proteins in both mouse muscle myoblast and rat

cardiomyocyte cell types. Further detailed characterisation

of the interacting sites are currently in progress, but the

fact that three TAK1 isoforms (TAK1A, B and D) all

interact with TBRII despite significant variation at the C-

terminus suggests that this interaction is not mediated at

the C-terminal region of the TAK1 protein.

An indirect association between TAK1 and the TGFh
receptors has previously been proposed as the X-linked

inhibitor of apoptosis (XIAP) has been reported to interact

with TAB1 [31] and to promote association of TAB1 to the

type I receptor, ALK5 [32]. The work described here also

indicates that TAK1 protein associates indirectly with

ALK5, but that this may occur through direct association

with TBRII. Taken together, this evidence suggests that

a molecular complex is formed at the cell membrane

composed of the TGFh receptors and associated proteins

including Smads, XIAP and TAK1 (as described in Fig. 6).

We hypothesise that when the complex is exposed to TGFh,
TAK1 becomes activated through its association with

the TGFh receptor complex and phosphorylates down-

stream MAPKKs. As described above, there is a wealth of

evidence pointing to the importance of TGFh and TAK1 in

cardiac hypertrophy so it is likely that these signalling

events directly contribute to the hypertrophic response.

Furthermore, the direct interaction of TAK1 with TBRII

potentially explains the rapid activation of TAK1 (within

1 min) when extracellular TGFh binds TBRII at the

cardiomyocyte cell surface [14]. However, further work is

required to determine whether this occurs via phosphor-

ylation of TAK1 by the TGFh receptor complex. There is

considerable evidence for synergy between the TAK-

dependent and Smad-dependent TGFh signalling path-

ways [32–35]. TAK1 has been reported to interact with

Smad 7 to inhibit TGFh signalling by a negative feedback

mechanism [36,37]. More recently, TAK1 has been

shown to interact with Smads 1, 2, 3, 4, 5 and 6 [38]

and to inhibit BMP signalling. These studies illustrate the

close integration of the Smad-dependent and TAK-

dependent TGFh signalling pathways but the relative

contributions of TAK-dependent and Smad-dependent

pathways to cardiac hypertrophy are still to be deter-

mined [39]. Nonetheless, the TAK1/TBRII interaction des-

cribed here potentially explains how two divergent, but

linked, TGFh responsive pathways can respond to the

same extracellular TGFh signal (Fig. 6).

Our results show a specific interaction between the

TGFh receptor II and TAK1, which is likely to play an

important role in regulating TAK1 activity in cardiomyo-

cytes. Further work is in progress to characterise this

interaction and investigate the molecular nature of the

regulation of TAK1 activity by TGFh1 in cardiomyocytes.

However, even at this early stage, this interaction suggests

how TAK1 can be rapidly activated by TGFh1 and may be a

critical molecular mechanism in the initiation of cardiac

hypertrophy.
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