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Abstract 
Context  Understanding landscape functional con-
nectivity is critical for nature conservation in frag-
mented landscapes. Spatially explicit graph-theoret-
ical approaches to assessing landscape connectivity 
have provided a promising framework for captur-
ing functional components driving connectivity at 
the landscape scale. However, existing weighting 
schemes used to parameterise functional connectiv-
ity in graph theory-based methods are limited with 
respect to their ability to capture patch-level charac-
teristics relevant to habitat use such as edge-effects.
Objectives  We set out to develop a new approach to 
weighting habitat connectivity as a function of edge-
effects exerted by non-habitat patches through better 
delineation of edge-interior habitat transitions at the 

patch-level and parameterization of intra-patch move-
ment cost at the landscape scale.
Methods  We leverage the use of raster surfaces 
and area-weighted exponential kernels to operation-
alize a mechanistic approach to computing spatially 
explicit edge surfaces. We integrate map algebra, 
graph theory and landscape resistance methods to 
capture connectivity for a range of species special-
isms on the edge-interior spectrum. We implement 
our method through a set of functions in the R statisti-
cal environment.
Result  Through a real-world case study, we demon-
strate that our approach, drawing on these behaviours, 
outperforms competing metrics when evaluating 
potential functional connectivity in a typically frag-
mented agricultural landscape. We highlight options 
for the optimal parameterization of graph-theoretical 
models.
Conclusion  Our method offers increased flexibility, 
being tuneable for interior-edge habitat transitions. 
This therefore represents a key opportunity that can 
help to re-align the fields of landscape ecology and 
conservation biology by reconciling patch-versus-
landscape methodological stances.
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Introduction

Landscape connectivity is a crucial process 
contributing to the conservation of biodiversity 
in fragmented landscapes (Grander et  al. 2020). 
Significant gains have been made in the efficacy of 
connectivity analysis following the seminal work 
by Hanski (1994), which outlined the potential for 
spatially explicit modelling approaches based on the 
‘incidence function’. Since then, the importance of 
patch size and isolation has continued to influence 
expectations around the likelihood that a particular 
species population can persist in any given landscape 
(Ovaskainen and Hanski 2001; Chandler et al. 2015; 
Bonte and Bafort 2019). Within this framework, the 
size of available habitat patches and the degree to 
which they are functionally connected are considered 
key determinants of meta-population capacity (Hanski 
et  al. 2017). Since Hanski’s (1994) presentation of 
the incidence function, much work has been done to 
improve the ways in which functional connections 
between habitat patches are operationalized (Saura 
and Pascual-Hortal 2007; McRae et al. 2008; Foltête 
et  al. 2008; Saerens et  al. 2009; Etherington 2016). 
This has largely focused on estimating functional 
distances between patches such as through least 
cost paths, random walks and topographic-based 
measurements. Less attention, however, has been 
given to describing the influence of habitat patches 
themselves and patch-level processes that affect 
connectivity. Hanski and Ovaskainen’s (2000) 
description of metapopulation capacity in fragmented 
landscapes was predicated on habitat patch size as a 
surrogate for quality, drawing on the well-established 
observation that extinction rates correlate inversely 
with habitat area (Goodman 1987; Lande 1993). This 
paved the way for subsequent area-weighted graph 
theoretical approaches that exhibit some appealing 
characteristics, including intuitive outputs such as 
probabilities or total connected area, and improved 
computational efficiency (Galpern et al. 2011).

Notwithstanding their appealing attributes, 
limitations relating to patch-level processes such as 
assumptions around habitat suitability, homogeneity 
and the relevance of patch size remain unaddressed 
in area-weighted methods. One process that can 
influence habitat availability at the patch-level is that 
of edge effects incurred by neighbouring non-habitat 
patches. Edge effects moderate the effective patch size 

for both interior and edge specialist species (Zurita 
et  al. 2012), thereby influencing metapopulation 
capacity. As such, they should be reflected in area-
weighted functional connectivity methods. There 
is clear merit, therefore, in understanding how edge 
effects occur as a process in the landscape and how 
this process influences landscape connectivity. 
Specifically, careful delineation of edge from 
interior habitat is directly relevant to area-weighted 
metrics given that patch area is a key component 
of the numerator in the calculation of landscape 
connectivity in the Hanski lineage, such as in the 
Probability of Connectivity (PC; Saura and Pascual-
Hortal 2007; Eq. 1):

where Ai and Aj are the areas of habitat patches i and 
j, and AL is the total landscape (i.e. study extent) area 
and dispersal probability between patches i and j is 
defined as the maximum probability of movement 
(where P*

ij is the maximum product probability of all 
the possible paths between patches  i and  j) based on 
shortest paths in a patch-based graph (Keeley et  al. 
2021).

In the PC metric (Eq.  1), patch area is used as 
an indicator for habitat availability and quality, 
in the absence of any other attributes. This, 
however, assumes patch homogeneity, which is 
only ecologically meaningful for generalist species 
and, given that such species tend to be of least 
conservation concern (Miller et  al. 2015), the need 
to capture patch-based processes to better account 
for a range of species is an obvious priority for 
conservation modelling. This assumption is not only 
relevant to graph-based metrics but applies equally 
to any method where habitat patch size is thought 
to influence landscape connectivity. This applies to 
both structural (Keeley et  al. 2021) and functional 
(e.g. Carvalho et  al. 2016) connectivity, and links 
to other key debates in ecology. For example, the 
ongoing SLOSS  (Single Large Or Several Small) 
debate centres around the relevant importance of 
patch-scale (e.g., size, quality, extinction rates) 
and landscape-scale (e.g., dispersal, predation, 
permeability) processes (Fletcher et al. 2018; Fahrig 
et  al. 2019). An additional advantage of developing 
a mechanistic understanding of edge effects in 

(1)PC =

∑n

i=1

∑n

j=1
AiAjP

∗
ij

A2
L
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connectivity assessments is the ability to model for 
a range species as a function of their position on the 
spectrum of edge-interior specialisms, for example in 
a traits-based approach to connectivity (Ramos et al. 
2020).

Previous attempts to consider the role of edge 
effects have been conceptually limited, taking a 
binary view of edge versus non-edge (An et al. 2021), 
treating edge effects simply as a geometric property 
(e.g., Griffin and Haddad 2021) or considering edge 
as representing non-habitat (i.e. removing it from the 
habitat area, which guarantees lower connectivity 
estimates in area-weighted approaches; e.g., Watts 
and Handley 2010). A binary delineation of edge 
versus non-edge and an a priori assumption that 
edge habitat is always undesirable from a species 
conservation perspective prevents the modelling of 
edge-interior transitions specific to different land-
use contexts. Such transitions may vary in their 
severity and length as a function of non-habitat 
patch hostility and size. Accounting for the variety 
of such transitions, we argue, would facilitate a more 
functional approach to delineating edge effects. To 
this end, Eycott et  al. (2011) carried out a Delphi 
review on the different expected edge effects exerted 
by 20 different land-uses in the UK on a range of 
focal species, with high variance between individual 
land-uses. In their Probability of Functional 
Connectivity (PFC) metric Watts and Handley (2010) 
employ these parameters to delineate edge effects. 
However, by assuming edge effects are constant at 
all distances given by Eycott et al. (2011) from non-
habitat patches, and disregarding non-habitat patch 
size, the PFC metric does not reflect a mechanistic 
view of how edge-interior transitions occur in space.

In addition, the assumption that edge comprises 
non-habitat, prompting its subsequent removal from 
the PFC numerator (e.g. Watts and Handley 2010), 
may not always be warranted. In highly fragmented 
anthropogenic landscapes, a high proportion of the 
species pool consists of non-interior specialists. As 
such, many woodland edge-exploiting species are 
of current conservation value, appearing in local 
and regional biodiversity action plans in the United 
Kingdom (e.g., Kirklees Council 2023). Where 
agricultural landscapes dominate, narrow but vital 
riparian corridors can provide connectivity between 
fragmented patches of interior semi-natural habitat 
as well as vital habitat for edge exploiting species 

(Hale et  al. 2012). In this context, there is a clear 
requirement for connectivity metrics that are better 
fit to the reality of habitat provision in modern 
landscapes. Though edge effects in fragmented 
landscapes can undoubtedly have negative outcomes 
for some species (Dixo and Martin 2008), we argue 
that edge-exploiting species (especially those 
of conservation value) are unnecessarily under-
considered. Therefore, the effective delineation of 
edge from interior habitat presents an advantage 
where functional connectivity can be modelled on the 
same network of patches but for a range of species, 
as opposed to only generalists, towards which simple 
area-weighted approaches exemplified in Eq.  1 may 
be biased.

We note that attempts to improve on area-weighted 
approaches through additional assessments of patch 
quality have been developed, for example through site 
surveys (Hodgson et  al. 2009) or habitat suitability 
models (HSMs) using secondary environmental data 
(Jaquiéry et  al. 2008). However, field surveys may 
not be feasible for large-scale studies and while there 
has been much interest in using HSMs to delineate 
habitat availability or quality in lieu of existing 
habitat maps (Jaquiéry et al. 2008; Hunter-Ayad and 
Hassall 2020; Godet and Clauzel 2021), the efficacy 
of HSMs for the delineation of habitat patches is 
limited. This is because any modelled response 
to non-habitat patches will be highly species-and 
landscape-specific in well-performing HSMs. This 
detracts from the generalizability of edge-related 
processes for the sake of wider habitat management 
goals (e.g. planning habitat connectivity for a range 
of woodland specialists in landscape restoration or 
rewilding scenarios). For these reasons, we believe 
there is merit in developing a method of interior-edge 
habitat delineation that can reflect responses by focal 
species that are generalizable across connectivity 
scenarios. For example, Watts et al. (2010) developed 
the use of the Generic Focal Species (GFS) to model 
outcomes for groups of species with similar habitat 
requirements under different landscape change 
scenarios. An advantage of a GFS approach is the 
ability to determine landscape parameters (e.g. 
landscape resistance, sensitivity to edge-effects) that 
can act as indicators to inform connectivity outcomes. 
GFS indicators parameterized, for example, through 
expert consultation (Eycott et  al. 2011), could be 
readily incorporated into graph theory connectivity 
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models providing that methods to effectively delineate 
edge-effects in a mechanistic way are available.

In this paper we propose such a method that 
captures the transition gradient between edge-interior 
environments as a function of neighbouring non-
habitat patch land-use and size. This facilitates the 
option of modelling for a full range of specialisms 
along the interior-edge spectrum and provides 
a logical means to parameterize within-patch 
movement when calculating effective distances. 
These new developments make use of raster surfaces 
and area-weighted spatial kernels to estimate edge 
effects and allow for a re-characterization of the 
role of edge habitat. Our approach focusses on 
habitat patches and the size and spatial distribution 
of neighbouring non-habitat patches which, as well 
as providing the basis of graph-based modelling, 
are also relevant to individual-based connectivity 
approaches (e.g. Landguth et al. 2012). The method is 
highly transferable and can be incorporated into any 
existing graph-based approach where outcomes are 
weighed by habitat patch size and where information 
on the size of non-habitat patches and estimates of 
edge effects are available.

Methods

Our methodological approach was to incorporate 
recent landscape-ecological knowledge into 
connectivity modelling and, specifically, to provide 
practical solutions to problems stemming from the 
biases outlined above. As with the development of 
other recent functional connectivity indices, we take 
the basic form of Hanski’s Incidence Function (1994) 
as a motivation and build on more recent derivations 
of this, such as the Probability of Connectivity (PC: 
Saura and Pascual-Hortal 2007, Eq. 1).

Edge‑weighted habitat for connectivity

We propose a new metric: the Edge-weighted Habitat 
Index (EHI), in which the numerator varies depending 
on the focal habitat type: interior (Int), generalist 
(Gen) or Edge (Edg). To build this metric, we first 
generate an edge surface for each cell in a raster 
representation of the landscape. This is achieved by 
summing, for each cell, all edge effects exerted by 
neighbouring non-habitat patches (edgeSumi: Eq. 2). 

Here, for each location (raster cell), a non-habitat 
patch i will exert an edge effect as a function of its 
Euclidean distance from the cell. The strength of the 
edge effect is set according to an exponential kernel 
determined by non-habitat patch i’s edgeMax value 
(the maximum distance at which a non-habitat patch 
can exert an edge effect) and the size of non-habitat 
patch i (Eq.  4 and “Justification of area-weighted 
edge effects” section). Therefore, the influence (the 
edge effect) decreases exponentially with distance as 
a function of the type and size of non-habitat patch i. 
Note that, similar to landscape resistance values for 
least-cost path analysis, edgeMax must be decided a 
priori through, for example, recourse to the literature 
or expert consultation (Godet and Clauzel 2021). 

where edgei is the edge effect exerted by neighbouring 
non-habitat patch i on habitat cell i and is defined as:

where e is the natural exponent, Di is the distance 
from the neighbouring non-habitat patch and � is 
a constant that determines the strength of effect at 
distance Di and is defined as:

where d is a distance decay parameter ranging 
between 0 and 1 calculated from a sigmoidal 
function applied to the non-habitat patch area (see 
“Justification of area-weighted edge effects” section) 
and edgeMax is the maximum possible distance at 
which a particular non-habitat patch (as a function of 
its land-use) can exert an edge effect (this value must 
be determined a priori e.g. through a literature search 
or, as in the application in “Case study application” 
section, reference to expert consultation).

The edge-weighted habitat of each cell is then 
determined as a function of whether interior or edge 
habitat is to be modelled. If interior, then the edge-
weighted habitat value of each cell within the habitat 
patch is defined as.

(2)edgeSumi =

n
∑

i=1

edgei

(3)edgei = (e−�Di)

(4)a =
− log (d)

edgeMax

(5)intCi = 1 − edgeSumi, edgeSumi ∈ [0, 1]
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where intCi has a maximum value of 1 (i.e. edgeSumi 
= 0 and the entire cell is interior habitat) and a 
minimum of 0 (i.e. edgeSumi = 1 and the entire cell 
is edge habitat) and where edgeSumi must be set to a 
maximum of 1 to avoid negative values in subsequent 
graph-based calculations. Note that, in practice, 
a multiplier of range 0–1 can also be applied to 
edgeSumi (for example reflecting a species sensitivity 
to edge or an additional measure of quality). Once the 
edge-weighted habitat of each cell in a habitat patch 
is determined, the edge-weighted habitat of the entire 
habitat patch is then the sum of all cell values within 
the habitat patch multiplied by the cell area (i.e. the 
resolution of the raster surface squared). In the case 
of edge-weighted interior habitat this is given by:

where Ac is the area of a cell in the habitat patch.
In the case of edge-weighted edge habitat, 

edgCi = edgeSumi and:

In the case where the entire cell consists of edge-
weighted habitat (i.e. when modelling for true 
generalists) genCi = 1 and:

Integrating EH into landscape connectivity 
assessments is then simply a case of replacing habitat 

(6)EHInt =

(

n
∑

i=1

intCi

)

Ac

(7)EHEdg =

(

n
∑

i=1

edgCi

)

Ac

(8)EHGen =

(

n
∑

i=1

genCi

)

Ac

area with edge-weighted habitat which, in the case 
of the PC metric, means replacing AiAj with EHiEHj 
(where i and j represent patches of habitat cells). This 
Edge-weighted Habitat Index (EHI) is then a general 
form of the PC metric that delineates focal habitat 
by accounting for edge-effects. Note that PC is then 
a special case modelling for true generalists (i.e. 
the entire patch is focal habitat) and PFC is simply 
EHI with parameter d set to 1. We suggest one more 
modification to the original PC formula in which the 
square root of the numerator, which is also described 
as the Equivalent Connected Area (ECA; Saura 
et al. 2011), is divided by the total landscape area as 
opposed to the numerator being divided by the total 
landscape-squared, such that EHI is given as:

where EHi and EHj are edge-weighted habitat values 
( EHInt,EHEdg,EHGen ) for patches i and j, AL is the 
total landscape (i.e. study extent) area and dispersal 
probability between patches i and j is defined as the 
maximum probability of movement (where P*

ij is 
the maximum product probability of all the possible 
paths between patches i and j) based on shortest paths 
in a patch-based graph (Keeley et al. 2021). Note that 
in our application, we model distance between patch 
centroids to test the influence of setting intra-patch 
movement as edgeSumi but distances could also be 
modelled as edge-to-edge if required (for example 
by setting resistance values of cells within patches to 
zero (McRae et al. 2008)).

(9)EHI =

�

∑n

i=1

∑n

j=1
EHiEHjP

∗
ij

AL

Fig. 1   Relationship between the numerator (ECA2) and PC (on the Y axis) when alternatively normalized by A ECA2/AL
2 or by B 

ECA/AL
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We propose this change for two reasons. Firstly, 
the results of executing Eq. 1 (PC) on real data often 
yield very small numbers that can appear counter-
intuitive or even meaningless to practitioners, as 
reported by Neel (2008) and the authors of the PC 
metric (Saura et al. 2011). Secondly, the behaviour of 
the original PC metric (ECA2/AL

2) results in the rela-
tionship between connectivity (PC) and the numera-
tor (ECA2) being linearized (Fig.  1a). However, we 
could not find support in the literature for the suppo-
sition that this relationship should be linear. Rather, 
the relationship reflected in Fig. 1b, where increases 
in ECA2 at lower value ranges on the x axis (which 
therefore reflect a larger percentage increase in ECA2) 
results in the greatest increase in connectivity (on the 
y axis). In other words, the non-linear trend in Fig. 1b 
reflects the logical assumption that an increase in the 
numerator should have a bigger impact on the met-
ric at low levels of connectivity relative to the same 
increase at already high levels of connectivity. Con-
veniently, the connectivity values on the y-axis in 
1(b) can be rendered as a percentage of the landscape 
area by multiplying by one hundred. In order to illus-
trate the benefits of our method, we have tested both 
approaches against real data to compare performance 
(“Case study application” section). We implemented 
EHI using the R statistical environment (R Core 
Team 2022).

Parameterizing edge effects

To operationalize EHI we use a surface of area-
weighted edge intensity values in order to capture: 
(1) Edge effects from adjacent and non-adjacent land 
cover: considering only immediately adjacent land 
cover patches (e.g., Watts and Handley 2010), can 
provide misleading results in  situations where the 
adjacent land-use is small and/or has minimal edge 
impact but is itself adjoined by a much larger and/or 
much more deleterious land-use patch. (2) Varying 
edge effects dependant on neighbouring non-habi-
tat patch area: we argue that assuming non-habitat 
patches have equal edge impacts regardless of their 
size is unrealistic. (3) Varying edge effects with dis-
tance from non-habitat patches: the assumption of 
equal edge effect at all distances (red line, Fig.  2), 
causes problems in previous applications (e.g., Watts 
and Handley 2010) where all edge is removed from 
the habitat patch (conflicting with a mechanistic view 

of edge effects). We address these three issues by 
applying an area-weighted kernel to operationalize 
edge effects from neighbouring non-habitat patches, 
with a distance decay (black and blue lines in Fig. 2).

Justification of area‑weighted edge effects

We propose that edge effects should decay with dis-
tance from non-habitat patches, which we operation-
alize using a negative exponential function in the 
model (Eq.  3). We acknowledge that edge effects 
should also be a function of the size of neighbour-
ing non-habitat patches. This, for example, ensures 
that very small non-habitat patches in the matrix do 
not have unrealistically large edge impacts. Likewise, 
we do not assume that edge effects scale to infinity. 
Our solution is to set the edge-effect distance decay 
parameter (d in Eq. 4) according to values calculated 
from a sigmoidal function (Fig.  3) that is related to 
neighbouring non-habitat patch size. The function 
ranges from 0 where x = 0, and 1 where x >  = fullEdg-
eEffectArea (which is a parameter describing the 
patch size after which the full edge effect is realized).

Figure  4 visualizes the process of calculating 
edge-weighted interior habitat for a group of habitat 
patches (Fig.  4A) through the area-weighted kernel 
approach where edge effects decrease exponentially 
with distance at a rate reflecting the size of neigh-
bouring non-habitat patches (parameter d in Eq.  4; 
Fig. 3). Figure 4B gives values for edgeMax in Eq. 4, 
which is the maximum possible distance at which a 
non-habitat patch can exert an edge effect. Alpha ( a 
in Eqs. 3 and 4) is then derived for each non-habitat 
patch from edgeMax and d according to Eq.  4. All 

Fig. 2   Distance decay of edge effects from neighbouring non-
habitat patches as a function of non-habitat patch size



Landsc Ecol           (2024) 39:68 	

1 3

Page 7 of 15     68 

Vol.: (0123456789)

cells in the landscape then receive an edge effect value 
from each neighbouring non-habitat patch ( edgei in 
Eq. 3) as a function of distance from that patch and 
parameter a (which is specific to that patch; Eq.  3). 
Taking the sum of all received edge values for each 
cell results in Fig. 4C with edge effect values ranging 
from 0 (no edge) to 1 (completely edge), represent-
ing edgeSumi in Eq. 2. In a subsequent step, the edge 

effect values in Fig. 4C are subtracted from a habitat 
raster (a rasterized version of Fig. 4A where 1 = habi-
tat and 0 = matrix), resulting in the scenario for inte-
rior edge-weighted habitat in Fig. 4D (Eq. 5). Calcu-
lating edge-weighted habitat is then a simply a matter 
of summing all cell values within habitat patches and 
multiplying this number by the area of the raster cells 
(Eq. 6; Table 1). R code for reproducing this worked 

Fig. 3   Logistic function for 
setting edge effect distance 
decay as a function of patch 
size with the maximum 
edge intensity (lowest 
distance decay: fullEdgeEf-
fectArea) set to 10 Ha

Fig. 4   Worked example 
of edge-weighted habitat 
delineation. A habitat 
patches, B edgeMax for 
neighbouring non-habitat 
patches, C edge effect sur-
face with patch boundaries 
shown, D interior edge-
weighted habitat values 
with patch boundaries 
shown
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example can be found at: https://​gitlab.​com/​anony​
mous4​review/​rhi.

Figure 5 gives a real-world example of the process 
described in Fig. 4A–D. Here the edge surface is cre-
ated for a patch of woodland in the application study 
area (details in “Case study application” section). 
Cell values in Fig.  5B show the maximum distance 
at which each land-cover can exert an edge effect 
(edgeMax, taken from Eycott et al. 2011). Cell values 
in Fig. 5C represent the local cumulative edge effect 
( edgeSumi , Eq.  2). Figure  5D shows the resulting 
interior edge-weighted habitat value per cell ( intCi ). 
The greater effect of the industrial estate to the north 
of the habitat patch can clearly be seen in comparison 
with the lesser effect of the agricultural fields to the 
south (see figure caption for details).

Details of the EHI function

The EHI function (as implemented in R, available in 
the repository listed above) takes six parameters. The 
user must provide the patches of habitat and non-hab-
itat (as vector GIS data with maxEdge values as an 
attribute), and can select to tune (1) the focal habitat 
(interior, edge or generalist), (2) the maximum spe-
cies dispersal distance, (3) the dispersal rate (reflect-
ing dispersal probability at the distance specified in 2) 
and (4) the area (size) of a non-habitat patch at which 

the parameter d is set to 1. The role of each parameter 
is described in Table 2.

Case study application

We tested our method in a real landscape to evaluate 
how the approach performs relative to other metrics. 
Specifically, we compared connectivity estimates 
from the Probability of Connectivity (PC; Saura 
and Pascual-Hortal 2007), Probability of Functional 
Connectivity (PFC, Watts and Handley 2010) and 
our Edge-weighted Habitat Index (EHI) for broad-
leaf woodland patches (> = 1 ha) and all non-habitat 
patches (> = 2 × 2 10  m pixels) in an agricultural 
landscape where the majority of remaining tree cover 
is within the riparian zone (and hence largely consists 
of edge habitat). These were delineated from the UK 
Land Cover Map 2020 (10 m resolution; Morton et al. 
2021). Priority species lists for the study area contain 
representative woodland edge users (e.g., Mustelidae, 
Chiroptera, Talpidae, Cricetidae). We consider this 
case study to be typical of the large parts of rural UK 
where riparian corridors not in agricultural or forestry 
production represent a refuge for native broadleaf 
woodland (see Fig. 6).

To parameterize this evaluation, we used land-
cover resistance and edgeMax values for a woodland 
focal generic species (WFGS) taken from Eycott et al. 
(2011) for a UK context. These values were obtained 

Table 1   Patch attributes 
for interior specialist edge-
weighted habitat scenario 
in Fig. 4

Patch Patch area (m2) No. of cells (N) Sum of cells (sN) Edge-weighted habitat 
(m2 = sN x cell area)

1 3405.90 578 412.40 2430.06
2 5108.85 867 373.39 2200.24
3 1702.95 289 173.24 1020.83
4 5108.85 867 531.90 3134.25
5 3405.90 578 391.97 2309.68
6 3405.90 578 337.75 1990.22
7 1702.95 289 159.33 938.86
8 6811.80 1156 863.18 5086.34
9 1702.95 289 131.54 775.08
10 3405.90 578 367.59 2166.06
11 3405.90 578 223.74 1318.38
12 15326.54 2601 1537.67 9060.78
13 3405.90 578 388.92 2291.73
14 1702.95 289 120.16 708.03
15 1702.95 289 140.50 827.89

https://gitlab.com/anonymous4review/rhi
https://gitlab.com/anonymous4review/rhi


Landsc Ecol           (2024) 39:68 	

1 3

Page 9 of 15     68 

Vol.: (0123456789)

via a Delphi review by Eycott et  al. (Ibid) based on 
land-covers in the UK Land Cover Map and we apply 
these values to the same classification in a recent 
update of the UK Land Cover Map (Morton et  al. 
2021). Resistance values and edgeMax values (as 
distances in metres) are presented in Supplementary 

Materials (Table  S1). Functional distances between 
habitat patches were calculated as the least-cost path 
based on the Eycott et  al. (2011) resistance values 
using the gdistance package in R. We alternatively 
set intra-patch movement cost to 1, 0 and edge effect 
( edgeSumi ) values for comparison. We assumed that 

Fig. 5   A satellite image of an area of woodland in the case 
study area (Google Maps, 2023). B maxEdge values for non-
habitat patches in the UK Land Cover Map (Morton et  al. 
2021) according to a Delphi review by Eycott et al. (2011). C 

Resulting edge raster surface delineating areas of high (red) 
and low (blue) edge effects in the same landscape. D Edge-
weighted (Interior) Habitat ( intC

i
 ) with patch boundaries 

shown

Table 2   Description of the role and required format of model arguments

Parameter Description

Patches Polygons (e.g. shapefile) delimiting habitat patches
Matrix Polygons of non-habitat patches with cost (if least-cost based effective distances are to be used) and 

maxEdge attributes
Habitat One of “edge”, “interior” or “generalist”
maxDist The assumed maximum dispersal distance of the focal species
dispersalRate Value reflecting the probability of dispersal to patches at a distance from the focal patch equal to maxDist
fullEdgeEffectArea Area (size) at which d is set to 1
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the parameters used to define habitat requirements for 
the WFGS can be used as a baseline to make assump-
tions about edge-dependent species. In other words, 
the preferences of an edge-dependent focal generic 
species should be inversely related to those of the 

WFGS. Therefore, we define edge habitat as that 
which is unfavourable for the WFGS and, recipro-
cally, that which is favourable for an edge specialist.

To model the relationship between landscape con-
nectivity and species density we used all available 

Fig. 6   Application study area. Case-study extent with catchment boundaries (right) (Environment Agency, 2023) and detail on land-
covers present (left) (Morton et al. 2021)

Table 3   Description of each of the model runs conducted as part of the evaluation (all models were run with intra-patch cost set 
alternately to 0, 1 and edgeSumi)

*Values of 0.05, 0.25, 0.5, 0.75 and 0.95 were all tested with the value leading to best model performance retained

Model name Connectivity model description

EHI_edge EHI with focal habitat set to “edge” ( EHEdg ). d is set manually for all non-habitat patches*
EHI_int EHI with focal habitat set to “interior” ( EHInt ). d is set manually for all non-habitat patches*
EHI_edge_Eq EHI with focal habitat set to “edge” ( EHEdg ). d is set manually for all non-habitat patches* maxEdge 

is equal for all non-habitat patches calculated as the area-weighted mean of the Eycott et al. (2011) 
values based on the total area of each land-cover in the study area

EHI_int_Eq EHI with focal habitat set to “edge” ( EHEdg ). d set manually for all non-habitat patches* maxEdge is 
equal for all non-habitat patches calculated as the area-weighted mean of the Eycott et al. (2011) 
values based on the total area of each land-cover in the study area

EHI_Edge_areaWeighted EHI with focal habitat set to “edge” ( EHEdg ).  d set as a function of non-habitat patch size
EHI_Int_areaWeighted EHI with focal habitat set to “interior” ( EHInt ). d set as a function of non-habitat patch size
EHI_Edge_areaWeighted_Eq EHI with focal habitat set to “edge” ( EHEdg ).  d set as a function of non-habitat patch size. maxEdge 

is equal for all non-habitat patches calculated as the area-weighted mean of the Eycott et al. (2011) 
values based on the total area of each land-cover in the study area

EHI_Int_areaWeighted_Eq EHI with focal habitat set to “interior” ( EHInt ). d set as a function of non-habitat patch size. maxEdge 
is equal for all non-habitat patches calculated as the area-weighted mean of the Eycott et al. (2011) 
values based on the total area of each land-cover in the study area

PC Probability of Connectivity metric (Saura and Pascual‐Hortal, 2007) Equivalent to EHI set to "gener-
alist" ( EH

Gen
)

PFC Probability of Functional Connectivity (Watts and Handley 2010). Equivalent to EHI set to “interior”; 
and d set to 1

Percent woodland No connectivity assessment. Predictor variable = percentage cover by woodland in each catchment
MPA No connectivity assessment. Predictor variable = mean area of woodland patches in each catchment
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data on mammal occurrences in the National Bio-
diversity Network (NBN) atlas (https://​nbnat​las.​
org/) for the case-study. Almost all available mam-
mal records were species with an association with 
woodland, but none were interior specialists. The 
exceptions to this were species of the Lepus genus, 
and Arvicola amphibius which were excluded as 
open and aquatic habitat specialists, respectively. 
We combined occurrence data for all woodland spe-
cies and converted them to a point pattern then a 
Kernel Smoothed Intensity map using a bandwidth 
selected with the method proposed by Cronie and 
van Lieshout (2018); implemented using the Spatstat 
library in R. Values were then aggregated (as mean 
occurrence density) at the catchment level.

We compared the ability of the PC, PFC and 
EHI connectivity metrics to predict mammal den-
sity within each catchment. This was straightforward 
because of the relationship between the metrics: PC 
is simply EHI with the model parameters set to Gen 
(generalist, no edge effect); and PFC is simply EHI 
with the edge distance decay component ( d ) set to 

1 (edge effect is maximal for all distances given in 
Table  S1). As described in “Edge-weighted habitat 
for connectivity” section, Saura et al. (2011) proposed 
the square root of the numerator of the PC equation as 
the ECA metric, which represents the size of a single 
patch that, if maximally connected, would provide the 
same probability of connectivity as the habitat pattern 
under investigation. In our case-study assessment we 
compared results for the original form of the PC met-
ric (Eq. 1) and, alternatively, ECA/AL.

For EHI estimates, we ran models with d set 
according to non-habitat patch size as described 
in “Parameterizing edge effects”-“Justification 
of area-weighted edge effects” section. As there 
is no established method to estimate the precise 
relationship between patch size and the distance 
at which edge effects are exerted, we set the 
fullEdgeEffectArea parameter alternatively to 
10 ha, 100 ha and 1000 ha. This reflected the 99th 
percentile of patch sizes in the study area matrix 
and an order of magnitude lower and higher for 
comparison. We ran non-area-weighted models, 

Table 4   Results of regression models (all models are polynomial second order, which gave the best fit)

Values of 1 km and 10 km denote the dispersal distance used for the maxDist parameter and, for models in which the parameter 
d was derived from non-habitat patch size, model names are suffixed by the value for fullEdgeEffectArea that was used. Best 
performing models were those with dispersalRate set to 0.05 (reflecting a 5% dispersal probability at a distance equal to maxDist) 
and, for non-area-based estimates of d , a value of 0.05 produced best model performance. Therefore, only the results of these models 
are shown

Model R-squared Sig Adjusted 
R-squared

EHI_edge_10km 0.78 0.0001 0.75
EHI_edge_Eq_10km 0.77 0.0002 0.73
EHI_edge_1km 0.68 0.001 0.63
EHI_edge_Eq_1km 0.66 0.002 0.60
EHI_int_10km 0.67 0.001 0.62
EHI_int_Eq_10km 0.68 0.001 0.63
EHI_int_1km 0.63 0.002 0.57
EHI_int_Eq_1km 0.62 0.001 0.56
PC 0.61 0.003 0.55
EHI_int_areaWeighted 10km_100ha 0.54 0.009 0.47
EHI_int_areaWeighted_Eq_10km_100ha 0.61 0.003 0.55
EHI_edge_areaWeighted_10km _100ha 0.85  < 0.0001 0.83
EHI_edge_areaWeighted_Eq_10km_100ha 0.88  < 0.0001 0.86
EHI_edge_areaWeighted_10km_100ha_AL2 0.84  < 0.0001 0.81
EHI_edge _areaWeighted_Eq_10km_100ha_AL2 0.86  < 0.0001 0.84
Percent Woodland 0.73 0.0004 0.68
MPA 0.54 0.002 0.46

https://nbnatlas.org/
https://nbnatlas.org/
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setting d to sequentially to 0.05, 0.25, 0.5, 0.75 and 
0.95. We also tested the effectiveness of modelling 
edge as a factor independent of land-use (according 
to the values in Table  S1) by running alternative 
models with maxEdge parameterized as a single 
value for all non-habitat patches. For this we used 
the area-weighted mean of the Eycott et  al. (2011) 
values based on the total area of each land-cover 
in the study area. Given that the response variable 
consisted of aggregated species data, we tested 
a range of dispersal distances (1  km, 5  km and 
10 km) for the maxDist value. Model performance 
was compared via first and second order regression 
models with density of mammal occurrence points 
from the NBN dataset as the response variable (see 
Table 3 for model variable names and description). 
Regression models were compared based on the 
coefficient of determination (R2 value) of the 
regression model.

Where relevant, model names are suffixed with a 
dispersal distance (e.g., “_10km”) and with a value 
representing fullEdgeEffectArea (e.g., “_10ha”, 
“_100ha”) in the table of results (Table  4). Where 
the original form of the PC metric is used (ECA2/
AL

2), the model name is suffixed by “_AL
2”.

Results

This assessment demonstrated that EHI models differed 
in expected ways relative to the PC and PFC metrics. 
Overall, our method produced smaller estimates than the 
PC metric (“generalist” in our EHI approach) and PFC 
produced a zero result for all catchments (because PFC 
removed all habitat according to the values in Table S1). 
The area-weighted edge approach, parameterized for 
edge specialists (model EHI_edge_areaWeighted_
Eq_10km_100ha), best explained the variation in 
the response variable (Table  4). Setting intra-patch 
movement cost to edgeSumi values did not result in better 
model R-squared values compared to setting cost to 0 or 
1 for EHI models. Notably, area-weighted models based 
on the use of a fixed-distance edge raster performed 
better than those based on the variable edge extent 
values (Table  4). For non-area-weighted edge models, 
setting d to 0.05 produced the best performance (model 
R-squared; models taking other values are not shown) 
whereas for models where edge effects were weighted 
by non-habitat patch area, setting the fullEdgeEffectArea 

parameter to 100  ha resulted in best performance. The 
best performing area-weighted edge configured model 
(EHI_edge_areaWeighted_Eq_10km_100ha) explained 
considerably more variance in mammal density than a 
simple measure of percentage woodland cover or mean 
patch size and > 55% better than the PC metric.

Discussion

The evaluation based on data (Colne Valley, Table  4) 
demonstrated the greater explanatory power of models 
properly configured for edge species groups than 
for those configured for interior specialists or by PC 
and PFC metrics. Weighting d by area presented a 
considerable improvement on non-weight approaches, 
exhibiting a > 55% improvement on the PC metric 
(“generalist” in the EHI) and edge-configured 
models demonstrated up to 37% higher adjusted 
R-squared values than the best interior-configured 
model. This is a promising step forward towards more 
functionally relevant connectivity assessments and 
a key development in aligning patch and landscape-
level functional properties. The area-weighted model 
with fixed edge effects (EHI_edge_areaWeighted_
Eq_10km_100ha, Table  4) performed better than 
models parameterized by variable edge-effects. This 
implies that the gains achieved by our approach result 
from capturing the spatially-dependant influence of non-
habitat patches rather than from qualitative assessments 
of edge effects as a function of land-use. This is 
promising for two reasons. Firstly, the impact of non-
habitat on edge-weighted habitat may be more closely 
mediated by processes related to spatial characteristics, 
which are objective and easily measured, than land use 
characteristics, which are more subjective. Secondly, if 
fixed edge extents prove to be sufficient for successfully 
estimating EHI, then the process of estimating edge 
extents could be greatly simplified. That is to say, fewer 
values would need to be estimated (the fixed edge 
distance and fullEdgeEffectArea), avoiding the need for 
lengthy deliberation over the impact of multiple land-
uses. There may, therefore, be considerable merit in 
conducting further research into how this relationship 
unfolds in other real-world landscapes. Our approach 
presents a potential route to testing related hypotheses 
against data.

Setting within-patch movement cost to edgeSumi 
only marginally improved model performance. 
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Though models were not significantly improved, this 
implementation of intra-patch movement is more 
ecologically justified than setting intra-patch cost to 1 or 
some other small arbitrary value (e.g., Williams 2008; 
Hunter-Ayad and Hassall 2020; Godet and Clauzel 2021). 
We note that, even if such numbers are well justified 
(e.g., when derived from expert review) the assumption 
that such cost is equal throughout habitat patches still 
does not reflect the mechanistic understanding of change 
in habitat quality as a function of proximity to the matrix 
(i.e., edge effects). Given the size of the study area, the 
dispersal distance considered and the aggregated nature 
of the response data, it is possible that any potential 
improvement derived from this solution was diminished 
in the case-study application. Exactly how this parameter 
performs as a function of landscape context (e.g., level 
of fragmentation, patch size distribution, focal species) 
would be worthy of further investigation. Our analysis 
also suggests that ECA/AL performed better than ECA2/
AL

2 at capturing variance in edge species density 
as a function of connectivity gains at high levels of 
fragmentation and is another update worthy of further 
testing in real-world landscapes.

In terms of facilitating future research, our approach 
offers an opportunity to better integrate connectivity 
modelling into practical conservation management 
and research by accounting for edge and landscape 
permeability in a more functional way. An important 
implication of this is that models can be parameterized 
to explore optimum values when applied to data, 
thus helping researchers to isolate parameters that 
explain differences in species persistence in landscape 
comparisons. In multi-species studies, our method should 
be able to delineate the contribution of connectivity to 
species richness, thus making a valuable (and hitherto 
absent) contribution to key research agendas (such as 
the SLOSS debate). That EHI explained > 25% more 
variance in mammal density than models based on 
either percentage cover or mean patch size suggests that 
connectivity metrics such as EHI have much to offer 
future assessments of species richness as a function of 
landscape configuration. However, such work requires 
the careful parameterization of landscape permeability 
and sensitivity to edge. For example, a limitation of our 
application was the use of identical cost and edge effect 
parameters for both interior and edge habitat models. 
Though our models showed promising behaviour and 
good agreement to data, more functional estimates 
differentiating edge and interior species requirements 

would be desirable. In this respect, the use of focal 
generic species (e.g., for interior, edge and generalist 
groups) may prove useful (Watts et al. 2010). Similarly, 
the current method assumes that the same land-use will 
have a comparable edge effect in different locations in 
the landscape. This may in fact vary, for example as a 
function of management or the sensitivity of individual 
species. It may therefore be desirable to incorporate such 
factors through spatially-varying values of edgeMax. 
Developing techniques to incorporate such variation 
would be a promising future direction for this research.

Conclusions

Existing area-weighted approaches to landscape 
connectivity offer much promise but tend to be 
biased towards generalists or interior specialists 
without adequately accounting for the ecology of 
either, nor other species along the interior-edge 
spectrum, with respect to landscape configuration. 
The method described here presents an opportunity 
for better capturing edge-weighted habitat as a 
function of edge-interior transitions and non-habitat 
edge effect dynamics in the landscape. Our approach 
offers an example of the benefits of more explicitly 
addressing both patch and landscape-scale processes 
in overall assessments of connectivity. As such, there 
is an opportunity for landscape ecology practice 
and research such that by harnessing the power of 
spatial-ecological theory and techniques we might 
move towards a more complete theory of landscape 
functional connectivity, one that can contribute to key 
persistent debates in ecology.
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