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Chapter 2
Defining Climate-Smart Forestry

Andrew Weatherall, Gert-Jan Nabuurs, Violeta Velikova, 
Giovanni Santopuoli, Bożydar Neroj, Euan Bowditch, Christian Temperli, 
Franz Binder, L’ubica Ditmarová, Gabriela Jamnická, Jerzy Lesinski, 
Nicola La Porta, Maciej Pach, Pietro Panzacchi, Murat Sarginci, 
Yusuf Serengil, and Roberto Tognetti

Abstract  Climate-Smart Forestry (CSF) is a developing concept to help policy-
makers and practitioners develop focused forestry governance and management to 
adapt to and mitigate climate change. Within the EU COST Action CA15226, 
CLIMO (Climate-Smart Forestry in Mountain Regions), a CSF definition was 
developed considering three main pillars: (1) adaptation to climate change, (2) miti-
gation of climate change, and (3) the social dimension. Climate mitigation occurs 
through carbon (C) sequestration by trees, C storage in vegetation and soils, and C 
substitution by wood. However, present and future climate mitigation depends on 
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the adaptation of trees, woods, and forests to adapt to climate change, which is also 
driven by societal change.

Criteria and Indicators (C & I) can be used to assess the climate smartness of 
forestry in different conditions, and over time. A suite of C & I that quantify the 
climate smartness of forestry practices has been developed by experts as guidelines 
for CSF. This chapter charts the development of this definition, presents initial feed-
back from forest managers across Europe, and discusses other gaps and uncertain-
ties, as well as potential future perspectives for the further evolution of this concept.

2.1  �Introduction

Anthropogenic climate change has been described as the “defining issue of our 
time” (United Nations 2020). This chapter and the whole book will focus on one 
potential solution of how to manage our trees, woods, and forests to enable them to 
adapt to and mitigate climate change for the benefit of human society and wider 
biodiversity. This is Climate-Smart Forestry (CSF).
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2.1.1  �Why Do we Need Climate Smart Forestry?

Like all specialist disciplines, forest management is replete with jargon, a language 
that is helpful to the subject expert, but alienating to policymakers, the public, and 
even practitioners (who may not always keep up with the latest scientific develop-
ments in their field). Recent examples of jargon to describe land management 
approaches, including forestry, are “ecosystem services” and “natural capital.” 
Some jargon such as “nature-based solutions” seem accessible and obvious to the 
user, as to a certain extent the phrase describes the purpose, but others such as 
“rewilding” clearly mean many different things to many people. Even more estab-
lished apparently descriptive phrases can be deceptive in their complexity. For 
example, although “sustainable forest management” is a term that forestry academ-
ics and researchers understand and are able to expand as a definition that:

aims to maintain and enhance the economic, social and environmental values of all types of 
forests, for the benefit of present and future generations (FAO 2020).

Most ordinary forest workers and users (stakeholders) are more likely to describe it 
as a way of managing trees so that when some of them are harvested, the forest 
survives. This is in fact closer to the first published definition of sustainability itself, 
which derives from “Sylvicultura Oeconomica,” (von Carlowitz 1713) which 
described “the sustainable management of forest resources.”

It could be argued that sustainable forest management (SFM) already addresses 
climate change by maintaining and enhancing environmental values for the benefit 
of present and future generations. However, a challenge of SFM, and also of an 
ecosystem services approach, is that managers aim to fulfill many objectives simul-
taneously. Inevitably there are trade-offs, which means that some attempt to value, 
or rank, objectives in terms of priorities is necessary. For those who believe that 
climate change is the greatest challenge of our times, CSF is an approach that identi-
fies the adaptation of trees, woods, and forests to climate change and the use of 
forestry to mitigate climate change as the priority for SFM, so that other ecosystem 
services can be provided now and in the future.

2.1.2  �Definition and Approaches to Climate Smart Forestry

This chapter derives from the work of Working Group 1 in an EU Co-operation in 
Science and Technology (COST) Action, CA15226, Climate Smart Forestry in 
Mountain Regions (CLIMO). It comprises a brief review of the literature concern-
ing the novel concept of CSF, a definition developed in a participatory approach led 
by the working group, an introduction to using criteria and indicators familiar from 
SFM approaches for CSF, an analysis of gaps and uncertainties in the definition and 
approaches, a consideration of the perspective of forest management and finally, an 
indication of how the CSF process should develop to become more than just another 
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piece of jargon, but a tool to enable policymakers and practitioners to protect, 
improve, and enhance the management of our trees woods and forests in our climate 
changed world.

2.2  �A Brief History of Climate Smart Forestry

To be able to put CSF in context, it is important to know the evolution of our under-
standing of the role of forests in the global climate. Keeling (1960) suggested that 
the observed seasonal trend in CO2 in the atmosphere (i.e., the zigzag of the Keeling 
Curve) was the result of net photosynthesis in the northern hemisphere. Tans et al. 
(1990) improved our understanding of the role that global and especially northern 
hemisphere forests were playing in the global carbon cycle.

Forests gained a lot of attention because of their large C pools in biomass and soil 
(Dixon et al. 1994), especially as C turnover time in forest ecosystems is much lon-
ger than agricultural and grassland areas (Harmon 1992). Thus, it became an urgent 
issue to determine the amount of C sequestration and fluxes in biomass and soil 
pools after large areas of deforestation in tropical forests in the 1980s (Kimmins 1997).

The early and mid-1990s became the time of negotiations working toward the 
Kyoto Protocol, the first worldwide legally binding agreement aimed at reducing 
global greenhouse gas emissions. With information about the role of forests being 
incomplete and scarce at the time, debates in Kyoto swung between encompassing 
global forests in a binding agreement to completely omitting their role due to the 
lack of insight and genuine concerns that forests might be used for greenwashing 
(i.e., the role of forests was confined to strictly human-induced activities). It was 
believed that these activities would be clearly discernible (well monitored) and their 
role limited. Article 3.3 (and 3.4) stated:

.. direct human induced land use change and forestry activities limited to afforestation, 
reforestation, and deforestation since 1990… (UNFCC 1997).

Article 3.4. specified additional measures in forest management. However, since 
the overall reduction target was very small, there were fears that forests would be 
used for obscuring this small target, rather than actually reducing emissions from 
other sectors. Therefore, a long period of uncertainty about rules and the role of 
forests began. An IPCC special report on Land Use, Land Use Change and Forestry 
(LULUCF; Watson et al. 2000) only increased the controversy, partly because of its 
complexity and partly because of the very large potentials identified. For example, 
under Article 3.4 alone, a potential reduction of 9 Gt CO2/y in 2040 was identified. 
For comparison: in the mid-1990s, the total global greenhouse gas (GHG) emis-
sions from fossil fuels were around 26 Gt CO2/y. However, because of the complex-
ity of rules and guidelines and the low overall reduction targets, not much happened 
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in the land use sector as a result of the Kyoto Protocol until forests were specifically 
included in Article 5 of the Paris Agreement (UNFCC 2015) and subsequently, the 
accounting rules for the inclusion of LULUCF in climate targets (Korosuo et al. 
2020) were published.

The scope for activities in the land use sector widened, in part because of a nar-
row focus on mitigation and also because of controversy over large-scale monocul-
ture plantations for afforestation. Nature-based solution was the term that attempted 
to capture biodiversity and social issues at the same time, defined by the International 
Union for Conservation of Nature as follows:

Actions to protect, sustainably manage and restore natural or modified ecosystems that 
address societal challenges effectively and adaptively, simultaneously providing human 
well-being and biodiversity benefits (Cohen-Shacham et al. 2016).

According to the definition of the Institute of Development Studies:

being “climate smart’” describes an organization’s ability to manage existing and future 
climate change risks while taking advantage of opportunities associated with climate 
change (IDS 2007).

In agricultural sciences, this term was firstly adopted as Climate Smart Agriculture 
(CSA) by the FAO at the Hague Conference on Agriculture, Food Security and 
Climate Change in 2010 (FAO 2013) and refined by Lipper et al. (2014), but can be 
traced back to the 1990s when the growing awareness of farmers needing to adapt 
to new constraints due to climate change was first recognized (Easterling et  al. 
1992). The CSA definition integrates three main elements: (1) productivity, which 
refers to the sustainable increase of agricultural productivity and incomes from 
crops, livestock, and fish, without negative impact on the environment; (2) adapta-
tion to climate change refers to make production systems more resilient and better 
able to withstand extreme weather events; and (3) mitigation – referring the reduc-
tion and/or removal of the greenhouse gases released by agriculture (The World 
Bank 2016).

The term “climate smart forestry” was first launched in 2008 (Nitschke and Innes 
2008) and the CSF concept was first used in 2015 (Nabuurs et al. 2015) and since 
then has been modified through interactions with multiple stakeholders providing 
input to develop the concept (Bowditch et al. 2020; Kauppi et al. 2018; Nabuurs 
et al. 2017; Nabuurs et al. 2018; Verkerk et al. 2020; Yousefpour et al. 2018). CSF 
can arguably be seen as a category of Nature-Based Solutions with a focus on for-
ests and forestry, which increasingly provides evidence on the effects of climate 
change (Schelhaas et al. 2003).

In summary, CSF initially developed as a similar concept to the CSA concept of 
FAO (FAO 2013) with a focus on using forestry to mitigate climate change (rather 
than adapting forest to climate change), while considering regional differences 
(Nabuurs et al. 2018).

2  Defining Climate-Smart Forestry
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2.3  �A Definition from the EU COST Action Climate Smart 
Forestry in Mountain Regions

In 2016, an EU Co-Operation in Science and Technology (COST) Action was estab-
lished to develop a concept of CSF with a particular focus on European mountain 
forests (Tognetti 2017). The aim of Working Group 1 within this COST Action 
Climate Smart Forestry in Mountain Regions (CLIMO) was to translate the CSA 
concept to forestry developing a definition and selecting Criteria and Indicators 
C&I) for CSF (COST Action CA15226 2016).

The new CSF definition was developed on three main thematic areas: 1) mitiga-
tion, 2) adaptation, and 3) social dimension and integrates the three-dimensions of 
sustainable development (economic, social, and environmental) (COST Action 
CA15226 2016; Bowditch et al. 2020) (Fig. 2.1).

Within the framework of the COST Action CLIMO, a wide range of experts with 
different expertise contributed to the development of a new CSF definition through 
interactive discussions during and between three separate meetings of Working Group 
1 and cross-Working Group engagement (Bowditch et al. 2020), involving represen-
tatives from 28 countries (http://climo.unimol.it/). It was specifically intended that 
this definition should be no longer than one page for ease of sharing (Fig. 2.2).

Some of the aspects underlying the definition have been studied experimentally. 
Jandl et al. (2018) focusing on climate smart management strategies for Austrian 
forests, examined and evaluated carbon dynamics in the stem biomass and soils. 
The authors concluded that the production of long-living wood products is the pre-
ferred implementation of CSF, and the production of bioenergy is suitable as a by-
product of high-value forest products (Jandl et al. 2018). However, CSF measures 
can vary from country to country and region to region depending on different cir-
cumstances (e.g. socioecological and technological framework, climate change 
impacts, and cultural aspects), and the success of CSF requires the balance between 
them (Verkerk et al. 2020). Indeed, case studies in three European regions (Spain, 
Czech Republic, and Republic of Ireland) differ in the composition and history of 
their forests and forest sectors, clearly demonstrating that CSF mitigation measures 
need to consider local- or country-specific conditions (Nabuurs et al. 2018).

Fig. 2.1  The main pillars 
of Climate-Smart Forestry
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Fig. 2.2  Climate smart forestry (CSF) definition from the EU COST CA15226, Climate Smart 
Forestry in Mountain Regions (Bowditch et al. 2020)

2  Defining Climate-Smart Forestry
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2.4  �Criteria and Indicators for the Assessment 
of Climate-Smart Forestry

2.4.1  �Assessing Climate Smart Forestry

Recent advances on the concept of CSF in Europe have encouraged the develop-
ment of tools and approaches to measure its effects on forest health, function, and 
productivity.

Concepts such as CSF are only meaningful if they are developed with suitable 
C&I to monitor whether the principles outlined in the definition are being adopted 
over time. Indicators need to balance ease of collection against being as detailed as 
possible, but general enough to be widely applicable. For CSF, an indicator is a vari-
able, generally quantitative, that enables one to describe the status of forests and 
forestry as well as trends in forest development. It needs to be applicable in as many 
forest ecosystems and methods of forest management as possible allowing compari-
sons across temporal and spatial scales.

2.4.2  �Criteria and Indicators for Sustainable 
Forest Management

Rather than reinventing the wheel, the COST Action participants first evaluated the 
existing pan-European C&I for SFM (Santopuoli et  al. 2016; Wolfslehner and 
Baycheva-Merger 2016). In the past 30 years, as a result of several initiatives about 
sustainable development, numerous sets of C&I for SFM have been proposed 
worldwide (Castañeda 2000; Linser et al. 2018). In Europe, the main driving force 
involved in the implementation of C&I for SFM is FOREST EUROPE, a multi-
stakeholder participatory process currently involving 46 European countries and the 
European Union (EU) as signatory bodies. Since the 1990s, seven Ministerial 
Conferences have taken place (Fig. 2.3), within which C&I for SFM were defined 
and adopted.

The first set of C&I for SFM was approved at the Lisbon pan-European confer-
ence of 1998 (MCPFE 2001), as were the “Pan-European Operational Level 
Guidelines for SFM” that became the basis for the development of the forest certi-
fication scheme Programme for the Endorsement of Forest Certification (PEFC) 
(Rametsteiner and Simula 2003).

The first set of C&I was improved at the Vienna Ministerial Conference (MCPFE 
2003), and subsequently updated in Madrid 2015 (Forest Europe 2015). This robust 
process has currently led to 6 criteria, 34 quantitative indicators (Table 2.1), and 11 
qualitative indicators covering all aspects of SFM.

Although their implementation is not legally binding, the Pan-European C&I for 
SFM generated a broad variety of responses among FOREST EUROPE signatory 
bodies and were formally adopted by the signatory bodies as a policy framework for 
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forest management concerns. The Pan-European C&I for SFM are collected in a 
harmonized way, are broadly accepted by policy makers, cover the most important 
forest ecosystem services, and are publicly available. This makes them a suitable 
basis for further development toward an indicator set for the assessment of CSF at a 
European scale.

2.4.3  �From Sustainable Forest Management to Climate-Smart 
Forestry Indicators

The COST Action participants assessed these SFM C&I and judged twenty-five 
indicators to be highly relevant to CSF, four new indicators were also identified by 
the CLIMO participants. As a result, a total of 29 indicators were selected as suit-
able to assess climate adaptation and mitigation by CSF (Bowditch et al. 2020).

Some challenges for C&I implementation across signatory countries are still evi-
dent (Santopuoli et al. 2016; Wolfslehner and Baycheva-Merger 2016), even if they 
provide great support to assess many aspects of SFM, and most of them are useful 
to support the assessment of CSF (Bowditch et al. 2020; Santopuoli et al. 2020).

Selecting or developing new indicators to assess CSF requires a multidisciplinary 
approach that covers all the aspects of SFM, which are related to climate change. 
Beyond modelling approaches (Mäkelä et al. 2012; Pretzsch et al. 2014; Zeller and 
Pretzsch 2019) that provide useful information on long-term forest growth to pro-
mote adaptive forest management, CSF should support forest decision-makers and 
managers to help adapt to and mitigate climate change while maintaining long-term 
ecosystem service provision. For example, focusing on C storage by prioritizing soil 
sustainability and extending the life cycle of timber products through the circular 
bioeconomy.

Focusing on the climate smart vision, 10 out of 34 quantitative indicators are the 
most recurrent indicators used for monitoring the effects of climate change on forest 
resources (Santopuoli et al. 2020). Particularly important were the indicators 1.4 

Fig. 2.3  Forest Europe Ministerial Conference on the Protection of forests in Europe (Former 
MCPFE) timeframe. The eighth Ministerial Conference will take place in April 2021 in Bratislava 
(Slovakia)
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Table 2.1  Criteria and Indicators for Sustainable Forest Management. Sources: Updated Pan-
European Indicators for Sustainable Forest Management, as adopted by the FOREST EUROPE 
Expert Level Meeting 30 June – 2 July 2015, Madrid, Spain. Accessed (https://foresteurope.org), 
June 2020. Accessed 25 Jan 2021. Five qualitative indicators for forest policy are followed by the 
6 criteria each with a qualitative indicator and one or more quantitative indicators (34 in all)

No. Indicator

Forest policy 
and 
governance

1 National Forest Programmes or equivalent
2 Institutional frameworks
3 Legal/regulatory framework: National (and/or subnational) and 

international commitments
4 Financial and economic instruments
5 Information and communication

Criteria No. Indicator Full text
Criterion 1: 
Maintenance 
and appropriate 
enhancement 
of forest 
resources and 
their 
contribution to 
global carbon 
cycles

C.1 Policies, institutions, and instruments to maintain and appropriately 
enhance forest resources and their contribution to global carbon cycles

1.1 Forest area Area of forest and other wooded land, classified by 
forest type and by availability for wood supply, and 
share of forest and other wooded land in total land area

1.2 Growing stock Growing stock on forest and other wooded land, 
classified by forest type and by availability for wood 
supply

1.3 Age structure 
and/or diameter 
distribution

Age structure and/or diameter distribution of forest and 
other wooded land, classified by availability for wood 
supply

1.4 Forest carbon Carbon stock and carbon stock changes in forest 
biomass, forest soils, and in harvested wood products

Criterion 2: 
Maintenance 
of forest 
ecosystem, 
health, and 
vitality

C.2 Policies, institutions, and instruments to maintain forest ecosystems 
health and vitality

2.1 Deposition and 
concentration of 
air pollutants

Deposition and concentration of air pollutants on forest 
and other wooded land

2.2 Soil condition Chemical soil properties (pH, CEC, C/N, organic C, 
base saturation) on forest and other wooded land 
related to soil acidity and eutrophication, classified by 
main soil types

2.3 Defoliation Defoliation of one or more main tree species on forest 
and other wooded land in each of the defoliation classes

2.4 Forest damage Forest and other wooded land with damage, classified 
by primary damaging agent (abiotic, biotic, and human 
induced)

2.5 Forest land 
degradation

Trends in forest land degradation

(continued)
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No. Indicator

Criterion 3: 
Maintenance 
and 
encouragement 
of productive 
functions of 
forests (wood 
and nonwood)

C.3 Policies, institutions, and instruments to maintain and encourage the 
productive functions of forests

3.1 Increment and 
fellings

Balance between net annual increment and annual 
fellings of wood on forest available for wood supply

3.2 Roundwood Quantity and market value of roundwood
3.3 Nonwood goods Quantity and market value of nonwood goods from 

forest and other wooded land
3.4 Services Value of marketed services on forest and other wooded 

land
Criterion 4: 
Maintenance, 
conservation, 
and appropriate 
enhancement 
of biological 
diversity in 
forest 
ecosystems

C.4 Policies, institutions, and instruments to maintain, conserve, and 
appropriately enhance the biological diversity in forest ecosystems

4.1 Diversity of tree 
species

Area of forest and other wooded land, classified by 
number of tree species occurring

4.2 Regeneration Total forest area by stand origin and area of annual 
forest regeneration and expansion

4.3 Naturalness Area of forest and other wooded land by class of 
naturalness

4.4 Introduced tree 
species

Area of forest and other wooded land dominated by 
introduced tree species

4.5 Deadwood Volume of standing deadwood and of lying deadwood 
on forest and other wooded land

4.6 Genetic 
resources

Area managed for conservation and utilization of forest 
tree genetic resources (in situ and ex situ genetic 
conservation) and area managed for seed production

4.7 Forest 
fragmentation

Area of continuous forest and of patches of forest 
separated by nonforest lands

4.8 Threatened 
forest species

Number of threatened forest species, classified 
according to IUCN red list categories in relation to total 
number of forest species

4.9 Protected forests Area of forest and other wooded land protected to 
conserve biodiversity, landscapes, and specific natural 
elements, according to MCPFE categories

4.10 Common forest 
bird species

Occurrence of common breeding bird species related to 
forest ecosystems

Criterion 5: 
Maintenance 
and appropriate 
enhancement 
of protective 
functions in 
forest 
management 
(notably soil 
and water)

C.5 Policies, institutions, and instruments to maintain and appropriately 
enhance the protective functions in forest management

5.1 Protective 
forests – Soil, 
water, and other 
ecosystem 
functions – 
infrastructure 
and managed 
natural resources

Area of forest and other wooded land designated to 
prevent soil erosion, preserve water resources, maintain 
other protective functions, protect infrastructure, and 
manage natural resources against natural hazards

Table 2.1  (continued)

(continued)
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“Carbon stock,” 4.1 “Tree species composition,” 2.4 “Forest damages,” and 6.9 
“Energy from wood resources.” The number of indicators that resulted useful to 
support CSF increased significantly when all aspects of SFM, particularly the socio-
economic aspects, are considered (Bowditch et al. 2020). Overall, indicators belong-
ing to the criteria “Forest Biological Diversity” and “Forests Health and Vitality” 
are considered particularly important to manage forests according to a climate smart 
approach (Fig. 2.4).

Finally, four new indicators, concerning the forest structure, were suggested by 
CLIMO participants during the CLIMO meetings (Bowditch et al. 2020). Monitoring 
these indicators (management system, slenderness coefficient, and tree crown distri-
bution both vertical and horizontal) allows to observe the impacts of forest manage-
ment on the forest productivity and growth, as well as the delivery of ecosystem 
services, supporting CSF evaluation (Fig. 2.4). These indicators can be evaluated 
through remote sensing and thus are particularly important, because they can be 
monitored frequently providing timely forest inventory data (e.g., Giannetti 
et al. 2020).

No. Indicator

Criterion 6: 
Maintenance 
of other 
socioeconomic 
functions and 
conditions

C.6 Policies, institutions, and instruments to maintain other socioeconomic 
functions and conditions

6.1 Forest holdings Number of forest holdings, classified by ownership 
categories and size classes

6.2 Contribution of 
forest sector to 
GDP

Contribution of forestry and manufacturing of wood 
and paper products to gross domestic product

6.3 Net revenue Net revenue of forest enterprises
6.4 Investments in 

forests and 
forestry

Total public and private investments in forests and 
forestry

6.5 Forest sector 
workforce

Number of persons employed and labor input in the 
forest sector, classified by gender and age group, 
education, and job characteristics

6.6 Occupational 
safety and health

Frequency of occupational accidents and occupational 
diseases in forestry

6.7 Wood 
consumption

Consumption per head of wood and products derived 
from wood

6.8 Trade in wood Imports and exports of wood and products derived from 
wood

6.9 Wood energy Share of wood energy in total primary energy supply, 
classified by origin of wood

6.10 Recreation in 
forests

The use of forests and other wooded land for recreation 
in terms of right of access, provision of facilities, and 
intensity of use

Table 2.1  (continued)
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2.5  �A Critical Analysis of the Definition, Gaps, 
and Uncertainties

The definition of the CSF concept derived from the COST Action (Fig. 2.1, Bowditch 
et al. 2020) was an important development in reasserting that the climate adaption 
of forests is a vital component, in part because this is necessary to secure future 
climate mitigation by forestry. This definition also recognized the importance of the 
social dimension. However, CSF is an evolving concept and this definition marks 
the current stage in its development, not an end point. In particular, it is important 
to recognize that the definition is derived by a group working from a European per-
spective on climate smart forestry in mountain regions.

2.5.1  �Gaps and Uncertainties

When scaling-up to global level and beyond mountain environments, several issues 
need to be reconsidered. For example, a future definition of CSF should cover a 
more global climate change context, reducing emissions from forest degradation 
and deforestation is one of the most important ways of combatting climate change.

Fig. 2.4  Indicators relevant for assessing Climate-Smart Forestry. The set of indicators refers to 
Vienna 2003, since some of the indicators from the updated set (Madrid 2015) require further 
development and testing for consideration (Bowditch et al. 2020)
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It has been suggested that in areas more likely to maintain optimal growth condi-
tions for forests in the long term, forest management should make use of their miti-
gation capacity (Jandl et  al. 2015). The definition does not emphasize that SFM 
already provides climate mitigation and that the role of CSF in enhancing this may 
benefit from some positive feedbacks. For example, the growth rate of some 
European forests has accelerated and total stand volume prior to final cutting is 
reached now much earlier than 100 years ago, thus increasing the C sequestration 
and substitution (Mäkinen et al. 2017; Pretzsch et al. 2014; Pretzsch et al. 2019; 
Socha et al. 2017; Socha and Staniaszek 2015). However, the potential for further 
mitigation of climate change is uncertain, since there is a lack of sufficient knowl-
edge of how elevated CO2 and temperature and changing weather pattern will affect 
tree growth, nor are there historical parallels (Yousefpour et al. 2012). Furthermore, 
the impacts of pests, diseases, and abiotic threats are uncertain. For example, 
European countries have recently experienced a series of noticeable forest distur-
bances, such as several storms in the fall/winter 2017–2018, extended drought in 
2018 and 2019 with subsequent bark beetle outbreaks, and disastrous wild forest 
fires. Cumulative evidence proves that CC is contributing to the increased frequency 
and intensity of these forest disturbances (Forest Europe 2019). Thus, while indi-
vidual trees may grow faster, forest resilience may decline, so that the overall level 
of C sequestration is reduced. This is why trade-offs and conflicts between adapta-
tion and mitigation measures should be considered (Böttcher et al. 2009) and why 
adaptation appears before mitigation in the COST Action definition (Bowditch 
et al. 2020).

It is important to have a definition of climate smart forestry, just as there is one 
for CSA; however, for adaptation and mitigation measures to be truly successful, an 
approach that considers the entire land use system is required. It is therefore neces-
sary to harmonize forest management under climate change with respective mea-
sures in agriculture, wildlife conservation, and any other objectives with implications 
for land management and the bioeconomy. This does not mean that the concept of 
CSF is wrong, but a gap exists in defining how it fits within a wider climate smart 
landscapes approach.

The focus in the definition on social dimension is a new look at the problem, but 
it deserves more attention (Scheffers et al. 2017). In particular, indicators and analy-
sis methods to measure and depict potential trade-offs between fostering adaptation 
and mitigation and ecosystem service provision need to be further developed. For 
example, the economic costs for adaptation and mitigation treatments need to be 
quantified in order to device CSF scenarios that are economically feasible in the 
long term. For example, in many mountain areas, the protection efficiency against 
rockfall, avalanches, and landslides must be ensured when currently nonautochtho-
nous tree species or provenances are introduced to adapt forests to the future cli-
mate. Another example is the potential trade-off between adaptation or mitigation 
and the provision of the forests recreational, cultural, and tourism services. The role 
of professionals (scientists and forest managers) involved in education and clarifica-
tion of climate change processes can be important not only for forest owners but 
also for the society as the whole and therefore for public acceptance of climate 
smart forestry (Laakkonen et al. 2018).
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2.6  �Developing a Forest Manager Vision of CSF

An important step for implementing CSF on any type of forest policy is ensuring 
that concepts are accessible and translatable into practice for forest managers (Groot 
et al. 2010; Sousa-Silva et al. 2018; Bowditch et al. 2019). They play a key role in 
adopting the mechanisms of policy and turning them into common and best prac-
tice, representing a broad behavioral change that can have wide-ranging benefits 
(Nichiforel 2010; Carmon-Torresa et al. 2011; Raymond et al. 2016). However, the 
science-policy-practice interface has been difficult to navigate with many still 
emphasizing a large disconnect in communication (Nijnik et al. 2016). The CSF 
definition and indicators are a first step in introducing forest management specifi-
cally focused on climate change response. Although these were developed by a 
range of forest professionals, only a small number of managers were involved; 
therefore, engaging managers was viewed as a crucial stage of the process of refin-
ing and testing the accessibility and relevance of the work (Bowditch et al. 2020).

In an online survey, forest managers from 14 European and neighboring coun-
tries were asked to critique the CSF definition and indicators from a management 
perspective. Representatives from each country involved in the CLIMO project dis-
seminated the survey to public, private, community, or other relevant forest manage-
ment entities within the country to capture the range of perspectives and challenges.

2.6.1  �Forest manager’s Response

Forty-seven percent of all managers viewed climate change as a critical or high risk 
to management aims and objectives; however, 42% viewed it as a medium risk and 
11% considered it to be a low or nonexistent risk. Around 41% of managers believed 
that they were equipped with the tools and knowledge to respond to climate change, 
40% were unsure, and the remainder did not believe they were equipped. Examples 
of contrasting options included:

“we have knowledge but constraints outside our control prevents us from effective delivery”

“there are more threats than ever before but as professionals would rise to the challenge 
through constant pursuit of knowledge”

A main challenge identified by forest managers is the ability to turn knowledge into 
action and management approaches with constraints ranging from systemic national 
forestry policy and management, to capacity to deliver on aims at stand level due to 
available time, resources, and bureaucratic barriers.

The CSF definition presented to managers was generally well-received with 62% 
saying it was accessible, clear, and relevant, but 38% either saying it was too com-
plex or that they did not understand the definition. The majority of the negative 
responses were in countries where the definition had to be translated into the native 
language with a possibility of some meanings and phrases being lost in translation. 

2  Defining Climate-Smart Forestry



50

Although 37% of managers found the definition either very useful or useful with 
54% finding it moderately or marginally useful, 9% found the definition not useful. 
Examples of contrasting responses are:

“it is succinct and clear and brings together useful aims”

“A definition should also include the economic dimension, long-term profitability”

“would become lost in the busy job of a manager but would be good as reference during 
design and operational phases”.

“distant from the realities of management in the field”.

The CSF list of indicators based on the pan-European Criteria and Indicators for 
Sustainable Forest Management was well received by the forest managers, who all 
acknowledged it represented a comprehensive set of management concerns. Despite 
the positive attitude toward the indicators, most managers highlighted the limited 
scope of using indicators in management plans, as the current systems (national, 
regulatory, and company) were not compatible to integrate into plans. Managers 
further highlighted that there were too many indicators, which would be time con-
suming to measure, additionally managers pointed out that they did not have the 
knowledge or resources to measure most indicators. “Tree species composition” and 
“natural regeneration” were identified as the most important Sustainable Forest 
Management (SFM) indicators, whereas the “slenderness coefficient” and “round-
wood” were ranked as the least important. “Erosion prevention and maintenance of 
soil health” were the top ranked ecosystem services indicators followed by “water 
and air purification.” Ranked least important were “pharmaceuticals and bio-
chemicals” followed by “food.” Managers suggested that the indicators could be 
streamlined or modified for different forest types or objectives. The current list was 
unrealistic to implement but considered appropriate as a checklist and a broader list 
that could be classified into different areas of management.

2.6.2  �Refinement of Definition and Indicators

The main suggestions to improve the definition and indicators focused around eco-
nomic and social factors. Most notably profitability or revenue from management 
and transport, and the relationship with GHG emissions. Further clarification on the 
C cost of producing different forest products and bringing them to market was high-
lighted by a cross-section of managers, emphasizing the importance of integrating 
life cycle knowledge into management decisions (Karvonen et al. 2017). It was also 
suggested that measurement of the benefits of direct fossil fuel substitution from 
forestry could explicitly translate another element of the definition into an indicator 
(Münnich Vass 2017). The use of technology was also mentioned as a potential 
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indicator to track integration and use, which either benefits or hinders CSF adapta-
tion (Biggs et al. 2010; Ghaffariyan et al. 2017).

Support of communities and rural areas was mentioned widely by respondents as 
an indicator that could evaluate the importance of a forest to the local area and wider 
rural economy. Greater recognition of small landowners and their management 
needs, as well as recognizing contributions to climate change was viewed as impor-
tant locally and landscape wide to encourage investment in CSF. The level of public 
awareness of forest management and services was identified as a potentially power-
ful social indicator, which demonstrates the current disconnect between forestry 
sector and society about the role of forests and forestry including their benefit to the 
wider environment (Upton et al. 2015; Seidl et al. 2016).

A key theme emerged that addressed wider issues of communication among 
policy, science, and practice, which highlighted the need to integrate explicit cli-
mate change adaptation and mitigation goals into grants and incentives (Opdam 
et al. 2013; Fischer et al. 2015; Blades et al. 2016). This was further supported by a 
range of forest managers expressing the need to challenge traditional silviculture 
and approaches to forest management, as well as considering other land uses such 
as agriculture in joined-up approaches:

“We cannot be afraid of having healthy discussion that challenges traditional manage-
ment’s compatibility with current goals”

Training and education also emerged as a common theme:

“there needs to be a commitment to training those future professionals and current profes-
sionals in climate and resilience thinking and practice”.

Other managers identified that scenario planning within management plans and at 
higher levels would be crucial to climate change responses (Jandl et al. 2018):

“Local climate change scenarios that address fine scale change will be really important for 
managers and provide guidance for planning and redundancies”.

Scenario-driven analyses would give managers response pathways to follow in case 
of unexpected or unprecedented events affecting the productivity and integrity of 
their forests.

In general, the definition was viewed as a positive start by the majority of forest 
managers who saw it as a vision statement to reference broad aims and only lacked 
wording on economic implications. The indicators were identified by managers as a 
set of tools that could potentially have practical relevance for their work. However, 
the indicators required clear instructions and tools for them to be implemented into 
management plans. The next step would be to trial a set of indicators with forest 
managers to assess the ease of use and interpretation to inform current data and/or 
create new baselines.
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2.7  �Future Perspectives for CSF

With the definition of CSF in this chapter and in Bowditch et al. (2020) and numer-
ous previous applications (e.g., Nabuurs et al. 2017; Yousefpour et al. 2018; Jandl 
et al. 2018), the concept of CSF is established in forest science. The next step will 
be to implement CSF in practice. This encompasses balancing adaptation, mitiga-
tion, and ES provision from the stand to the European scale, and working with 
international partners to expand the definition to suit a global understanding of the 
concept. While in some cases, all three aspects of CSF may be considered in man-
agement decisions at the stand scale, other circumstances may require prioritizing 
for one or the other at the landscape scale. Decisions on such sparing versus sharing 
strategies may depend on topography, structure of the forest landscape, forest indus-
try and administration, and other circumstances in different countries and regions. 
CSF needs to link global priorities with specific local conditions. A clear definition 
of CSF and its implementation in practical forest management can contribute to 
this link.

The implementation of climate smart management decisions should be embed-
ded within the cyclical adaptive management process of planning, implementing, 
monitoring, evaluating, and revising CSF management (Walters 1986). A forward-
looking rather than reactive approach should be adopted for planning (Yousefpour 
et al. 2017). This involves considering climate and other environmental and socio-
economic conditions expected for the future as well as their uncertainties in deci-
sion making. Results from species distribution models may provide a basis for the 
selection of candidate tree species to grow under future conditions (e.g., Hanewinkel 
et al. 2012), whereas dynamic forest development models may deliver understand-
ing on successional dynamics and management and disturbance impacts under cli-
mate change scenarios (Temperli et al. 2020; Reyer et al. 2015; Seidl et al. 2017; 
Gutsch et al. 2018). Specifically, these models can be used to evaluate potential CSF 
scenarios, including schemes for natural regeneration and planting (assisted migra-
tion), and generally deliver management targets for forward looking adaptive man-
agers at a broad range of spatial and temporal scales (Pretzsch et al. 2008; Yousefpour 
et al. 2018; Jandl et al. 2018). In addition, a database of “best practices” from indi-
vidual forest management agencies, regions, and countries may serve as useful deci-
sion tools to promote CSF management.

Indicator system to measure mitigation, adaptation, and ES provision, such as 
the one suggested in this chapter based on C& I for sustainable forest management 
by Forest Europe (Forest Europe 2015), need to be constantly updated to tackle 
upcoming challenges. With C sinks in European forests being limited (Nabuurs 
et al. 2013), mitigation strategies need to also focus on storing C in wood products 
and buildings and thereby substituting fossil fuel–intensive energy sources. Hence, 
indicators to quantify mitigation need to go beyond the C sequestered in the tree 
biomass and the soil, but also include the wood value chain (Verkerk et al. 2020). 
Challenging questions on system boundaries need to be resolved in that regard 
(Sandin et al. 2016). The CSF aspect of adaptation is often captured indirectly as the 
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so-called adaptive capacity of forests and the forestry industry (Lindner et al. 2010; 
Irauschek et al. 2017). Indicators on provenances, tree species and stand and forest 
type diversity, as well as on the density of forest road networks and the regulatory 
and economic boundaries of forest enterprises are inter alia used for this purpose. A 
step forward would be to assess adaptation directly by quantifying the difference 
between the current and a targeted state of the forest. This may include measuring 
the progress of assisted migration of climate change-adapted provenances and 
(native and nonnative) tree species (Bolte et al. 2009). Indicators could be the per-
centage of a drought-adapted provenance or tree species, or forest structural param-
eters that measure disturbance resistance and resilience (Bryant et al. 2019; Temperli 
et al. 2020). These difference-indicators could be advantageous for a more targeted 
adaptation process, but may also create challenges with regard to comparability 
across stands, landscapes, or countries, because management targets need to be 
defined specifically for each spatial entity. Efforts to further harmonize indicators 
internationally are pivotal for climate smart policy making at European levels 
(Alberdi et al. 2016).

Evaluating and revising CSF strategies completes the adaptive management 
cycle. Evaluation needs to assess whether targeted ES can be provided sustainably 
(also considering social and economic aspects) as forests adapt to climate change 
and novel tree species compositions emerge. Thereby climate change may also cre-
ate opportunities. Expanding deciduous trees in subalpine conifer forests may offer 
a broader spectrum of site-adapted tree species that can be promoted following tim-
ber harvesting or natural disturbances. This may benefit management toward het-
erogeneous stand structures and thus the long-term maintenance of the forest’s 
protective function against rockfall and landslides (Bebi et al. 2016), as well as posi-
tive effects on soil water availability and water cycling at the landscape scale. 
Moreover, forest stands with high levels of genetic diversity and species richness 
may improve ecosystem service provision including the production of raw materi-
als, medical resources, tourism, recreation, and aesthetic, cultural, and spiritual 
experiences. The CSF concept offers the opportunity to connect agriculture and 
forestry in submountain regions to create an effective (integrated) climate smart 
management system of whole areas. CSF decisions must consider uncertainties 
(i.e., by promoting a range of candidate tree species) as CSF paradigms of today 
may shift in the next decades as we learn from the effects of past management. 
Further developments of the CSF concept need to ensure that it remains flexible and 
dynamic such that it can be applied to a broad range of environmental and socioeco-
nomic conditions in an uncertain future.

In summary, CSF is a continuously evolving concept; the definition presented 
here from COST Action CA15226 Climate Smart Forestry in Mountain Regions 
and use throughout this book aims to help policymakers and practitioners develop 
focused governance and management through which forests can adapt and mitigate 
climate change, while continuing to deliver wide benefits to society (Bowditch 
et al. 2020).
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