
Downloaded from: http://insight.cumbria.ac.uk/id/eprint/4994/

Usage of any items from the University of Cumbria’s institutional repository ‘Insight’ must conform to the following fair usage guidelines.

Any item and its associated metadata held in the University of Cumbria’s institutional repository Insight (unless stated otherwise on the metadata record) may be copied, displayed or performed, and stored in line with the JISC fair dealing guidelines (available here) for educational and not-for-profit activities provided that

- the authors, title and full bibliographic details of the item are cited clearly when any part of the work is referred to verbally or in the written form
- a hyperlink/URL to the original Insight record of that item is included in any citations of the work
- the content is not changed in any way
- all files required for usage of the item are kept together with the main item file.

You may not

- sell any part of an item
- refer to any part of an item without citation
- amend any item or contextualise it in a way that will impugn the creator’s reputation
- remove or alter the copyright statement on an item.

The full policy can be found here. Alternatively contact the University of Cumbria Repository Editor by emailing insight@cumbria.ac.uk.
CYP2C8 Polymorphisms among malaria patients from Guinea-Bissau

Yvonne Khoo J-Lyn
Supervised by Prof. Dr. Vera Ribeiro
European Joint Master in Water and Coastal Management
Universidade do Algarve
Portugal
19 June 2008
CONTENTS

- Introduction
- Research objectives
- Materials and methods
- Results
- Discussion
- Conclusion
- Future recommendations
- Bibliography
- Acknowledgements
INTRODUCTION

Malaria is one of the major public health problems in more than 90 countries, inhabited by a total of some 2.4 billion people, representing about 40% of the world’s population (WHO, 2004).
Malaria endemic areas
Amodiaquine (AQ) has been recently introduced into artemisinin-based combination therapy for use in malaria control programmes and as a first line treatment for children with uncomplicated malaria (WHO, 2006).
Besides amodiaquine, CYP2C8 also metabolizes several therapeutically important drugs and endogenous substances including:

- paclitaxel
- verapamil
- rosiglitazone
- cerivastatin
- amiodarone
- dapsone
- all-trans-retinoic acid
- arachidonic acid
CYP2C8 is mainly expressed in the liver, as well as in various extrahepatic tissues such as the vascular smooth muscles (Klose et al., 1999; Fleming, 2001).

The main CYP2C8 polymorphisms known code for the amino acid changes I269F, R139K, K399R and I264M.

These SNPs define 3 main non-wild-type alleles: **CYP2C8*2**, **CYP2C8*3** and **CYP2C8*4**.
A glance at Guinea-Bissau

Source: travelpod.com
A glance at Guinea-Bissau

Source: travelpod.com
Canchungo hospital, Guinea-Bissau

Source: www.kalpana.it
RESEARCH OBJECTIVES

• To study **CYP2C8 alleles** among malaria patients from Guinea Bissau

• To assist **policy-makers** in the management of malaria in Guinea-Bissau

• To generate **pharmacogenetic data** for the evaluation of treatment and drug dispersion

• To **contribute findings** to other databases and bio-banks within and outside Europe

• To allow **further comparisons** with other populations previously characterized in the Center for Molecular and Structural Biomedicine, Universidade do Algarve, Portugal
MATERIALS AND METHODS

Subjects: 91 randomly selected malaria patients from Guinea-Bissau.
DNA Extraction

Polymerase Chain Reaction (PCR)

Restricted Fragment Length Polymorphism (RFLP)

Statistical Analysis

Allelic frequencies determined - PM alleles? EM alleles? etc
Lane 1: φX174 DNA/HinfI Marker; Lane 2: Homozygous mutant for the CYP2C8*2 allele; Lane 3, 5, 6: Homozygous wild-type for the CYP2C8*2 allele; Lane 4: Heterozygous for for CYP2C8*2 allele; Lanes 7 to 11: Homozygous wild-type bands for the CYP2C8*4 variant; Lane 12: PCR amplicon used to generate the RFLPs
CYP2C8 allele frequencies obtained:

CYP2C8*2 = 0.2418

CYP2C8*3 = 0.3242

CYP2C8*4 = not detected
Distribution of CYP2C8 genotypes among GB subjects
DISCUSSION

• Comparison of **CYP2C8 genotypes** with other populations

• Comparison of **CYP2C8 allele frequencies** with other populations

• Comparison of **CYP2C8 allele frequencies** between malaria patients from GB and Zanzibar
Comparison of CYP2C8 allele frequencies between malaria patients from Guinea-Bissau and Zanzibar

• Higher prevalence of the CYP2C8*3 allele in West Africa

Comparison with Asian and Oceanic CYP2C8 allele frequencies

• Significant differences not detected
CYP2C8 genotype comparison with 5 other populations
Comparison of CYP2C8 allele frequencies with other populations
CONCLUSION

• Highest frequency of CYP2C8 variant alleles ever recorded in a population of African descent.

• High occurrence of CYP2C8*2 and CYP2C8*3 alleles among malaria patients in Guinea-Bissau.

• This implies a high incidence of CYP2C8 poor metabolizer alleles among malaria patients in Guinea-Bissau who may be at a greater risk of adverse effects compared to other populations previously characterized.
FUTURE RECOMMENDATIONS

• Further investigation taking into account the effects of CYP2C8 metabolism on the pharmacokinetics of antimalarials

• Study of polymorphisms in healthy subjects
BIBLIOGRAPHY

Special thanks to my supervisor Prof. Dr. Vera Ribeiro

My Erasmus coordinator Prof. Dr Alice Newton

Prof. Virgílio do Rosário

This research involves a collaboration with the Center of Malaria and Tropical Diseases, Universidade de Lisboa, in the frame of the Portuguese Network for Malaria and the Network for Tropical Health Research in Portuguese-speaking countries (RIDES-PLP).

This project is partially supported by the Project Ceratonia from Caixa Geral de Depositos.

Khoo YJL is a recipient of an Erasmus Mundus studentship.

Muito obrigada