

Pope, Francis D. ORCID: https://orcid.org/0000-0001-6583-8347, Gatari, Michael ORCID: https://orcid.org/0000-0001-9193-6901, Ng'ang'a, David, Poynter, Alexander ORCID: https://orcid.org/0000-0002-8260-921X and Blake, Rhiannon (2018) Airborne particulate matter monitoring in Kenya using calibrated low-cost sensors [final revised article]. Atmospheric Chemistry and Physics, 18 (20). pp. 15403-15418.

Downloaded from: http://insight.cumbria.ac.uk/id/eprint/4160/

Usage of any items from the University of Cumbria's institutional repository 'Insight' must conform to the following fair usage guidelines.

Any item and its associated metadata held in the University of Cumbria's institutional repository Insight (unless stated otherwise on the metadata record) may be copied, displayed or performed, and stored in line with the JISC fair dealing guidelines (available <u>here</u>) for educational and not-for-profit activities

provided that

• the authors, title and full bibliographic details of the item are cited clearly when any part of the work is referred to verbally or in the written form

• a hyperlink/URL to the original Insight record of that item is included in any citations of the work

- the content is not changed in any way
- all files required for usage of the item are kept together with the main item file.

You may not

- sell any part of an item
- refer to any part of an item without citation
- amend any item or contextualise it in a way that will impugn the creator's reputation
- remove or alter the copyright statement on an item.

The full policy can be found <u>here</u>. Alternatively contact the University of Cumbria Repository Editor by emailing <u>insight@cumbria.ac.uk</u>.

Supplement of

Airborne particulate matter monitoring in Kenya using calibrated low-cost sensors

Francis D. Pope et al.

Correspondence to: Francis D. Pope (f.pope@bham.ac.uk)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Supplementary Material

Site meteorology

Figure 1d provides the wind rose for the measurement period and Table 1 provides the statistical summary data for the measured meteorological variables during the study period. The wind came predominantly from the northeast with a mean average wind speed of 1.9 m/s. The measurement period was largely dry but there were rain events on the following days: 17th, 19th and 24th February, and 17th and 22nd of March, see grey shaded rectangles in Figure 3. Air mass back trajectory analysis using HYSPLIT confirms that the air masses arriving in Nairobi, during the measurement period, came from the northeast (Stein et al., 2015). It is noted, the Nanyuki rural background field site is located north to northeast of Nairobi and hence is a sensible choice for the measurement of the rural aerosol loading arriving in Nairobi. The temperature and relative humidity time series data from the urban background site is shown in supplementary figure S2.

Table S1 Mean average PM mass concentrations (PM_1 , $PM_{2.5}$ and PM_{10}) and daily exceedances of the WHO PM guidelines ($PM_{2.5}$ and PM_{10}) observed at the three measurement sites during the intensive period. ¹WHO guidelines for daily PM_{10} and $PM_{2.5}$ are 50 and 25 µg/m³, respectively

Measureme	Measureme	Average	Average	Average	% daily	% daily
nt location	nt days	PM ₁ mass	PM _{2.5} mass	PM ₁₀ mass	PM _{2.5}	PM ₁₀
	(number)	concentrati	concentrati	concentrati	exceedance	exceedance
		on (µg/m³)	on (µg/m³)	on (µg/m³)	s ¹	s ¹
Urban	14	17.1	25.3	62.6	35.7	71.4
background						
Urban	14	33.0	48.2	120.6	100.0	100.0
roadside						
Rural	14	11.6	16.6	23.4	21.4	0.0
background						

Table S2 Summary meteorological data for the urban background monitoring site in Nairobi (2nd February – 23rd March 2017)

	Wind speed	Pressure	Temperature	Relative humidity
	(m/s)	(mbar at 1680 m)	(°C)	(%)
Minimum	0.1	827.3	15.2	15.0
1 st Quartile	1.0	831.4	18.9	37.0
Median	1.6	832.4	21.5	51.0
Mean	1.9	832.4	22.1	51.4
3 rd Quartile	2.5	833.4	25.2	66.0
Maximum	10.5	836.4	30.7	90.0

Figure S1. There is no dependence on recorded PM mass concentration upon RH. Top panel – histogram of recorded RH at the urban background site. The data with RH greater than 85% RH is shown in red and represents only 0.84% of the data recorded. Bottom panel – scatter plots of PM_{10} and $PM_{2.5}$ versus RH for the urban background site. Black and red points represent PM10 and PM2.5 data, respectively. Neither site shows any significant dependence of PM concentration upon RH, as expected with respect to Crilley et al. 2018

Figure S2. Time series for temperature and relative humidity data collected at the urban background field site in Nairobi.

Figure S3 Box and whisker plots of the daily averaged $PM_{2.5}$ and PM_{10} mass concentrations measured at the three sites. The green dashed and dotted lines represents the WHO recommended annual and daily limits, respectively

Figure S4 Labelled photograph of key components of low cost PM monitor.