
Downloaded from: http://insight.cumbria.ac.uk/id/eprint/3542/

Usage of any items from the University of Cumbria’s institutional repository ‘Insight’ must conform to the following fair usage guidelines.

Any item and its associated metadata held in the University of Cumbria’s institutional repository Insight (unless stated otherwise on the metadata record) may be copied, displayed or performed, and stored in line with the JISC fair dealing guidelines (available here) for educational and not-for-profit activities provided that

- the authors, title and full bibliographic details of the item are cited clearly when any part of the work is referred to verbally or in the written form
- a hyperlink/URL to the original Insight record of that item is included in any citations of the work
- the content is not changed in any way
- all files required for usage of the item are kept together with the main item file.

You may not

- sell any part of an item
- refer to any part of an item without citation
- amend any item or contextualise it in a way that will impugn the creator’s reputation
- remove or alter the copyright statement on an item.

The full policy can be found here. Alternatively contact the University of Cumbria Repository Editor by emailing insight@cumbria.ac.uk.
Eucalyptus in Great Britain
Species choice, yields and financial returns

Andrew Leslie
Head of School
National School of Forestry
University of Cumbria

Woody Crops: Growing a Bioeconomy
9th Biennial Short Rotation Woody Crops Operations Working Group Conference, November 5-8, 2012, Oak Ridge, Tennessee
Contents

• Potential species
• Records of yields
• *Eucalyptus gunnii* growth curve
• Costs and revenues
• Economic analysis
• Risk
Potential species
Potential species

Figure 1: Comparison of latitude and area of Europe and Australia (adapted from Turnbull and Eldridge 1983. The natural distribution of *E. gunnii* (black) and *E. nitens* (grey) (Brooker and Kleinig 1990). (Leslie, Mencuccini and Perks 2011)
Figure 2: Growth and hardiness of eucalypts in Great Britain (Leslie, Mencuccini and Perks 2011)
Daneshill – Nottinghamshire

Woodchip harvested in June 2011 was 2076.4 tonnes or 85.83 tonnes / ha or 17.16 tonnes ha\(^{-1}\) year\(^{-1}\) (greenish)
(6.95 tonnes acre\(^{-1}\) year\(^{-1}\))
(Wooddisse 2011)
Records of yields (volumes)

Red Marley – Worcestershire - second rotation coppice measured at 10 years old

<table>
<thead>
<tr>
<th>Species</th>
<th>Height (m)</th>
<th>Dbh (cm)</th>
<th>Stools ha(^{-1})</th>
<th>Stems ha(^{-1})</th>
<th>Vol m(^3) ha(^{-1})</th>
<th>Biomass odt ha(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. gunnii</td>
<td>17.19</td>
<td>13.2</td>
<td>2370</td>
<td>3792</td>
<td>248</td>
<td>193</td>
</tr>
<tr>
<td>E. dalrympleana</td>
<td>17.08</td>
<td>16.1</td>
<td>530</td>
<td>954</td>
<td>69</td>
<td>49</td>
</tr>
</tbody>
</table>

| | | | 2900 | 4746 | 317 | 242 |

Assuming a dry density ~700 kg m\(^{-3}\)

(McKay 2010)
$E. \text{gunnii}$ growth

- **1st rotation**: 15 years – 26 m3 ha$^{-1}$ y$^{-1}$ based on interpolated data from sites from across GB

- **2nd rotation**: 10 years - Red Marley – MAI Coppice = 30 m3 ha$^{-1}$ y$^{-1}$ @ 10 years old
E. gunnii growth

\[
y = -8E-05x^2 + 0.0933x + 0.5778
\]

\[R^2 = 0.9085\]
E. gunnii growth

\[y = 0.0465x + 7.9046 \]

\[R^2 = 0.8248 \]
E. gunnii growth

![Graph showing growth of E. gunnii over age]

- **X-axis (Age (years))**: 0 to 20
- **Y-axis (Stem volume m³)**: 0 to 0.25

The graph illustrates the growth pattern of E. gunnii, with stem volume increasing over the years.
E. gunnii growth

Dbh @ 15 years = 16.3 cm
Height @ 15 years = 17.4 m

AFOCEL (2003) volume equation:
Stem volume =
$-5.04 + (0.03556 \times (dbh^2) \times \text{height}) \times 1000$

Tree volume @ 15 years = 0.16 m³
Income – 1st Rotation

- Stem volume @ 15 years = 0.16 m³
- Standing volume @ 2,500 stems/ha = 396 m³ ha⁻¹
- MAI = 26 m³ ha⁻¹ y⁻¹
- **Standing sales prices** for material of stem volume of 0.16 m³ for GB is approx £11 m⁻³ ($5 ft⁻³)
- So standing value = £4365 ha⁻¹ ($2587 acre⁻¹)

- Delivered biomass prices for the UK electricity sector are £30-60 odt⁻¹ (ex VAT) for UK feedstocks and a price range of £105-135 odt⁻¹ for imports ([DECC 2010](https://www.gov.uk/government/publications/uk-sustainable-bioenergy-platform-biomass-input-price-forecast-2010-2019))
Income – subsequent rotations

- Coppice volume @ 10 years = 300 m³
- MAI = 30 m³ ha⁻¹ y⁻¹
- 300 m³ @ 1.05 t m⁻³ = 315 tonnes wet weight or 150 tonnes dry weight (based on AFOCEL 2003)
- **Standing sales prices** for material of stem volume of less than 0.124 m³ for GB is approx £11 m⁻³ ($5 ft⁻³)
- So standing value = £3,300 ha⁻¹ ($2,138 acre⁻¹)

- In 55 years get 5 rotations
Establishment costs

- Biomass low value = effective low cost establishment, based on Irish approach
- Assumed 5% discount rate

<table>
<thead>
<tr>
<th>Year</th>
<th>Activity</th>
<th>Unit</th>
<th>Number</th>
<th>Cost</th>
<th>Discounted Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Herbicide spray</td>
<td>ha</td>
<td>1</td>
<td>250.00</td>
<td>250.00</td>
</tr>
<tr>
<td>0</td>
<td>Ripping</td>
<td>hectare</td>
<td>1</td>
<td>125.00</td>
<td>125.00</td>
</tr>
<tr>
<td>0</td>
<td>Cost of Trees</td>
<td>tree</td>
<td>2500</td>
<td>0.35</td>
<td>875.00</td>
</tr>
<tr>
<td></td>
<td>Cost of planting 1000 trees</td>
<td></td>
<td></td>
<td>240</td>
<td>600.00</td>
</tr>
<tr>
<td>1</td>
<td>Spot spraying</td>
<td>tree</td>
<td>2500</td>
<td>0.08</td>
<td>200.00</td>
</tr>
<tr>
<td></td>
<td>Spot spraying</td>
<td>tree</td>
<td>2500</td>
<td>0.08</td>
<td>200.00</td>
</tr>
</tbody>
</table>

Total costs: 2250 | 2221.88
NDR @ 5% discount rate

<table>
<thead>
<tr>
<th>Year</th>
<th>Operation</th>
<th>Cost/Revenue (£)</th>
<th>Disc Cost/Revenue (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Establishment</td>
<td>-1850</td>
<td>-1850</td>
</tr>
<tr>
<td>1</td>
<td>Herbicide</td>
<td>-200</td>
<td>-191</td>
</tr>
<tr>
<td>2</td>
<td>Herbicide</td>
<td>-200</td>
<td>-181</td>
</tr>
<tr>
<td>15</td>
<td>Harvesting single stems</td>
<td>+4365</td>
<td>+2100</td>
</tr>
<tr>
<td>25</td>
<td>Harvesting coppice</td>
<td>+3300</td>
<td>+975</td>
</tr>
<tr>
<td>35</td>
<td>Harvesting coppice</td>
<td>+3300</td>
<td>+598</td>
</tr>
<tr>
<td>45</td>
<td>Harvesting coppice</td>
<td>+3300</td>
<td>+367</td>
</tr>
<tr>
<td>55</td>
<td>Harvesting coppice</td>
<td>+3300</td>
<td>+225</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>+15315</td>
<td>+2043</td>
</tr>
</tbody>
</table>
NDR & IRR

Internal rate of return of c. 8%
Comparison alternative
Sitka Spruce, YC20, 2500 stems ha\(^{-1}\), intermediate thin

<table>
<thead>
<tr>
<th>Year</th>
<th>Operation</th>
<th>Cost/Revenue (£)</th>
<th>Disc Cost/Revenue (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Establishment</td>
<td>-1850</td>
<td>-1850</td>
</tr>
<tr>
<td>1</td>
<td>Herbicide</td>
<td>-200</td>
<td>-191</td>
</tr>
<tr>
<td>2</td>
<td>Herbicide</td>
<td>-200</td>
<td>-181</td>
</tr>
<tr>
<td>20</td>
<td>Thinning</td>
<td>+287</td>
<td>+108</td>
</tr>
<tr>
<td>25</td>
<td>Thinning</td>
<td>+559</td>
<td>+165</td>
</tr>
<tr>
<td>30</td>
<td>Thinning</td>
<td>+1102</td>
<td>+255</td>
</tr>
<tr>
<td>35</td>
<td>Thinning</td>
<td>+1055</td>
<td>+191</td>
</tr>
<tr>
<td>40</td>
<td>Thinning</td>
<td>+739</td>
<td>+105</td>
</tr>
<tr>
<td>45</td>
<td>Thinning</td>
<td>+1129</td>
<td>+126</td>
</tr>
<tr>
<td>50</td>
<td>Thinning</td>
<td>+959</td>
<td>+84</td>
</tr>
<tr>
<td>55</td>
<td>Clear fell</td>
<td>+9125</td>
<td>+754</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>+12705</td>
<td>-434</td>
</tr>
</tbody>
</table>
Risk
Figure 3: Minimum temperature for January (1961-1990). (Met Office undated)
Figure 4: Projections for Accumulated Temperature and Moisture Deficit for Great Britain (Broadmeadow, Webber, Ray and Berry 2009)
Conclusions

- Cold tolerant eucalypts possible crop
- Highly productive
- Higher returns than other trees
- But...Risk of cold damage
- Future risk not predictable
References

• Forestry Commission (2011) Sales contracts for standing coniferous timber from Forest Enterprise areas. Average Price for each Country, 1 October 2010 to 30 September 2011.

FCBA (no date) L’Eucalyptus. Expeces ligneuses pour la production de biomasse. FCBA. 4pp.