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Abstract 

The study aimed to distinguish between the effect of stabilisation and muscle activation on 

quadriceps maximal isometric voluntary contraction (MVC) torque generation. Nine subjects 

performed a) an MVC with restrained leg and pelvis (Typical MVC), b) a Typical MVC with 

maximal handgrip (Handgrip MVC), c) an MVC with only the leg contracting (Leg MVC), 

and d) an MVC with unrestrained leg and pelvis (Unrestrained MVC). Quadriceps torque and 

activation capacity differences between conditions were compared with repeated measures 

ANOVA and dependent t-tests, while EMG (from eleven remote muscles) was compared 

using Friedman’s and Wilcoxon. Typical MVC (277.2±49.6 Nm) and Handgrip MVC 

(261.0±55.4 Nm) were higher than Leg MVC (210.2±48.3 Nm, p<0.05) and Unrestrained 

MVC (195.2±49.7 Nm, p<0.05) torque. Typical MVC (83.1±15.9%) activation was higher 

than Leg MVC (68.9±24.3%, p<0.05), and both Typical MVC and Handgrip MVC 

(81.8±17.4%) were higher than Unrestrained MVC (64.9±16.2%, p<0.05). Only flexor carpi 

radialis, biceps brachii, triceps brachii and external oblique muscles showed EMG 

differences, with Leg MVC consistently lower than Typical MVC or Handgrip MVC. 

Stabilisation of the involved segments is the prime concern  subsequently allowing fuller 

activation of the muscle, reinforcing the need for close attention to stabilisation during 

dynamometry-based knee joint functional assessment. 



 

 

Introduction 

Isometric torque produced by maximal voluntary contraction (MVC) of the quadriceps is 

routinely used to assess knee joint function by dynamometry in various populations, such as 

clinical (e.g. [Hart et al, 1984; Souza et al, 2009]) or aged (e.g. [Reeves et al, 2004; 

Thompson et al, 2013]), as well as to assess the impact of various interventions (e.g 

[Labrunée et al, 2012; Stock and Thompson, 2014]).  The results of this assessment depend 

on the muscle size of the subject, as well as their ability to voluntarily activate the knee 

extensor muscles tested [Bampouras et al, 2006; Kent-Braun and Le Blanc, 1996]. In 

addition, they can be affected by the subject’s stabilisation on the dynamometer seat [Hart et 

al, 1984; Magnusson et al, 1993].  

With regards to body stabilisation, it has been shown that when hands were used to hold onto 

the dynamometer and the back was fixed to it, higher knee extensors torque by 6.4 % was 

generated compared to when only the back was fixed, which, in turn, generated higher torque 

by 7.5% than when no stabilisation at all was used [Magnusson et al, 1993]. On the other 

hand, it has been shown that stabilising the subject and, in particular, their pelvis on the 

dynamometer seat, allows for greater fixation of the rectus femoris origin [Hart et al, 1984]. 

This facilitates activation and hence greater force production by the rectus femoris muscle, 

contributing to increased quadriceps torque, as the rectus femoris accounts for ~17% of 

quadriceps torque [McNair et al, 1991].  

The activation of the tested agonist muscle, however, can potentially be enhanced through a 

different path. During an isometric quadriceps MVC, it is common for subjects to 

simultaneously contract a number of other muscles, remote to the tested muscle, to achieve 

maximum torque [Jacobsen et al, 2012]. The activation of those remote muscles may 

augment the tested muscle’s activation capacity, and subsequent torque produced, through a 

phenomenon termed concurrent activation potentiation (CAP) [Ebben, 2006; Ebben et al, 



 

 

2008]. CAP is underpinned by the theory of motor overflow, which suggests that when a 

motor area is active, other areas are affected by that activation [Hoy et al, 2004]. In the 

primary motor cortex, which controls movements of the face, arms, and legs [Donohue and 

Sanes, 1994], activation of one area would also result in higher activation of the others. 

Indeed, this theory has been supported by studies reporting that contraction of remote 

muscles to the tested quadriceps, e.g. jaw and arms, results in higher knee extensor torque 

[Ebben et al, 2008].  

Stabilisation and muscle activation are strongly interlinked, as a more stable segment will 

allow for higher muscle activation and, consequently, muscle force and torque generation. 

During quadriceps muscle strength assessment, if the pelvis is not adequately stabilised, the 

bicep femoris muscle is likely to become more active to contribute more substantially 

towards ensuring stabilisation of the pelvis [van Wingerden et al, 2004]. In turn, this will 

reduce the force generated by the quadriceps muscle, through increased reciprocal neural 

inhibition by the hamstrings contracting to stabilise the pelvis [Hamm and Alexander, 2010], 

as well as the increased antagonistic torque. Similarly, remote voluntary contractions can 

augment the agonistic muscle’s torque by increasing stabilisation (for example, hands 

gripping onto the dynamometer, [Magnusson et al, 1993]; the Valsalva manoeuvre increasing 

intra-thoracic pressure through activation of various torso muscles, stabilising the core, 

[Harman et al, 1998]) or by directly increasing agonistic muscle activation capacity.  

Being able to distinguish between stabilisation and activation effects on torque generation  

could help avoiding erroneous conclusions and difficulty in comparisons between studies of 

muscle function assessment. Therefore, the aim of the present study was to determine the 

effect of stabilisation and muscle activation capacity on the quadriceps maximum voluntary 

isometric torque, by manipulating subject stabilisation configurations on a dynamometer seat 

and inclusion of simultaneous remote voluntary contractions.  



 

 

Methods 

Subjects 

Following Institutional ethics approval, nine healthy, active males (mean ± SD: age 28.7 ± 

6.8 years, stature 1.78 ± 0.08 m, body mass 89.3 ± 13.0 kg) free from any musculoskeletal 

injuries gave written, informed consent to participate in the study. In order to reduce 

variability in performance, all subjects were familiarised with the experimental procedures 

(4) and visited the laboratory on a single occasion for testing. 

Isometric knee extension strength measurement 

Each subject’s isometric knee extension strength was initially determined by performing two 

maximum voluntary contractions (MVC). For those MVCs, the subjects were sat in the chair 

of a custom-made dynamometer (1) with the hip, knee and ankle joint angles at 90°. The lever 

arm and the bed of the dynamometer was very rigid, while the restraints allowed for better 

fixation of the pelvis and the subjects’ body compared to commercially available 

dynamometers. Straps were positioned over the pelvis and tested right thigh, to prevent 

extraneous movement, while the tested right leg was securely strapped, above the lateral 

malleolus, to a force-transducer (KAP, E/200 Hz, Bienfait B.V. Haarlem, The Netherlands). 

If the coefficient of variation (calculated as standard deviation / average * 100) between the 

two MVCs was <5%, the two MVCs were averaged, otherwise a third MVC was performed 

and the closest two were averaged (average MVC). Handgrip strength was assessed with the 

use of a dynamometer (Takei Scientific Inst. Co. Ltd, Niigata, Japan) and the same procedure 

as for the MVC was followed. 

Subsequently, subjects performed an MVC under four different conditions, in a randomised, 

counterbalanced order. During all four MVCs, the subjects had their arms crossed over their 

chest and adequate rest between trials was provided. The conditions were: 

a) an MVC as described above (Typical MVC),  



 

 

b) an MVC as the Typical MVC but with the addition of exerting maximal handgrip force 

(Handgrip MVC), 

c) an MVC where the subjects were instructed to isolate the contraction to their leg muscles 

only (Leg MVC) with the rest of the muscles relaxed, and  

d) an MVC where there were no restraining straps on the pelvis and tested thigh 

(Unrestrained MVC). During all MVCs, subjects were asked to exert as much force as 

possible against the ankle strap. 

Force signals were corrected for passive tension of the knee extensors and real-time force 

readings were displayed online and recorded (Matlab, The Mathworks, Natick, MA). The 

perpendicular distance from the centre of the knee joint to the point where force was applied 

(at the level of the ankle, at right angles to the longitudinal axis of the lower leg) was 

measured and multiplied by that force to provide torque, which was used for further analysis.   

Muscle activation capacity measurement 

Two 7 x 12.5-cm self-adhesive carbon rubber electrodes (Versa-Stim, ConMed, New York, 

USA) were placed on the proximal and distal regions of the quadriceps muscle group. Stimuli 

of 200-μs pulse width and 10-ms inter-stimulus gap were generated by an electrical 

stimulator (model DS7, Digitimer stimulator, Welwyn, Garden City, UK). Electrical stimuli 

application was displayed online along with the force signal. 

Doublets were applied at rest and at increments of 50mA, with the voltage set at 300 V. The 

intensity that resulted in generating one third of the average MVC torque [Bampouras et al, 

2012] was recorded and used for the experiment. Subsequently, a doublet was applied at the 

plateau phase of each MVC (superimposed) and 4 seconds after the superimposed twitch and 

while the subject was relaxed (resting). Muscle activation capacity was quantified from the 

superimposed and resting twitch torque using the interpolated twitch technique according to 

the equation ((1 – (superimposed twitch torque / resting twitch torque))*100.   



 

 

Electromyography (EMG) measurement  

Two surface Ag-AgCl electrodes of 10mm diameter each were placed in a bipolar 

configuration on flexor carpi radialis, biceps brachii, triceps brachii (long head), deltoid, 

pectoralis major, sternocleidomastoid, rectus abdominis, external oblique, vastus lateralis, 

biceps femoris (long head), and latissimus dorsi muscles to obtain EMG signals. The 

placement area was prepared by shaving and alcohol cleansing and all electrodes were placed 

perpendicular to the muscle fibres, with a centre-to-centre distance of 20mm and on the right 

handside, except for the vastus lateralis where the contralateral muscle was used.  These 

muscles were selected as the more likely muscles to contract during the MVCs described 

above and, thus, provide an indication of muscle activity during contractions as well as 

adherence to instructions for the Leg MVC.  

EMG was collected at a sampling rate of 2000Hz, and filtered with a high- and low-pass filter 

of 10 and 500Hz, respectively. The signal was subsequently smoothed using root mean 

square over 30ms (Aqknowledge, Biopac Systems, Santa Barbara, California) and a mean 

value from a 500ms window was taken during the plateau phase of the MVC and prior to the 

application of the twitch. As no comparison between subjects or muscles was to be conducted 

and testing took place in a single session, no EMG normalisation was performed.    

Statistical analysis 

Normality of distribution of the data was checked using Shapiro-Wilk test and subsequently 

confirmed for handgrip strength, torque and muscle activation capacity but not for EMG. 

Consequently, a repeated measures ANOVA was used to compare torque and muscle 

activation capacity between all four MVC conditions, followed by dependent t-test for 

pairwise comparisons when differences were found. In addition, a dependent t-test was used 

to compare handgrip strength at baseline and during Handgrip MVC. Friedman’s test was 

used to compare EMG between conditions for all muscles followed by Wilcoxon test where 



 

 

differences were found. Holm-Bonferroni adjustment was used for all pairwise comparisons 

and the adjusted p values are presented for these comparisons.    

Effect sizes (ES) were calculated for significantly different comparisons to provide an 

indication of the magnitude of the effect, with 0.8, 0.5 and 0.2 representing large, moderate 

and small effects for parametric tests effects sizes and 0.5, 0.3 and 0.1 representing  large, 

moderate and small effects for non-parametric tests  effects sizes [Fritz et al, 2012]. For all 

statistical analysis IBM SPSS Statistics v 22 was used. Data are presented as means ± SD, 

unless otherwise stated. Statistical significance level was set at p < 0.05.  



 

 

Results 

Average MVC torque from the two initial MVCs was 298.1 ± 56.7 Nm while submaximal 

stimulation intensity was 372 ± 123.0 mA.  

A significant overall difference was found for torque between the four conditions (p = 0.001). 

Subsequent analysis revealed that Typical MVC was significantly higher than Leg MVC (p = 

0.008, ES = 1.4) and Unrestrained MVC (p = 0.004, ES = 1.7), while Handgrip MVC was 

also significantly higher than Leg MVC (p = 0.034, ES = 1.0) and Unrestrained MVC (p = 

0.008, ES = 1.3) (Figure 1). In addition, handgrip strength was not significantly different (p = 

0.282) between handgrip performed on its own (44.4 ± 6.4 kg) and Handgrip MVC (41.6 ± 

6.1 kg). 

 

FIGURE 1 ABOUT HERE 

 

Muscle activation capacity was significantly different between conditions (p = 0.001), with 

higher activation for Typical MVC compared to Leg MVC (p = 0.020, ES = 0.7) and 

Unrestrained MVC (p = 0.002, ES = 1.1), and higher activation for Handgrip MVC compared 

to Unrestrained MVC (p = 0.001, ES = 1.0) (Figure 2). No other differences for activation 

were found. 

 

FIGURE 2 ABOUT HERE 

 

EMG differences between conditions (p < 0.05) were seen for the flexor carpi radialis, biceps 

brachii (, triceps brachii (long head) and external oblique muscles (Figure 3) only. For the 

flexor carpi radialis, Leg MVC was lower than Typical MVC (p = 0.036, ES = 0.9), Handgrip 

MVC (p = 0.036, ES = 0.8) and Unrestrained MVC (p = 0.036, ES = 0.8). For the biceps 



 

 

brachii, Leg MVC was lower than Handgrip MVC (p = 0.036, ES = 0.8) and Unrestrained 

MVC (p = 0.036, ES = 0.8). For the triceps brachii (long head), Leg MVC was lower than 

Typical MVC (p = 0.012, ES = 0.9). Finally, for the external oblique muscle, both Leg MVC 

(p = 0.036, ES = 0.8) and Unrestrained MVC (p = 0.036, ES = 0.8) were lower than Handgrip 

MVC.   

       

FIGURE 3 ABOUT HERE 



 

 

Discussion 

The aim of the study was to examine the effect of subject stabilisation and muscle activation 

capacity on knee joint torque developed during an isometric MVC, by distinguishing the 

effect of each component through manipulation of stabilisation configurations and inclusion 

of remote voluntary contractions. The results suggest that although both stabilisation and 

activation capacity play an important role in force generation, stabilisation of the involved 

segments plays the major role which will in turn allow fuller activation of the muscle.    

When the handgrip was added to the Typical MVC, no statistically significant change in 

torque or muscle activation was observed. Our results agree with CAP literature showing that 

when bilateral handgrip was added to knee extension, torque from an isometric contraction 

[Ebben et al, 2009] or dynamic contraction [Cherry et al, 2010] did not change, suggesting no 

beneficial effect of handgrip on knee extensor torque. Similarly to the present study, handgrip 

strength was also not significantly reduced during the knee extension (Cherry et al, 2010; 

Ebben et al, 2008]. These findings contradict expectations of increased activation and 

subsequent torque due to increased H-reflex activity and motor-evoked potentials induced by 

the additional handgrip contraction (Dowman and Wolpaw, 1988; Péréon et al, 1995].   

One possible reason for this contradiction is the contraction of the handgrip-related muscles 

not being sufficient to excite further the difficult to activate (possibly due to its higher content 

of type II muscle fibres; [Johnson et al, 1973]) quadriceps muscle [Behm et al, 2002], as 

suggested by the very similar activation values during Typical MVC and Handgrip MVC. A 

second possible reason relates to the action performed with the handgrip. When the arms 

were used to grab the dynamometer seat, ensuring a better-fixed torso, an increase in knee 

extension torque was seen [Magnusson et al, 1993]. However, the handgrip contraction used 

in the present study and Ebben et al [2008] and Cherry et al [2010] studies, does not appear to 

substantially contribute towards stabilising the torso. Therefore, although excitatory 



 

 

responses may take place during the grip, these do not assist in further stabilising the pelvis 

during knee extension. This notion is supported by findings that gripping the dynamometer 

seat or the pelvic strap during knee extension had no effect on quadriceps torque [Kramer, 

1990], most likely due to the fact that both actions offered the same stabilising effect to the 

torso. 

When the subjects were requested to focus on contracting the leg muscles only (Leg MVC) 

while still restrained by the dynamometer belt, activation was reduced by 17.5%, while 

torque was reduced by 24.2% when compared to the Typical MVC values. EMG data 

suggests that subjects were able to ‘engage less’ the flexor carpi radialis, biceps brachii, 

triceps brachii (long head) and external oblique muscles, as the EMG values were lower 

during the Leg MVC. In a study examining the EMG activity of muscles used in our study 

(biceps femoris (long head), external oblique, rectus abdominis) during an isotonic exercise, 

however, those muscles were shown to have lower activation during the isotonic exercise 

[Jacobsen et al, 2012]. If this is the case in the present study, then it is unlikely that the 

reduction in quadriceps activation values was due to the reduced EMG activity of those 

muscles. Interestingly, the rest of the EMG data showed no difference between any of the 

conditions. This could mean that other muscles were not required for the contraction, and 

hence, they remained ‘quiet’ throughout all conditions, or they were crucial to the contraction 

and therefore they were activated to achieve the task required, regardless of the instruction. 

Whichever the reason, the lack of difference in EMG activity between conditions for the rest 

of the muscles studied, precludes them as contributors to the muscle activation capacity 

changes.    

When the pelvis and tested right thigh restraints were removed (Unrestrained MVC), the 

reduction in activation (22.0%) and torque (29.6%) compared to typical MVC, was higher 

than the respective reduction in activation and torque seen in Leg MVC condition, although 



 

 

not statistically significantly so. Given that the subjects’ EMG in the measured muscles 

during Unrestrained MVC was equal or higher than the corresponding EMG values during 

Leg MVC, it is reasonable to assume that CAP did not augment knee extensor torque, as 

otherwise activation and torque would be higher in the Unrestrained condition. Collectively, 

these findings suggest that pelvis and tested thigh stabilisation is the major factor determining 

the knee extensor torque produced during an isometric knee extension, and optimal 

stabilisation subsequently facilitates muscle activation enabling maximum possible force 

generation by the tested muscles.  

The subjects in the present study were familiar with maximal isometric contraction, as per 

Typical MVC. However, the Leg MVC condition inevitably contained two potentially 

conflicting instructions (‘push as hard as possible against the ankle strap’ and ‘use only your 

leg muscles, relax the other ones’). This could have presented a limitation to the force 

generation during this condition as the opposing instruction requirement could impact 

negatively on maximum force generation [Marchant, 2010]. In addition, during the 

Unrestrained MVC, there was a tendency for subjects to lift off the dynamometer seat. 

However, they all maintained a position similar to the Typical MVC. It is likely that this 

position was maintained by voluntary activation reduction to prevent further lifting off the 

chair, which supports further the concept of the need for stabilisation first to enable 

maximum voluntary activation of the muscles.    

In conclusion, the present findings suggest that although stabilisation and activation are 

interlinked, stabilisation of the pelvis during an isometric knee extension is a priority in order 

to allow maximum voluntary activation of the quadriceps muscle. These results further 

reinforce the need for close attention to stabilisation during dynamometry-based knee joint 

functional assessment.       

 



 

 

References 

Bampouras TM, Reeves ND, Baltzopoulos V, Jones DA, Maganaris CN. Is maximum 

stimulation intensity required in the assessment of muscle activation capacity? J 

Electromyogr Kinesiol. 2012;22(6):873-7. 

Bampouras TM, Reeves ND, Baltzopoulos V, Maganaris CN. Muscle activation assessment: 

effects of method, stimulus number, and joint angle. Muscle Nerve. 2006; 34(6),740-46. 

Behm DG, Whittle J, Button D, Power K. Intermuscle differences in activation. Muscle 

Nerve. 2002;25(2):236-43. 

Button DC, Behm DG. The effect of stimulus anticipation on the interpolated twitch 

technique. J Sports Sci Med. 2008;7(4):520-4. 

Cherry E, Brown L, Coburn J, Noffal G. Effect of remote voluntary contractions on knee 

extensor torque and rate of velocity development. J Strength Cond Res. 2010;24(9):2564-9. 

Donohue JP, Sanes JN. Motor areas of the cerebral cortex. J Clin Neurophysiol. 

1994;11(4):382-96. 

Dowman R, Wolpaw JR. Jendrassik maneuver facilitates soleus H-reflex without change in 

average soleus motoneuron pool membrane potential. Exp Neurol. 1988;101(2):288-302. 

Ebben WP. A brief review of concurrent activation potentiation: theoretical and practical 

constructs.  J Strength Cond Res. 2006;20(4):985-91. 

Ebben WP, Leigh DH, Geiser CF. The effect of remote voluntary contractions on knee 

extensor torque. Med Sci Sports Exerc. 2008;40(10):1805-9. 

Fritz CO, Morris PE, Richler JJ. Effect size estimates: current use, calculations, and 

interpretation. J Exp Psychol. 2012;141(1): 2-18. 

Hamm K, Alexander CM. Challenging presumptions: Is reciprocal inhibition truly 

reciprocal? A study of reciprocal inhibition between knee extensors and flexors in humans.  

Man Therap. 2010;15(4):388-93. 



 

 

Harman EA, Frykman PN, Clagett ER, Kraemer WJ. Intra-abdominal and intra-thoracic 

pressures during lifting and jumping. Med Sci Sports Exerc. 1988;20(2):195-201. 

Hart DL, Stobbe TJ, Till CW, Plummer RW. Effect of trunk stabilization on quadriceps 

femoris muscle torque.  Phys Ther. 1984;64(9):1375-80. 

Hoy KE, Fitzgerald PB, Bradshaw JL, Armatas CA, Georgiou-Karistianis N. Investigating 

the cortical origins of motor overflow. Brain Res Rev. 2004;46(3):315-27. 

Jakobsen MD, Sundstrup E, Andersen CH, Bandholm T, Thorborg K, Zebis MK, Andersen 

LL. Muscle activity during knee-extension strengthening exercise performed with elastic 

tubing and isotonic resistance. Int  J Sports Phys Ther. 2012;7(6):606-16. 

Johnson MA, Polgar J, Weightman D, Appleton D. Data on the distribution of fibre types in 

thirty-six human muscles. An autopsy study. J Neurol Sci. 1973;18(1):111-29. 

Kent-Braun JA, Le Blanc R. Quantitation of central activation failure during maximal 

voluntary contractions in humans.  Muscle Nerve. 1996;19(7):861-9. 

Kramer JF. Effect of hand position on knee extension and knee flexion torques of 

intercollegiate rowers.  J Orthop Sports Phys Ther. 1990;11(8):367-71. 

Labrunée M, Antoine D, Vergès B, Robin I, Casillas J, Gremeaux V. Effects of a home-based 

rehabilitation program in obese type 2 diabetics. Ann Phys Rehab Med.  2012;55(6):415-29. 

Magnusson SP, Geismar RA, Gleim GW, Nicholas JA. The effect of stabilization on 

isokinetic knee extension and flexion torque production. J Athl Train. 1993;28(3):221-5. 

Marchant DC. Attentional focusing instructions and force production.  Front 

Psychol. 2010;1:210. 

McNair PJ, Marshall RN, Matheson JA. Quadriceps strength deficit associated with rectus 

fernoris rupture: a case report. Clin Biomech. 1991;6(3):190-2. 

Péréon Y, Genet R, Guihéneuc P. Facilitation of motor evoked potentials: timing of 

Jendrassik maneuver effects. Muscle Nerve. 1995;18(12):1427-32. 



 

 

Reeves ND, Narici MV, Maganaris CN. In vivo human muscle structure and function: 

adaptations to resistance training in old age. Exp Physiol. 2004;89(6): 675-89. 

Souza RB, Powers CM. Differences in hip kinematics, muscle strength, and muscle activation 

between subjects with and without patellofemoral pain.  J Orthop Sports Phys 

Ther. 2009;39(1):12-9. 

Stock MS, Thompson BJ. Effects of barbell deadlift training on submaximal motor unit firing 

rates for the vastus lateralis and rectus femoris. PLoS One, 2014;9(12):e115567. 

Thompson BJ, Ryan ED, Sobolewski EJ, Conchola EC, Cramer JT. Age related differences 

in maximal and rapid torque characteristics of the leg extensors and flexors in young, middle-

aged and old men. Exp Gerontol, 2013;48(2): 277-82. 

van Wingerden J, Vleeming A, Buyruk H, Raissadat K. Stabilization of the sacroiliac joint in 

vivo: verification of muscular contribution to force closure of the pelvis. Eur Spine 

J. 2004;13(3):199-205. 



 

 

Figure captions 

 

Figure 1. Isometric knee extension torque in all four different conditions (Typical MVC, 

subjects sat in the dynamometer chair with straps over the pelvis and tested right thigh; 

Handgrip MVC, as the Typical MVC but with the addition of exerting maximal handgrip 

force; Leg MVC, subjects were instructed to contract their leg muscles only with the rest of 

the muscles relaxed; Unrestrained MVC, no restraining straps on the pelvis and tested thigh). 

Values are means and SD. Significant differences with Typical MVC are indicated by an 

asterisk, while significant differences with Handgrip MVC are indicated by a dagger symbol.  

 

Figure 2. Quadriceps activation capacity in all four different conditions (Typical MVC, 

subjects sat in the dynamometer chair with straps over the pelvis and tested right thigh; 

Handgrip MVC, as the Typical MVC but with the addition of exerting maximal handgrip 

force; Leg MVC, subjects were instructed to contract their leg muscles only with the rest of 

the muscles relaxed; Unrestrained MVC, no restraining straps on the pelvis and tested thigh). 

Values are means and SD. Significant differences with Typical MVC are indicated by an 

asterisk, while significant differences with Handgrip MVC are indicated by a dagger symbol.  

 

Figure 3. Mean quadriceps EMG in all four different conditions (Typical MVC, subjects sat 

in the dynamometer chair with straps over the pelvis and tested right thigh; Handgrip MVC, 

as the Typical MVC but with the addition of exerting maximal handgrip force; Leg MVC, 

subjects were instructed to contract their leg muscles only with the rest of the muscles 

relaxed; Unrestrained MVC, no restraining straps on the pelvis and tested thigh) for flexor 

carpi radialis (Panel A), biceps brachii (Panel B), triceps brachii (long head) (Panel C) and 

external oblique muscles (Panel D). Values are means and SD. Significant differences are 



 

 

indicated by a, difference with Typical MVC; b, difference with Handgrip MVC; c, 

difference with Leg MVC; d, difference with Unrestrained MVC.   

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 



 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 


