
Downloaded from: http://insight.cumbria.ac.uk/id/eprint/1835/

Usage of any items from the University of Cumbria’s institutional repository ‘Insight’ must conform to the following fair usage guidelines.

Any item and its associated metadata held in the University of Cumbria’s institutional repository Insight (unless stated otherwise on the metadata record) may be copied, displayed or performed, and stored in line with the JISC fair dealing guidelines (available here) for educational and not-for-profit activities provided that

• the authors, title and full bibliographic details of the item are cited clearly when any part of the work is referred to verbally or in the written form

• a hyperlink/URL to the original Insight record of that item is included in any citations of the work

• the content is not changed in any way

• all files required for usage of the item are kept together with the main item file.

You may not

• sell any part of an item

• refer to any part of an item without citation

• amend any item or contextualise it in a way that will impugn the creator’s reputation

• remove or alter the copyright statement on an item.

The full policy can be found here. Alternatively contact the University of Cumbria Repository Editor by emailing insight@cumbria.ac.uk.

Lawrence D. Hayes, Nicholas Sculthorpe, Fergal M. Grace

Psychoneuroendocrinology Vol 63, Jan 2016, pgs. 380–381 DOI: 10.1016/j.psyneuen.2015.05.011

Dear Editor,

We read with interest the work of Mehta et al. (2015) who investigated the influence of salivary testosterone (sal-T) and salivary cortisol (sal-C) on risk-taking behaviors in a mixed gender and ethnicity sample. Authors report a positive relationship between basal sal-T and risk-taking, which was measured using the Balloon Analog Risk Task of Lejuez et al. (2002).

While we found the topic of interest to the psychoendocrinology community, we have concerns with the methodology employed to derive a relationship between sal-T and risk-taking behavior. Firstly, the authors state saliva samples were collected between 10.30 and 17.30 h, which is a sizeable timeframe when considering the known circadian oscillation of steroid hormones in saliva (Riad-Fahmy et al., 1983). Moreover, an anticipatory effect of sal-T and sal-C is known prior to a task (Hayes et al., 2015) and therefore, it is possible that samples analyzed were measures of the anticipatory rise (rather than basal concentrations) of sal-C and sal-T. Furthermore, the mixed gender and ethnicity of the sample may have further confounded potential error rates as a result of increased heterogeneity in androgen status (Litman et al., 2006). Moreover, we recently demonstrated high variability in sal-T and sal-C in a highly controlled laboratory environment (Hayes et al., 2014), which was epitomized by the large standard deviations (SD) observed in this study (the SD of sal-C was greater than the mean). Furthermore, when sal-C was high (+1 SD), the association between sal-T and risk taking was non-significant. These issues, considered alongside the innate variability and pulsatile nature of steroid hormones, suggest the interaction between risk-taking behavior and sal-T may be artifactual and the authors may have fallen victim to classic type I error.

Overall, we find the authors’ conclusion that there were “consistent positive slopes between testosterone and risk-taking only among low-cortisol individuals” to be unsubstantiated as the association was not statistically significant (p = 0.051) and only self-reported and informant-reported risk-taking was statistically significant (p < 0.05) suggesting that perceived rather than observed risk-taking was associated with sal-T. Finally, we find the absence of “salivary” in title, abstract, and conclusion is misleading as salivary hormones do not consistently demonstrate acceptable agreement with serum values (Granger et al., 2004). With respect to the aforementioned issues with salivary hormone measurement cited herein, the conclusions of Mehta et al. (2015) which infers a cause-and-effect relationship between sal-T and risk-taking are speculative.
References

Granger et al., 2004
D.A. Granger, E.A. Shirtcliff, A. Booth, K.T. Kivlighan, E.B. Schwartz
The trouble with salivary testosterone
Psychoneuroendocrinology, 29 (2004), pp. 1229–1240

Hayes et al., 2015
L.D. Hayes, F.M. Grace, J.S. Baker, N. Sculthorpe
Exercise-induced responses in salivary testosterone, cortisol, and their ratios in men: a meta-analysis

Hayes et al., 2014
L.D. Hayes, N. Sculthorpe, J.D. Young, J.S. Baker, F.M. Grace
Critical difference applied to exercise-induced salivary testosterone and cortisol using enzyme-linked immunoabsorbent assay: distinguishing biological from statistical change

Lejuez et al., 2002
Evaluation of a behavioral measure of risk taking: the Balloon Analogue Risk Task (BART)

Litman et al., 2006
H.J. Litman, S. Bhasin, C.L. Link, A.B. Araujo, J.B. McKinlay
Serum androgen levels in black, Hispanic, and white men

Mehta et al., 2015
P.H. Mehta, K.M. Welker, S. Zilioli, J.M. Carre
Testosterone and cortisol jointly modulate risk-taking
Psychoneuroendocrinology, 56 (2015), pp. 88–99

Riad-Fahmy et al., 1983
D. Riad-Fahmy, G.F. Read, R.F. Walker
Salivary steroid assays for assessing variation in endocrine activity