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Winner–loser plant trait replacements in 
human-modified tropical forests

Bruno X. Pinho    1,2,3 , Felipe P. L. Melo3,4, Cajo J. F. ter Braak    5, 
David Bauman    2,6,7, Isabelle Maréchaux    2, Marcelo Tabarelli3, 
Maíra Benchimol    8, Victor Arroyo-Rodriguez    9,10, Bráulio A. Santos    11, 
Joseph E. Hawes    12,13, Erika Berenguer    7, Joice Ferreira14, 
Juliana M. Silveira    15, Carlos A. Peres    13,16, Larissa Rocha‐Santos    8, 
Fernanda C. Souza    17, Thiago Gonçalves-Souza    18,19, 
Eduardo Mariano-Neto    20, Deborah Faria8 & Jos Barlow    15 

Anthropogenic landscape modification may lead to the proliferation 
of a few species and the loss of many. Here we investigate mechanisms 
and functional consequences of this winner–loser replacement in six 
human-modified Amazonian and Atlantic Forest regions in Brazil using a 
causal inference framework. Combining floristic and functional trait data for 
1,207 tree species across 271 forest plots, we find that forest loss consistently 
caused an increased dominance of low-density woods and small seeds 
dispersed by endozoochory (winner traits) and the loss of distinctive traits, 
such as extremely dense woods and large seeds dispersed by synzoochory 
(loser traits). Effects on leaf traits and maximum tree height were rare or 
inconsistent. The independent causal effects of landscape configuration 
were rare, but local degradation remained important in multivariate 
trait-disturbance relationships and exceeded the effects of forest loss in 
one Amazonian region. Our findings highlight that tropical forest loss and 
local degradation drive predictable functional changes to remaining tree 
assemblages and that certain traits are consistently associated with winners 
and losers across different regional contexts.

Tropical forests are the most important reservoir of terrestrial bio-
diversity1 and deliver key ecosystem services for human well-being2. 
Yet, they are being rapidly deforested and fragmented worldwide, with 
annual losses of 3 to 6 million hectares over the past two decades3. This 
means that a substantial portion of remaining tropical forests exist 
in human-modified landscapes surrounded by non-forest land uses 
(for example, pastures, croplands) and exposed to local disturbances 
such as logging, hunting and fires that lead to degradation4. While 
there is broad consensus that habitat loss is one of the main causes 
of the contemporary biodiversity crisis5–7, the independent effects of 
landscape configuration—here referring to both the number of forest 
patches and edge density—or local disturbances leading to degradation, 
remain debated8–10 or are poorly studied4. It is worth noting that most 

studies focus on taxonomic diversity, while the mechanisms underlying 
species loss and gain are underexplored11. As plant traits drive species 
sensitivity to habitat changes and effects on ecosystems functions12, 
assessing the specific effects of landscape modification on community 
functional profiles is critical to improve our understanding and ability 
to predict biodiversity and ecosystem changes in human-modified 
tropical forests.

Changes in functional profiles in human-modified tropical forests 
are unlikely to be simply inferred from changes in species diversity. For 
example, the population decline of late-successional big trees with 
high-density woods, large seeds, long life cycles and specialized inter-
actions has been documented in small forest patches and along forest 
edges, and these ‘loser’ traits are usually replaced by ‘winner’ traits 
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plant traits, such as wood density22 and dispersal/pollination modes23,24, 
although ref. 25 assessed more comprehensive functional profiles. 
Finally, these few functional studies have mainly addressed changes in 
community trait mean and functional diversity metrics. Although valu-
able, these approaches overlook other important functional aspects of 
communities, such as extreme trait values (for example, very big trees 
and large seeds) that have proven to drive ecosystems26,27. Furthermore, 
changes in trait mean values are usually interpreted as a consistent 
trait-mediated species sorting along disturbance gradients, when it 
could represent the replacement of a few dominant winner–loser species 
with contrasting functional profiles28, although this is still a hypothesis 
to be tested19.

In this Article, we address these knowledge gaps by applying a 
causal inference analytical framework (Fig. 1). Using a large dataset 
of tree abundance and traits across six Neotropical rainforest regions 
with different patterns and histories of land-use change (Fig. 2), we 
ask whether there is a consistent trait-based outcome of landscape 
modification and local degradation. Specifically, we examine the fol-
lowing: (1) which traits are most sensitive to landscape-scale forest 
loss, (2) whether landscape configuration and local degradation cause 
functional changes beyond the effect of forest loss and (3) whether 
community-level functional changes reflect consistent trait-mediated 
species sorting along disturbance gradients or rather the replacement 
of a few winner–loser species. These questions were underpinned by 
the following predictions (Fig. 1, yellow shaded circle). We expected 
that forest loss increases the dominance of disturbance-adapted spe-
cies with fast resource-acquisition traits (that is, low-density leaf and 
wood tissues), low stature and high colonization ability (that is, small 

typical of pioneer tree species with high dispersal and growth ability13–15. 
This winner–loser replacement may result in weak changes in species 
diversity but could exert a strong influence on forest biomass, functions 
and related ecosystem services16. In addition, the literature on taxo-
nomic shifts does show the importance of separating out patch-level 
observations from the overarching role of forest loss. For example, on 
the one hand, there is evidence of reduced species diversity in small, 
isolated, edge-affected forest patches, driven by dispersal limitation, 
edge effects (that is, physical and biotic changes at the margins of for-
est fragments) and demographic stochasticity6,15. On the other hand, 
empirical studies and meta-analyses over the past decade also show 
that patch-level ecosystem decay does not necessarily imply negative 
effects of landscape-scale forest fragmentation, as for a given forest 
cover, landscape configuration appears to have weak effects on species 
diversity at both local and landscape scales7,9,17. Some of the apparent 
contradictions can be explained by the limitations of using species diver-
sity as a response metric10, and it is still unclear whether the taxonomic 
rearrangements of tropical forest tree communities can be translated 
into generalizable and predictable changes in functional traits that 
describe the whole spectrum of plant strategies in the world18.

Where studies have addressed the functional rearrangement of 
biodiversity in human-modified tropical landscapes, the advances have 
been far from complete19. First, studies on landscape-scale predictors 
of functional profiles of tree communities have been restricted to a few 
regions, making it difficult to tease apart context-dependent patterns 
due to particular land-use and biogeographic histories from widespread 
patterns resulting from a consistent imprint of landscape modification20. 
Second, the available evidence is biased to a few functional groups13,21 or 
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Fig. 1 | Causal diagram of assumed associations among anthropogenic pressures 
and the functional outcomes of interest. The directed acyclic graph (DAG) shows 
the anthropogenic drivers (green shaded circle) and the outcomes of interest, 
that is, species-level or community-level functional variables (yellow shaded 
circle), and the work questions (Q1, Q2 and Q3). Arrows represent the direction of 
causality between pairs of variables (red and blue arrows for predictor–predictor 
and predictor–outcome causal associations, respectively). Forest fragmentation 
(that is, number of patches) typically increases with forest loss, while edge density 
increases with forest loss and fragmentation level but also with the irregularity of 
patch shapes. Local forest degradation (for example, timber extraction, hunting, 
fires) is measured here as the inverse of forest basal area as proxy, and we estimated 
its independent effects by controlling for the effects of all three landscape-
scale disturbance variables. All four disturbance variables are expected to have 
independent causal effects on the functional profiles of tree communities (in 
yellow shaded circle, Q2 blue arrow synthetizes three independent arrows from 

fragmentation, edge density and degradation to the outcome in (1)), driving them 
toward increased dominance of opportunistic tree strategies characterized by fast 
growth and high dispersal ability (for example, low-density tissues, small seeds and 
low-statured trees) and limiting extreme opposite strategies (for example, big trees, 
large seeds). Also, we expect dominant loser species (red circles) to have contrasting 
functional profiles from dominant winners (blue circles) ((2) in yellow shaded circle) 
but that there would be weak overall effects on species distribution (grey line) due to 
the presence of many species with neutral dynamics or that are regionally rare (grey 
points). We performed our analyses separately for each of the six regions (Fig. 2), 
where forest plots are relatively homogeneous in terms of climate and soil types, to 
limit the risks of potential unobserved confounders of the represented cause–effect 
relations; this should therefore be read as a ‘within-region DAG’. Traits assessed are 
wood density (WD), seed mass (SM), LMA and maximum tree height (Hmax). Species 
position on the y axis is defined by the position of their niche centroids in relation to 
deforestation extent.
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seeds dispersed by either abiotic factors or endozoochory) and shifts 
the limits of the trait distributions by limiting extreme opposite trait 
values (that is, big trees, conservative resource use, large seeds dis-
persed by synzoochory) and extending them towards more extremely 
acquisitive and small-seeded trees (Q1, Fig. 1, (1) in yellow shaded cir-
cle). Regarding our second aim, we expected that the independent 
effects of landscape configuration and disturbances leading to degra-
dation can exacerbate the negative effects of forest loss (Q2), as they 
can favour disturbance-adapted species and discriminate against con-
servative resource-use strategies29 and big trees27. Finally, we expected 
changes in community functional profiles to reflect the replacement of 
a few dominant winner–loser tree species with contrasting functional 

profiles, rather than a consistent response across species (Q3, Fig. 1, 
(2) in yellow shaded circle).

We adopt a structural causal modelling framework30,31 to esti-
mate the total causal effects of each disturbance variable accord-
ing to our assumptions of causal relationships among them and with 
the outcome variables (Fig. 1). In this framework, we assume from 
well-documented relationships that forest loss leads to increased num-
ber of forest patches (that is, fragmentation), both of which increase 
forest edge density8,32, and that these three landscape-scale drivers 
lead to increased local degradation4. To account for these multiple 
cause–effect relations, we used separate models with different sets of 
control variables aimed at estimating the causal effects of each driver 
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Fig. 2 | Location of the six study regions and study plots across the 
Amazonian and Atlantic forests in Brazil. a, Black circles illustrate the 
landscapes surrounding each study plot at the largest analysed spatial 
scale. b, Our multiscale approach showing concentric buffers (that is, ‘local 
landscapes’; ref. 5) surrounding each plot (500, 1,000 and 2,000 m radii), within 
which we assessed the landscape variables. The study regions (1, Balbina; 2, 
Santarém; 3, Paragominas; 4, Paraíba; 5, Serra Grande; 6, Una) have markedly 

different land-use patterns and histories, as they include some of the oldest 
agricultural frontiers in Brazil (regions 4 and 5) and regions recently disturbed 
by flooding for energy generation (region 1) or for agriculture (regions 2 and 3). 
They also have different anthropogenic matrices, including water (region 1), 
diverse agriculture (regions 2 and 3), sugar cane monoculture (region 4), urban 
areas (region 5) and mixed agroforestry and pasture (region 6).
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on the outcomes of interest (Fig. 1; details in Methods). As all regions 
were originally covered by tropical forests, we measured forest loss 
as the percentage of the landscape covered by non-forest land covers, 
including cattle pastures, agricultural lands and human settlements. 
This percentage thus represents the cumulative forest loss to date. We 
also measured the number of forest patches and forest edge density 
in each landscape. As we do not know a priori the scale of landscape 
effects33, we measured each of these three landscape variables at three 
spatial scales, using concentric buffers of 500, 1,000 and 2,000 m 
radius around each forest plot (Fig. 2b). To quantify local forest degra-
dation, we measured the inverse of tree community basal area, a proxy 
of forest biomass that is negatively affected by local disturbances34,35.

At the community level, we analysed changes in community-weighted 
means (CWM) and 5% percentiles (lower and upper) of trait distributions, 

the first describing trait dominance and the latter extreme trait values in a 
community (Fig. 1, (1) in yellow shaded circle). Species distributions along 
forest loss gradients were parameterized by species niche centroids, 
calculated as the abundance-weighted average forest loss across the 
plots where a species occurs. Winners and losers were defined as those 
species whose distribution differs from a random-dispersal null model36, 
in which winners thrive with forest loss in opposition to losers whose 
abundance is reduced in more deforested landscapes. We then assessed 
functional differences among winners and losers and tested trait effects 
on species niche centroids (Fig. 1, (2) in yellow shaded circle). Community 
and species-level models were further fitted separately for each trait in 
each region at each landscape scale. Finally, we tested the robustness of 
our findings by applying a double-constrained correspondence analysis 
(dc-CA37) to all vegetation, trait and environment data simultaneously 
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scale (m)
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Wood density Seed mass Maximum heightLMA Abiotic dispersal Endozoochory Synzoochory
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Fig. 3 | Direction and magnitude of the responses of abundance-weighted 
community trait means to anthropogenic drivers of change. a–d, Points 
represent the standardized causal effect estimates (that is, effect sizes) of models 
used to estimate the total causal effects of landscape-scale forest loss (a), and the 
independent effects of forest fragmentation (that is, number of forest patches) 
(b), edge density (c) and local degradation (d) across 271 old-growth forest plots 
in six Neotropical regions (colours) across the Amazonian and Atlantic Forest 
biomes in Brazil (Fig. 2a). Landscape drivers were measured across multiple 
spatial scales (circle sizes) surrounding each sample plot (Fig. 2b), with filled 
circles representing the scales at which we found significant responses (that 

is, those estimates with 95% confidence intervals non-overlapping the zero 
effect). Predictors and traits were standardized, so that comparing causal effect 
estimates among the four models reflects relative trait responses to increases of 
one standard deviation in the predictor of interest. Models to estimate the causal 
effects of each driver have specific sets of control variables, which are shown 
after the vertical bars in the x axis, defined to close all non-causal paths leading 
to the response variable (Fig. 1; details in Methods). Regions are ordered from 
the least to the most disturbed (top–down) according to overall forest cover and 
land-use history (Extended Data Table 1).
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using the above analytical framework. The dc-CA combines multivariate 
CWM disturbance and species niche centroids-trait regressions in an 
eigen analysis to find the best composite trait and disturbance gradient, 
guarding against type 1 error rate inflation in CWM regression28. See 
Methods for further details on our analytical approach.

Results
Forest loss causal effects on community functional profiles
The percentage of forest loss in the surrounding landscapes affected 
CWMs of all analysed traits in at least two and up to five of the six 
study regions; only Paraíba, which has the longest history of distur-
bance and greatest deforestation level, did not show any significant 
relationships (Fig. 3a). Overall, when significant, forest loss effects 

were consistent across regions and spatial scales and in accordance 
with our predictions, for all traits except leaf mass per area (LMA) 
and abiotic dispersal. For instance, wood density, seed mass and syn-
zoochory were negatively associated with the percentage of forest 
loss in all but one region (Fig. 3a). The total causal effect of forest 
loss alone explained an average 20% (range of R2

adj. = 9–55% range) 
of variation in CWM trait values across trait–region combinations 
(Extended Data Fig. 1).

Forest loss shifted both extremes of the trait distributions (that 
is, lower and upper 5% percentiles) towards lower values in half of the 
trait–region combinations (12/24) (Extended Data Figs. 2 and 3). With 
the exception of LMA, these effects were positively correlated with the 
observed effects on CWMs (Fig. 4a and Extended Data Fig. 4a). However, 
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Fig. 4 | Correlations between effects on abundance-weighted means and 
upper 5% percentiles of community trait distributions. a–d, Points represent 
the standardized causal effect estimates (that is, effect sizes) of models, colours 
represent the study regions and point sizes represent the spatial scale at which we 
measured the landscape variables. Traits are organized by columns and predictors 
by rows. To estimate the total causal effect of forest loss (a), fragmentation 

(b), edge density (c) and local degradation (d), we used models with specific sets 
of control variables (see Fig. 3). Points in the bottom left and upper right sides 
of each panel (separated by dashed lines showing zero effects) illustrate similar 
effects in direction, while those in the bottom right and upper left sides illustrate 
contrasting effects. Correlations with lower 5% percentiles are shown in Extended 
Data Fig. 4.
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they were weaker and less predictable compared with the observed 
effects on CWMs, with an average 15% (5–25%) and 26% (11–44%) of 
explained variation for upper and lower 5% percentiles, respectively.

Fragmentation, edge density and degradation causal effects
From the different models focused on the causal effect of each of the 
anthropogenic drivers of trait change, we found that the independent 
effects of landscape configuration (that is, number of patches, edge 
density) and local degradation on CWM traits were either relatively rare, 
weak or inconsistent across traits and regions (Fig. 3b–d). In particular, 
the number of forest patches showed a weak effect in most regions, 
being significant in 0 to 2 regions per trait. Yet, this landscape feature 
was relatively important in Paraíba, where it negatively affected seed 
mass, maximum height and synzoochory (Fig. 3b). The causal effect of 
edge density was significant for some traits and regions, and, contrary 
to our expectations, the direction of effects was mostly positive for 
traits such as wood density, seed mass and LMA (Fig. 3c). Finally, causal 
effects of local degradation were evident in 1 to 3 regions per trait, and 
when significant, they supported our predictions, leading to decreases 
in wood density, seed mass, LMA, maximum height and synzoochory 
(Fig. 3d). These effects were particularly strong in the Paragominas 
region, where the independent effect sizes for local degradation often 
exceeded those resulting from forest loss (Fig. 3d). While different 
models were necessary to assess the respective causal effects of each 
disturbance variable (Methods), adding the number of patches, edge 
density and local degradation in a separate analysis aimed at optimizing 
out-of-sample expected predictive accuracy improved the explanatory 
power of the forest loss-only model to an average of 32% (8–63%) across 
all CWM traits and study regions.

The independent causal effects of these landscape configuration 
and local degradation drivers on extreme trait values (Extended Data 
Figs. 2 and 3) were positively correlated to those on CWM traits for 
all but two trait–driver combinations (Fig. 4b–d and Extended Data 
Fig. 4b–d). However, these relationships were much weaker and less 
predictable, with combinations of the four predictors explaining an 
average of 17% (2–40%) and 28% (6–59%) of the upper and lower 5% 
percentiles, respectively, across trait–region-scale combinations.

Winner–loser species replacements
We identified winner and loser species along forest loss gradients in all 
regions but Paraíba, where there were no winners and only a few losers 
(Fig. 5 and Extended Data Fig. 5a). However, the distribution of most 
species was not caused by the percentage of forest loss in the landscape 
(‘neutral status’ in Fig. 5), with an average 8% of winners (2–21%) and 
20% of losers (9–39%) across regions (Extended Data Fig. 5a). Overall, 
species traits were significantly and negatively related to forest-loss 
species niche centroids in four out of the six study regions for wood 
density, and three out of six for seed mass (Fig. 5), explaining an aver-
age 5% (2–17% across trait–region combinations) of variation in species 
distributions along forest loss gradients. Weighting by species abun-
dances improved model performance and predictive ability, with an 
average 17% and up to 53% of explained variation across trait–region 
combinations. Despite these overall weak trait–niche relationships, 
winner and loser species were clearly distinguished functionally, with 
losers bearing harder woods and larger seeds (boxplots in Fig. 5 and 
Extended Data Fig. 5 for a more complete analysis of functional dif-
ferences among winners and losers). These differences were more 
pronounced when weighted by species abundances.
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species–region combination, which performed better than non-weighted 
analyses. In the scatterplots, significant trait effects are illustrated by solid lines 
and non-significant effects by dashed lines, with shaded areas indicating 95% 
confidence intervals. Boxplots indicate the median (centre line), 25–75% quartiles 
(box edges), <1.5 times the interquartile range (whiskers) and extreme values 
(dots). Black dashed lines in the zero y-intercepts separate species with positive 
and negative deviation of observed niche centroid from random expectation 
(that is, standardized effect sizes, SES). In addition, we show the relative position 
of winners and losers of forest loss in a multivariate principal component analysis 
functional space in Extended Data Fig. 6b.
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Multivariate trait-disturbance relationships
Using dc-CA, all three landscape variables at each of the three analysed 
scales and local degradation were significant (P < 0.01, even after the 
conservative Bonferroni adjustment), with forest loss at 2,000 m scale 
being almost twice as important as the next best variable, local degra-
dation. However, the independent effects of forest fragmentation and 
edge density (that is, after accounting for forest loss and forest loss 
with fragmentation, respectively) were not significant, suggesting 
that the multivariate trait composition of tree assemblages is weakly 
related to landscape configuration. This result supports the findings 
from the univariate causal analytical framework (Fig. 3). Local degra-
dation continued to be significant (P < 0.01) even after accounting for 
forest loss, fragmentation and edge density. In the dc-CA with the two 
significant predictors (forest loss and local degradation) and all traits, 
only the first axis was significant (P = 0.001). We interpret this axis as a 
composite disturbance gradient with forest loss and local degradation 

contributing in a ratio of about 2 to 1 in terms of standardized weights 
in the regression against the CWM trait composite with the covariate 
region. All traits were positively correlated with the trait composite 
gradient, except endozoochory (Fig. 6a). The largest two weights in 
the trait composite were those of wood density and seed mass—which 
again supports their strong responses in the univariate causal analyti-
cal framework. The CWMs of the trait composite decreased along the 
composite disturbance gradient (that is, dc-CA axis 1) (Fig. 6a), and 
the species niche centroids along this gradient decreased with the 
trait composite (Fig. 6b).

Discussion
Our results suggest that landscape-scale forest loss and local degrada-
tion drive consistent changes in the functional profiles of local tree 
communities across human-modified neotropical forests in different 
biogeographic, climatic and land-use contexts. We focus here on four 
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Fig. 6 | Multivariate trait-disturbance relationships for 271 tree assemblages 
and 1,207 species across six Neotropical forest regions. a, Region-specific 
relationships between the first axis of a dc-CA, representing forest loss and 
degradation (at 2,000 m scale), and the abundance-weighted mean of the best 
trait composite at the assemblage level. Side plots show correlation coefficients 
between each functional trait and the best trait composite (upper plot), as well 
as between each environmental variable (env.) and the disturbance axis (lower 

plot). b, Species-level assessment of the relation between the trait composite and 
species niche centroids (SNC) along the axis of forest loss and local degradation 
(dc-CA axis 1). The side plot shows the trait composite values of the 20 species 
with highest contribution to the dc-CA axis 1, of which 10 are winners (in blue) 
and 8 are losers (in red). Shaded areas around model-fit lines in a and b indicate 
95% confidence intervals. Syn-zoo, synzoochorous; Endo-zoo, endozoochory; 
Non-zoo, abiotically dispersed.
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contributions emerging from the work: (1) the prominence and consist-
ency of forest loss effects versus other anthropogenic drivers, (2) the 
variation in the responses across different traits, (3) the association of 
changes in community trait means with the loss of extreme trait values 
and (4) the role of a few dominant winner–loser species with contrasting 
traits as drivers of changes in community functional profiles.

The strong overarching influence of forest loss on the functional 
profiles of tree communities supports our expectation that part of 
the effects of other drivers are mechanistically associated with (and 
therefore can be predicted by) forest loss (Fig. 1, green shaded circle). 
For instance, the negative effects of forest loss often capture those 
of fragmentation and edge density, as increasing forest loss usually 
implies increased fragmentation and therefore edge density8,32. Beyond 
capturing landscape configuration effects, Fahrig’s habitat amount 
hypothesis33 suggests that the amount of habitat in surrounding land-
scapes is an important determinant of local species diversity, as more 
habitat equates to more individuals and species that could potentially 
colonize a local community. It remains to be seen how these potential 
mechanisms related to diversity could relate to functional profiles, 
but it is reasonable to expect that forest loss particularly limits the 
arrival of species with lower fecundity and dispersal capacity, which 
may explain the predominance of opportunistic species with high 
fecundity and dispersal capacity (small and endozoochoric seeds) in 
the more deforested landscapes we examined.

It was also clear that forest loss is not the only driver of change, 
although the strength of additional effects of other drivers was often 
context dependent. For instance, the important influence of local 
disturbances in Paragominas likely reflect the region’s history of con-
ventional logging and fires34,38. These disturbances are not always 
associated with remaining forest cover, and their strong effects show 
the importance of policy interventions that go beyond avoiding 
deforestation4,29. Also, negative effects of fragmentation per se were 
often only significant in Paraíba, which has the greatest regional level 
of deforestation. This may suggest that, as the ‘fragmentation thresh-
old hypothesis’ postulates39, negative effects of fragmentation are 
stronger in more deforested regions25 due to increased prevalence 
of isolated and edge-affected forest patches. Finally, the inconsist-
ent but often significant trait-level responses to edge density also 
require further research but may reflect the complexity of abiotic 
and biotic edge effects that are highly variable in space and time as 
they depend on multiple factors, such as matrix type, edge age and 
orientation, and interactions among nearby edges40–42. Indeed, the 
‘landscape-divergence hypothesis’ suggests that edge effects are spa-
tially variable and temporally dynamic41, which can result in contrasting 
successional trajectories in different regions43.

The use of a causal framework allowed us to infer total causal 
effects of our disturbance variables while minimizing risks of over-
control, confounding or collider biases30,31. However, the inferences 
remain conditional on the accuracy of the causal model (Fig. 1) and 
the presence and frequency of different condition combinations in 
the available data (for example, low forest loss, high fragmentation). 
Forest loss is an economic and social process that is likely to limit the 
empirical data to a subset of potential combinations. Going beyond this 
will require experimental landscapes (for example, Stability of Altered 
Forest Ecosystem - SAFE Project, www.safeproject.net) or the use of 
mechanistic simulations (for example, ref. 44) that allow wider and 
orthogonal gradients of forest loss and fragmentation. Furthermore, 
we were limited by relying on snapshots of tree communities at specific 
times in each region. Understanding the temporal dynamics of human 
modified forests will help reveal the time lags between disturbances 
and functional changes (that is, the functional extinction debt) and 
how tree species and traits are responding to climate change and its 
interactions with local anthropogenic pressures.

Overall, human modification brings about an increased domi-
nance of ‘opportunistic species’ that can be defined here as having fast 

growth (low-density woods), high fecundity and high dispersal ability 
(small, endozoochorous seeds consumed by mobile frugivorous verte-
brates). Some of these changes reflect known trait-mediated vulnerabil-
ities. One of the most pervasive changes is the loss of large-seeded tree 
species, whose combined dependence on large-bodied seed dispersers 
and physiological requirements for germination make them espe-
cially vulnerable to both local and landscape-scale disturbances24,26,45. 
Although the association between seed size and wood density is weak 
at the species level, it can be strongly expressed at the community level 
due to the dominance of certain small-seeded and low-wood density 
species dispersed by the many disturbance-adapted and highly mobile 
bats and birds that proliferate in human-modified landscapes24,26,46.

Some results go against the prevailing understanding of trait 
responses to human disturbance. For example, we expected wood den-
sity to be negatively associated with edge density but observed either 
no independent effect or an increased dominance of hard-wooded 
species in response to edge density in some Amazonian regions. While 
fast-growing pioneer trees may benefit from increased light availability 
in forest edges13,15, the harsh conditions of desiccated soil and air (that 
is, water stress)40, frequent fires and sporadic windstorms could also 
favour hard-wooded trees with conservative resource-use traits that 
make them tolerant to abiotic stresses and resistant to stem snapping 
and uprooting47,48. This finding highlights the context dependency of 
responses of tropical flora to disturbance regimes and shows the need 
for more research that can understand and unpick the role of land-use 
history and biogeography20,49, including the use of physiological traits 
that provide direct mechanistic links between environmental drivers 
and plant responses50.

The loss of abiotically dispersed trees is somewhat more surprising 
given the prevalence of wind dispersal among ruderal species in other 
biomes; although this may reflect the failure of this non-directional 
dispersal mode in fragmented landscapes51, where seeds most often 
end up in a hostile matrix, this was not supported by the inconsistent 
or non-significant independent effects of fragmentation (Fig. 3). The 
rarity of significant effects on maximum height can be related to the 
existence of some exceptionally tall long-lived pioneers, as evidenced 
by the orthogonal variation of this trait in relation to the resource-use 
traits (for example, wood density, seed mass) that distinguish winners 
and losers (Extended Data Fig. 6b). Finally, the highly inconsistent 
response of LMA is likely because it responds to multiple environmental 
gradients (for example, light, nutrient availability)52. Furthermore, the 
functionality of traits—whether they affect individuals’ vital rates and 
fitness—is dependent on the abiotic and biotic conditions53, such that 
LMA may not have particularly high adaptive value along the stud-
ied gradients or have complex adaptive values (for example, age- or 
size-dependent interactions with other traits or environmental condi-
tions) that our analytical framework did not capture.

In recent years, there has been growing awareness that there is no 
single measure of community-level trait distributions and that CWM 
can—when taken alone—be problematic, by returning type 1 errors28,54, 
masking effects at the edge of the trait spectrum or by amalgamating 
contrasting trait strategies55. We shed light on this important issue in 
three different ways. First, we confirmed the robustness of our find-
ings from the causal analytical approach, by summarizing both the 
community- and species-level responses to anthropogenic change 
drivers (Figs. 3 and 5) using dc-CA. A dc-CA with forward selection of 
disturbance variables at the three spatial scales led to the same final 
model as the directed acyclic graph (DAG)-based dc-CA modelling 
approach but would have had less power and would not have allowed 
causal inference. Second, we show that effects on CWM and extreme 
trait values were mostly correlated, and the latter mostly held similar—
although weaker—relationships with the anthropogenic drivers. This 
suggests that these drivers usually push the whole trait distributions 
toward lower values—that is, increasing dominance of more opportun-
istic strategies but also limiting extremely conservative resource-use 
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strategies and allowing the presence of extremely acquisitive strategies 
that are absent from more conserved landscapes. However, this was not 
always the case, and the number of weak and unclear relationships also 
suggest extreme trait values can respond differently to CWM traits.

Finally, we found that although winners and losers were function-
ally distinct, they were not distinguished from species irresponsive to 
forest loss gradients, and both winners and losers covered large ranges 
of trait values (boxplots in Fig. 5 and Extended Data Fig. 5a). However, 
a few dominant winners and losers (large green and yellow points in 
Fig. 5) were consistently found at the extremes of the traits’ distribu-
tion, corresponding to either low or high trait values, respectively. This 
suggests that while many trait dimensions may ultimately determine 
the fate of species in human-modified landscapes, dominant winner 
and loser species have stronger and more consistent trait–environment 
associations—those embedded in landscapes with high forest cover 
consistently held extremely dense woods and large seeds dispersed 
by synzoochory (loser traits), while species dominant in highly defor-
ested landscapes had low-density woods and small seeds dispersed by 
endozoochory (winner traits).

The changes in functional strategies of dominant species we 
document here could have important consequences for ecosystem 
functioning. The proliferation of disturbance-adapted, fast-growing, 
small-seeded endozoochorous tree species usually correlates with 
declines in forest productivity and carbon storage potential16,26,35, 
while the loss of large-seeded and synzoochorous tree species will 
change fauna–flora interactions and influence long-term regeneration 
potential56,57. Recent research has shown hyperdominance is prevalent 
across the world’s primary tropical forests58; our work suggests hyper-
dominance occurs in human-modified forests, too, and that these 
dominant species define the traits—and therefore functioning—of 
these forests.

From a policy perspective, our findings reinforce the need to (1) 
preserve and restore as much forest as possible59, (2) limit degrada-
tion of remaining forests4 and (3) conserve or restore vulnerable trait 
combinations, such as large-seeded and high wood-density species. 
As many of these vulnerable trait combinations involve synzoochory, 
this will require actions that support their dispersal agents, such as 
by reducing hunting or supporting reintroductions of large-bodied 
birds and mammals.

Methods
Study regions
We studied 271 old-growth forest plots distributed across six Neotropi-
cal regions, three located in central eastern Amazon (Paragominas, 
Santarém and Balbina) and three in the northeastern Atlantic forests 
(Una, Serra Grande and Paraíba) in Brazil. The study regions cover most 
of the latitudinal distribution of neotropical forests in the southern 
hemisphere (Fig. 2a) and encompass a broad range of climate and 
land-use histories (Extended Data Table 1) including different matrix 
types and hostilities, times since deforestation and logging pressures 
within the remaining forests. The three Amazonian regions have a 
relatively recent (<60 years) history of extensive land use change. The 
municipality of Paragominas is the most recently occupied, and lost 
around 40% of forest cover since the construction of the Belém–Bra-
sília highway and founding of the city in 1961. The Santarém region 
encompasses multiple municipalities on the east bank of the Tapajós 
river; this has a much longer history of human occupation, but much of 
the deforestation in the wider region accelerated over the past 30 years 
with the development of soybean export terminus and the paving of the 
Santarém–Cuiabá highway. Both regions are dominated by a mosaic 
of agricultural lands and pastures, with some timber plantations and 
smallholdings22,34. Balbina is an ‘archipelago’ of small forest islands 
completely surrounded by a large body of freshwater due to the flood-
ing of a reservoir lake after the closure of the Balbina Hydroelectric 
Dam in 198660. We assess three regions in the Atlantic Forest, which 

is a global biodiversity hot spot61 with about 20% of its original forest 
cover remaining, 97% of the forest fragments being smaller than 50 ha62. 
These regions have much longer histories of large-scale deforestation 
(300–500 years), with some dating back to the Portuguese arrival 
in Brazil. The Una region represents a hot point within the Atlantic 
Forest hot spot63, retaining high levels of tree species endemism and 
biodiversity. Large-scale deforestation in this region only started in the 
1960s and intensified in the 1990s with the cocoa economic crisis. The 
matrix in the region is a mosaic composed mainly of cocoa agroforestry, 
rubber and eucalyptus plantations. The Serra Grande region consists 
of one relatively large and several small forest patches surrounded 
by sugar cane crops that are burnt annually for harvesting, leading to 
strong edge effects13. Finally, plots in the Paraíba State represent the 
most disturbed scenario, with forest patches mostly surrounded by 
urban areas in the capital João Pessoa64 and sugar cane plantations in 
surrounding municipalities65.

Vegetation data
We used data from 28,565 adult trees (with diameter at breast height, 
DBH ≥ 10 cm, excluding lianas and palms) of 1,207 species belonging 
to 76 botanical families. The selection of adult trees is a conservative 
approach as landscape modification effects may be stronger and should 
manifest earlier in seedlings and saplings22,25. The methods adopted for 
vegetation inventories are described elsewhere13,22,23,34,60,64–66. Plot 
sizes vary among regions but differ only slightly within regions (that 
is, the scale of our analyses) in the Atlantic Forest (Extended Data 
Table 1). This should not affect our results because we did not focus 
on diversity measures or changes across regions but rather on relative 
abundance-weighted measures, compared among communities within 
regions. The Amazonian and Atlantic forests have clearly distinguished 
floras, but there was some overlap in species composition among 
regions within these biomes (Extended Data Fig. 7).

Functional traits
We compiled data for five species traits related to plant resource use 
and regeneration in all plant organs: wood density (g cm−3), seed mass 
(mg), LMA (g m−2), maximum tree height (m) and dispersal syndrome 
(abiotic dispersal, endozoochory, synzoochory). These were compiled 
from previous publications by the authors22,24,49,64,65 and the plant trait 
databases TRY67, Botanical Information and Ecology Network68 and 
Seed Information Database69.

These traits position species along the plant economics and 
size-related trait spectra18 and are known to affect plant performance 
along stress and disturbance gradients12,70. The leaf and stem traits 
considered are related to a trade-off between fast resource acquisi-
tion and growth in resource-rich/disturbed environments, and slow 
growth but high survival under abiotic stress by investment in dense, 
well-protected tissues12. Seed mass is related to species’ regenera-
tive strategies and reflect a tolerance–fecundity trade-off, in which 
large-seeded species are more tolerant to stressful conditions (for 
example, deep shade) and, when present, outcompete small-seeded 
tree species which benefit from higher fecundity and colonization 
ability70,71. Larger trees better exploit below- and above-ground 
resources but can be more prone to drought-induced mortality72 and 
stem uprooting and breakage by strong winds in forest edges48, mak-
ing them vulnerable to habitat fragmentation, wildfires, logging and 
defaunation27. Finally, the abundance of tree species whose seeds are 
dispersed by animal ingestion (that is, endozoochory) increase in 
disturbed Amazonian forests, while those species whose seeds are car-
ried (but not ingested) by animals (that is, synzoochory) or dispersed 
by abiotic mechanisms (for example, wind) tend to decline24, but the 
consistency of these patterns in other human-modified landscapes is 
yet to be tested.

The selected forest plots are those with at least 50% of species-level 
trait coverage (average = 85% across trait–region combinations) and 
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at least 80% of total trait coverage (average = 98%) of community 
abundance, the latter including genus-level trait data. The remaining 
missing values were imputed through multivariate trait imputation 
using the R package ‘mice’ version 3.1673, but this represented <1% of 
the total number of individuals in all but 4 (<5%) of the 1,355 trait–plot 
combinations. Over one third of the studied species (438/1,207) have 
species-level data for all analysed traits. The distribution of species trait 
values covers similar ranges across the six study regions (Extended Data 
Fig. 8), despite variation in the multivariate functional space (that is, 
trait combinations) across regions (Extended Data Fig. 6a).

Disturbance variables
Forest loss (that is, the percentage of the landscape covered by 
non-forest land uses), fragmentation (that is, number of forest patches) 
and edge density (that is, ratio of forest area less than 100 m away 
from the patch boundaries to the total forest area) were measured 
at three spatial scales, using concentric buffers of 500, 1,000 and 
2,000 m radius from the centre of each sample plot (further referred 
to as ‘local landscapes’; Fig. 2b)33, in software QGIS version 3.22.14. 
The selected scales encompass and extend beyond those used in other 
studies of landscape-scale disturbance effects on tree assemblages 
(for example, ref. 25). We adopted this broad multiscale approach 
to assess the consistency of effects across scales as (1) there was no 
a priori information allowing us to select a single scale and (2) it was 
highly unlikely that a common ‘scale of effect’33 would emerge across 
regions, traits, predictors and response variables. Landscape metrics 
were based on 2010 data from the MapBiomas network (mapbiomas.
org), whose classification is based on 30 m resolution Landsat images74. 
All study regions encompass local landscapes covering a large range of 
forest loss, number of patches and edge density (Extended Data Fig. 9). 
To assess additional effects of local degradation drivers, we used the 
inverse of tree community basal area (that is, the sum of cross-sectional 
area of all trees in a plot) relative to the sample area as a proxy. Basal area 
is one of the key determinants of above-ground biomass, which in turn 
is known to be strongly associated with different disturbances34,35,65.

Data analyses
We used a Structural Causal Modelling framework30,31 to assess the 
total causal effect of each disturbance variable (forest loss, number 
of patches, edge density and local degradation) on the outcomes of 
interest, that is, community-level or species-level variables (see the 
following sections). The first step consisted in constructing a causal 
diagram (a DAG; Fig. 1), that is, a graphical representation of our causal 
ecological assumptions underlying the studied system. Causal thinking 
requires to account for both observed and unobserved but relevant 
variables or processes75. Here, a potential unobserved confounder of 
the represented cause–effect relations (Fig. 1) could be average climate 
and soil types. For example, at broad spatial scales going across regions 
and marked gradients, wetter climates could increase forest productiv-
ity and therefore forest degradation while independently controlling 
the functional assembly of tree communities (through spatial partition-
ing of species and life-history strategies relating to their fundamental 
and realized niches; for example, ref. 76). Such ‘common cause’ struc-
tures in a DAG can lead to spurious associations between the variable 
whose effect we investigate (for example, forest degradation) and the 
outcome (confounder bias)31. Here, to limit the risks of such biases, we 
performed the analysis of each causal effect within relatively homo-
geneous regions, climate- and soil-wise, to close potential non-causal 
paths of associations through such broad-scale unobserved variables. 
Our DAG does not represent this unobserved confounder structure and 
is therefore to be read as a ‘within-region DAG’.

The second step consisted of investigating the DAG data consist-
ency by testing the DAG’s testable implications, that is, its conditional 
independencies30. However, our particular DAG did not have any test-
able implications. We next applied a logical graphical criterion—the 

‘backdoor criterion’—to the DAG, resulting for each variable whose 
causal effect we wanted to estimate (often referred to as ‘exposure’ 
variables) in the definition of a minimal set of control variables to allow 
a causal interpretation of the exposure’s coefficient estimate. In other 
words, by conditioning a statistical model on the control variables 
defined by the backdoor criterion, this approach closes all non-causal 
paths between the exposure and outcome and only captures associa-
tions through causal paths (conditional on the DAG being correct).

Based on the DAG and the backdoor criterion, we therefore gener-
ated different models with different sets of control variables to estimate 
the total causal effects of each disturbance variable. As a result, the 
causal effects of the number of patches were estimated in models con-
trolling for forest loss (that is, effect of ‘fragmentation per se’)9, while 
the edge density models additionally account for fragmentation and 
local degradation models conditioned on all landscape-scale distur-
bance effects (the control variable sets of each model are presented 
in Fig. 3). Each of these models were further fitted separately for each 
trait in each region at each landscape scale. Before fitting our models, 
we log-transformed our metrics related to forest loss and number of 
patches, as well as seed mass, to reduce skewness in distributions.

Community-level analysis
To describe community functional profiles, we measured 
abundance-weighted means (CWM) and 5% percentiles (lower and 
upper) of trait distributions, the first reflecting trait dominance and the 
latter extreme trait values in a community (Fig. 1, (1) in yellow shaded cir-
cle). Note that for all continuous functional traits (that is, excluding dis-
persal syndromes), low values reflect opportunistic strategies and high 
values more conservative traits (for example, we consider LMA instead 
of its inverse, specific leaf area, as higher values mean denser leaves). 
Similarly, all predictors considered are disturbance variables with values 
increasing with increasing level of disturbance, for example, forest loss 
instead of forest cover. Therefore, we expected negative relationships 
for all these trait–driver combinations (Fig. 1, yellow shaded circle).

After fitting our models following the causal framework described 
above, we identified and controlled for potential spatial autocorrela-
tion in each model residuals, using Moran’s Eigenvector Maps77, a spa-
tial eigenvector-based method allowing detecting simple to complex 
multiscale spatial patterns. We optimized the selection of a subset of 
spatial eigenvectors to be used as predictors together with the distur-
bance variables, based on the comparison of four spatial weighting 
matrices defined by the combination of two contrasted graph-based 
connectivity matrices (a Gabriel graph and a minimum spanning tree) 
and two weighting matrices (binary weighting or weighting decreasing 
linearly with distance between plots). The spatial weighting matrix 
comparison and selection were based on their statistical significance 
(corrected for multiple testing) and their respective smallest number 
of spatial eigenvectors necessary to capture all the residual spatial 
autocorrelation, following Bauman et al.’s recommendations78,79. This 
was done using the adespatial R package version 0.3-2380.

Species-level analysis
To assess the total causal effects of forest loss on species distribution, 
and the associated winner–loser trait replacements, we first assessed 
species-specific responses to forest loss in each region at each analysed 
scale. For this, we selected species occurring in at least five plots in each 
region, to allow a reliable estimate of their disturbance niche, result-
ing in 484 species and 765 species–region combinations, with species 
occurring on average in 14 to 85 plots within regions. For each of these 
species–region combinations, we calculated species’ forest-loss niche 
centroid, defined as the average of forest loss across the plots where the 
species occurs, weighted by its abundance in each plot. We then applied a 
null model approach36 in which we randomly distributed the abundance of 
species across plots within regions and re-calculated their niche centroid; 
we did so 10,000 times for each species–region combination. Standard 
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effect sizes (SES) were then calculated for each species in each region and 
at each local landscape scale, to describe the direction and magnitude 
of the deviation of observed niche centroid from random expectation, 
with positive and negative values reflecting species associated with more 
and less disturbed conditions, respectively. We considered species with 
observed niche centroid higher or lower than expected by chance (that is, 
higher or lower than 95% of the random values obtained from the 10,000 
null-model iterations), as potential winners or losers, respectively. This 
method has been successfully applied to identify winners and losers 
of land-use intensification36 and has the advantage of being based on 
abundance-weighted niche centroids, allowing species that have reduced 
abundance in deforested landscapes to be defined as losers and species 
that are usually present but thrive in disturbed sites as winners.

Finally, we applied linear models to test the effects of species trait 
values on their SES forest-loss niche centroid, using a similar causal mod-
elling framework as for the community-level analyses (above). In addi-
tion, we illustrate trait differences among winner and loser species and 
test them by means of analysis of variance. Better model performance 
or more pronounced winner–loser trait differences when including 
weights for species total abundance across plots was taken to be indica-
tive of community-level changes being driven by the turnover of a few 
dominant species. It is worth noting that the species-level analyses were 
focused on the total causal effect of forest loss, as it had the strongest 
effect at the community level and the causal effects of other disturbance 
variables were rare or comparatively smaller at the species level. All the 
analyses described above were performed in software R 4.3.281.

Multivariate analysis across biological levels
To complement, summarize and further test the robustness of these 
analyses, we applied a dc-CA to all data (vegetation, traits and land-
scape variables at three spatial scales in all six regions) simultaneously, 
in a way that is very similar in spirit to the previous community- and 
species-level analyses37. The dc-CA method is a constrained ordination 
method which extends canonical correspondence analysis in that it 
constrains not only the site scores by predictors but also the species 
scores by traits37. By combining CWM regression at the community level 
and species niche centroids-trait regression at the species level, dc-CA 
finds the best composite trait. This composite trait represents the linear 
combination of traits, whose CWMs are best explained by linear regres-
sion onto the predictors, the fitted values of which form the dc-CA axis37. 
To guard against the type 1 error rate inflation that is typical for CWM 
regression28,54, dc-CA performs statistical tests by taking the maximum 
of the P values of the community-level and species-level permutation 
tests, that is, by the max test54,82. In summary, dc-CA applies dimen-
sion reduction to a multitrait CWM regression with a guard against 
over-optimism in statistical tests. For more details, see refs. 49,83.

Initially, all three landscape variables at each analysed spatial scale 
and local degradation were each used as a single ‘environmental’ predic-
tor in dc-CA using the software Canoco version 5.1584. Subsequently, 
dc-CA was used with the same sequence of analyses as in the DAG-based 
community-level analysis (Fig. 3) and with selection of scale of each 
landscape variable that best explained the within-region differences 
in CWMs of all seven traits83. A single dc-CA analysis summarized the 
main results. We divided the abundance data by the plot totals before 
analysis, so that the CWM regressions in dc-CA are also unweighted, 
with the additional advantage of reducing putative plot-size effects. In 
the selection of best scale, the Bonferroni procedure was used to cor-
rect for multiple statistical testing. The dc-CA was forced to analyse the 
within-region differences—following the reasoning underlying the causal 
structural modelling analytical framework—by setting the factor ‘region’ 
as a covariate (Condition in the formula version of cca in the vegan R 
package) and by testing the same sequence of models that are shown in 
Fig. 3. Regional dependence of relationships was investigated by adding 
interactions of the main predictor(s) with region. For reproducibility, an 
R library for dc-CA was created85.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data used in the analysis are available via figshare at https://doi.org/ 
10.6084/m9.figshare.25565169 (ref. 86). These data result from the 
work of several people who applied for grants, sampled the tree plots 
and kept long-term plots running at great expenses. As such, it would 
be appreciated if data owners were consulted and invited for any pub-
lications using this dataset.

Code availability
All code used for analysis is available via figshare at https://doi.org/ 
10.6084/m9.figshare.25565169 (ref. 86).
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Extended Data Fig. 1 | Scale of forest-loss effects on CWM traits. Explained variation (R2) in models predicting community-weighted trait means (CWMs) from forest 
loss at each analyzed landscape scale (x-axis) for each analyzed trait (panels) in each study region (colors). Filled points denote significant relationships. LMA = leaf 
mass per area.
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Extended Data Fig. 2 | Effects of landscape and local drivers on upper 5% 
percentiles of community trait distributions. Direction and magnitude of 
the causal effects of (a) landscape-scale forest loss, (b) fragmentation (that 
is, number of patches), (c) edge density and (d) local degradation (that is, the 
inverse of tree community basal area) on upper 5% percentiles of tree community 
trait distributions across 271 old-growth forest plots in six neotropical forest 
regions (colors) in the Amazonian and Atlantic forests, Brazil (Fig. 1). Landscape 
drivers were measured at multiple spatial extents (circle sizes) surrounding each 

sample plot (Fig. 2b). Predictors and traits were standardized, so that comparing 
causal effect estimates among the four models reflects relative trait responses 
to increases of one standard deviation in the predictor of interest (in bold). Filled 
points denote significant effects (that is, those with estimates 95% confidence 
intervals non-overlapping the zero effect). Regions are ordered from the least 
to the most disturbed (top-down) according to overall forest cover and land-use 
history (Extended Data Table 1). LMA, leaf mass per area.
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Extended Data Fig. 3 | Effects of landscape and local drivers on lower 5% 
percentiles of community trait distributions. Direction and magnitude of 
the causal effects of (a) landscape-scale forest loss, (b) fragmentation (that 
is, number of patches), (c) edge density and (d) local degradation (that is, the 
inverse of tree community basal area) on lower 5% percentiles of tree community 
trait distributions across 271 old-growth forest plots in six neotropical forest 
regions (colors) in the Amazonian and Atlantic forests, Brazil (Fig. 1). Landscape 
drivers were measured at multiple spatial extents (circle sizes) surrounding each 

sample plot (Fig. 2b). Predictors and traits were standardized, so that comparing 
causal effect estimates among the four models reflects relative trait responses 
to increases of one standard deviation in the predictor of interest (in bold). Filled 
points denote significant effects (that is, those with estimates 95% confidence 
intervals non-overlapping the zero effect). Regions are ordered from the least 
to the most disturbed (top-down) according to overall forest cover and land-use 
history (Extended Data Table 1). LMA, leaf mass per area.
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Extended Data Fig. 4 | Correlations between observed effects on CWMs 
and lower 5% percentiles of community trait distributions. Correlations 
between standardized causal effect estimates (that is, effect sizes) of models 
predicting abundance-weighted means (x-axis) and lower 5% percentiles (y-axis) 
of community trait distributions in response to (a) forest loss, (b) fragmentation, 
(c) edge density, and (d) local degradation, for each study region (point colors) 

at each analyzed landscape scale (point sizes). Traits are organized by columns. 
Models for the total causal effect of each predictor have specific sets of control 
variables (see in Fig. 3). Points in the bottom-left and upper-right sides of each 
panel (as separated by dashed lines showing zero effects) illustrate similar effects 
in direction, while those in the bottom-right and upper-left sides illustrate 
contrasting effects. LMA, leaf mass per area.
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Extended Data Fig. 5 | Proportion and trait distributions of winner and 
loser species. Proportion of species that are winners, losers or have neutral 
distribution along forest loss gradients in each of the six study regions (a), and 
trait differences among them (b-f). Note that for the categorical trait, dispersal 
syndrome (f), we illustrate it by showing in the y-axis the deviation of species 
niche centroids from random expectation, that is the standard effect size (SES), 

where positive and negative values represent species significantly associated 
with more or less deforested landscapes, respectively. Regions are ordered from 
the least to the most disturbed (left-right) according to overall forest cover and 
land-use history (Extended Data Table 1). STM, Santarém; PGM, Paragominas; 
SGD, Serra Grande; PB, Paraíba.
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Extended Data Fig. 6 | Principal component analysis of tree species 
functional traits across the six study regions. Ordination diagram of the first 
two axes of the principal component analysis (PCA) of tree species trait values, 
for (a) all species (N = 1,207 species and 2,520 species-region combinations) 
in six neotropical forest regions (colored polygons), and (b) only species 
occurring in at least five plots in a given region (N = 484 species and 765 species-
region combinations) which were included in our niche analysis, with colors 
representing their fate with forest loss: winners (green points) are those species 
whose distribution (that is abundance-weighted niche optimum) along forest 

loss gradients significantly deviate positively from random expectation, while 
losers (yellow points) are those whose abundance significantly decreases in 
communities embedded in more deforested landscapes, and neutral species 
(gray points) do not show significant response to forest loss. In (b), points 
representing winners and losers increase in size with species total abundance 
across plots, to highlight trait differences between dominant winner-loser 
species. Arrows indicate the direction and weighting of vectors representing the 
four continuous traits considered: WD = wood density, lnSM = logarithmic of 
seed mass, LMA = leaf mass per area, Hmax = maximum height.
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Extended Data Fig. 7 | Variation in tree species composition across study plots and regions. Non-metric multidimensional scaling (NMDS) ordination of tree 
taxonomic compositional variation (Chao–Jaccard dissimilarities) among 271 old-growth forest plots in six neotropical forest regions (colors) in the Brazilian 
Amazonian and Atlantic forests (see Fig. 1).
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Extended Data Fig. 8 | Variation in tree species functional traits in each study 
regions. Distribution of tree species trait values (n = 1,207 species) in the six 
study regions. Boxplots indicate the median (center line), 25–75% quartiles (box 
edges), < 1.5 times the interquartile range (whiskers), and extreme values (dots). 

Regions are ordered from the least to the most disturbed (top-down in legend) 
according to overall forest cover and land-use history (Extended Data Table 1). 
LMA = leaf mass per area.
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Extended Data Fig. 9 | Variation in landscape-scale predictors across scales 
and regions. Distribution of landscape-scale predictors (rows) at each analyzed 
scale (columns) in the six study regions (colors). Boxplots indicate the median 
(center line), 25–75% quartiles (box edges), < 1.5 times the interquartile range 

(whiskers), and extreme values (dots). Regions are ordered from the least to the 
most disturbed (top-down) according to overall forest cover and land-use history 
(Extended Data Table 1).
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Extended Data Table 1 | Description of the study regions

Location, sampling effort, average precipitation and land-use history and patterns of the six study regions distributed across the Amazonian and Atlantic forests in Brazil. MAP = mean annual 
precipitation. *References: 1. Berenguer et al.34, 2. Berenguer et al.22, 3. Benchimol & Peres60, 4. Pardini et al. (2009), 5. Faria et al.66, 6. Santos et al.13, 7. Mendes et al. (2016), 8. Pinho et al.65, 
9. Junior et al. (2017).
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