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Perspective 

The effects of Total Ionizing Dose irradiation on supercapacitors deployed 
in nuclear decommissioning environments☆ 

Antonio Di Buono a,b,c,*, Neil Cockbain b,c, Peter R. Green a,b, Barry Lennox a,b 
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H I G H L I G H T S  

• Experimental tests on supercapacitors were carried out using a60Co irradiator. 
• Evaluated if gamma radiation has effect on electrical properties of supercapacitors. 
• Testing showed that supercapacitors exhibited no observable effect from irradiation. 
• Tested devices are suitable for use in two specific decommissioning environments.  
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A B S T R A C T   

The effects of Total Ionizing Dose (TID) on electrical components is a key parameter to evaluate the life span of 
wireless sensor nodes for possible deployment in nuclear decommissioning environments. The aim of this study 
was to experimentally evaluate the effects of TID on capacitance, internal resistance and the self-discharge 
characteristic of 100 F supercapacitors. An automated test circuit was designed and assembled to charge and 
discharge the supercapacitors. The supercapacitors were irradiated using a Co-60 γ ray radiation source and the 
voltage across the supercapacitor terminals, charging current and discharging current were monitored and 
logged to calculate the capacitance during the irradiation process. Measurements of internal resistance and self- 
discharge characteristic were performed before and after the irradiation to examine the effects of exposure to γ 
radiation on these electrical properties. The experimental results show negligible effects on the capacitance of 
supercapacitors exposed to a maximum dose of 40 kGy. The internal resistance and self-discharge characteristics 
were not affected by TID up to 89 kGy. These results demonstrate that supercapacitors are a suitable technology 
to design an Energy Storage System to be deployed in the majority of nuclear decommissioning environments.   

1. Introduction 

One of the main challenges associated with the decommissioning of 
nuclear facilities is to reduce the cost associated with monitoring and 
surveillance operations. For example, the use of sensor networks to 
monitor waste storage facilities can reduce the cost and time of projects 
and dose exposure of the workers. In Ref. [1] the need to develop remote 
techniques to support the monitoring and characterization of areas with 
high radiation levels were identified. Wireless sensing systems can be 
deployed in nuclear environments to monitor the plant during 

decommissioning operations and to replace legacy instrumentation. 
Early deployments of Commercial Off The Shelf (COTS) wireless 
instrumentation on the Sellafield site to monitor the pressure and tem-
perature of steam lines have demonstrated the benefits associated with 
this technology [2]. The use of Wireless Sensor Networks (WSNs) in 
harsh environments is well documented in the literature [3–5], and [6]. 

Much research in recent years has focused on energy harvesting 
systems to reduce the battery replacement operations and hence extend 
the lifetime of WSNs powered by scavenging energy from the environ-
ment [7,8]. However, the solutions presented in the literature can 
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provide only an intermittent and limited power output, which is not 
adequate to meet the power requirements of typical sensor nodes [9]. In 
Refs. [10] supercapacitor technology was identified as a better energy 
storage device for WSN applications compared to battery technologies. 
Supercapacitors address a specific requirement to limit the use of 
rechargeable lithium batteries in nuclear decommissioning environ-
ments, and hence, reduce fire and explosion hazards [11,12]. Few re-
searchers have investigated the effects of high radiation levels on the 
electrical properties of supercapacitors for deployment in nuclear 
decommissioning environments. Their tolerance to radiation is a 
fundamental parameter in providing a sufficient and predictable oper-
ational life span. However, several studies have investigated the damage 
that radiation can have on general electronic components [13]. Recent 
works have focused on the damage caused by Total Ionizing Dose 
[14–16]; Neutron Displacement [17–19] and Single Event Effects [17, 
20,21]. Whilst there may be some neutron emissions in a nuclear 
decommissioning environment, it is the effects of Total Ionizing Dose 
(TID), produced by the energy deposited in the electronics by γ radia-
tion, that will produce the most significant damage to electronic com-
ponents [14]. 

Laghari et al. (1990) evaluated the radiation effects on the electrical 
properties of chemical double-layer capacitors exposed to γ radiation 
(TID of 75 kGy), thermal neutrons (fluence of 4.5 × 1014 n/cm2), and 
fast neutrons (fluence of 1.75 × 1013 n/cm2) in the reactor core. This 
study found that whilst the electrical properties of the capacitors were 
temporarily affected during irradiation, these properties fully recovered 
post-irradiation [22]. 

Further research has focused on the effects that radiation has on the 
capacitance and equivalent series resistance of supercapacitors. For 
example, Shojah-Adalan et al. described the effects of γ radiation and 
proton irradiation on three different supercapacitors, manufactured by 
Maxwell Technologies, with capacitance values of 10, 100, and 1200 F 
[23]. The capacitance and equivalent series resistance of these capaci-
tors were measured following γ exposure of up to 2 kGy TID and proton 
TID of up to 20 kGy and found to be unaffected. However, the charging 
mechanism of one of the supercapacitors was damaged after exposure to 
10 kGy. 

Although this study demonstrated that capacitance and equivalent 
series resistance are not affected by TID effects, there has been limited 
research on capacitance measurements during irradiation and self- 
discharge properties of supercapacitors exposed to radiation levels 
typically experienced in nuclear decommissioning radioactive environ-
ments. The self-discharge characteristic is particularly relevant when the 
supercapacitor is being used for a long-term energy storage device in a 
wireless sensor system. In the present study, irradiation experiments 
were performed on Maxwell supercapacitors to evaluate the effect of TID 
on the capacitance during the irradiation. Also, the self-discharge and 
internal resistance characteristics were monitored, before and after the 
irradiations. The results provide valuable information to guide the 
design of energy storage systems for WSN. In particular, this work ver-
ifies the use of supercapacitors as a suitable technology for deployment 
in nuclear decommissioning environments. 

2. Experimental methodology 

The current investigation involves the experimental evaluation of 
TID effects on capacitance, internal resistance and self-discharge prop-
erties of COTS supercapacitors. BCAP0100 supercapacitors manufac-
tured by Maxwell Technologies were selected to perform the 
experiments, using supercapacitors from lot number W170410702. To 
simulate the conditions that would be present in a nuclear decom-
missioning environment, the experiments were carried out at the Dalton 
Nuclear Facility using a60Co irradiator. The irradiator is a FTS Model 
812 self-contained γ irradiator and emits two γ rays with energies of 1.17 
and 1.33 MeV resulting in an average beam energy of 1.25 MeV [24]. 

Whilst in a decommissioning environment other γ emitters, such as 
137Cs are likely to be present, the energies of these γ rays will be lower, 
and hence they will have a slightly less damaging effect on electronic 
components. Consequently, 60Co irradiators have become a standard γ 
ray radiation source to perform experiments to evaluate the effects of 
TID [25] and was therefore considered to be a suitable testing envi-
ronment for this study. The MIL-STD-883K standard identifies uniform 
methods, controls and procedures for testing microelectronic devices 
suitable for use within military and aerospace environments. This 
standard suggests using a60Co γ ray source with a dose rate between 0.5 
and 3 Gy/s [26]. 

Studies presented in Ref. [27] have shown that electronic compo-
nents in nuclear decommissioning environments are exposed to different 
dose rates and total dose rates compared to other industrial applications. 
These findings need to be taken into account during the selection of dose 
rate and total dose to evaluate the effects of TID on components 
deployed in nuclear decommissioning environments. 

The work presented in this paper focuses on two real-life scenarios: a 
medium level sludge storage facility with a dose rate of 4.5 × 10− 1 Gy/h 
and hot spots in a Pressurized Water Reactor with a dose rate up to 2 Gy/ 
h [28]. For both these cases γ ray radiation sources are the main chal-
lenge, and the contribution of neutron displacement damage is 
negligible. 

A total of 9 supercapacitors were irradiated and analysed, by 
adapting the test method described by the British Standards (BS EN 
62391) to evaluate electrical characteristics of fixed electric double- 
layer capacitors [29]. The availability of the irradiation facility 
limited the sample size of the experimental investigation. 

The block diagram, displayed in Fig. 1, shows the automated mea-
surement system that was designed to measure the capacitance and in-
ternal resistance whilst the supercapacitor under test is charged and 
discharged, following the adapted testing method. The constant current 
load was implemented using IRF510 MOSFET and LM10C operational 
amplifier/voltage reference. This sub-circuit was isolated from the 
supercapacitor’s terminal block via relay 2. The charging and dis-
charging current was monitored using two LT6105 precision current 
sense amplifiers. Both the voltages from the current sense amplifiers and 
the supercapacitor were connected to three different operational am-
plifiers OPA140 to buffer the signal. 

Fig. 2 shows the block diagram of the circuit that was designed to 
perform the self-discharge experiments. The components to charge the 
supercapacitors is the same as described above. In addition, relay 4 was 
included between the supercapacitor and the operational amplifier 
OPA140 to isolate the supercapacitor from the data acquisition unit 
during the experiments and avoid any further discharge. 

The methodology to evaluate the electrical characteristics used in 
this work was a modified version of BS EN 62391 adapted to the specific 
case of a supercapacitor of 100 F capacitance and maximum operating 
voltage of 2.7 V. A National Instruments USB-6009 data acquisition unit 
was connected to the charging and discharging circuit and to a laptop 
running LabVIEW software. LabVIEW software was designed to control 
the relays during the experiments and the logging of the voltage across 
the supercapacitor under test, charging current, and discharging cur-
rent, was performed using a National Instruments Technical Data 
Management Streaming (TDMS) file. The data was graphically shown in 
real time with a sample period of 100 ms. 

The measurement consists of three main stages: set the maximum 
voltage to 2.7 V and start to charge the supercapacitor with 1 A constant 
current, when the maximum voltage value is reached continue the 
constant voltage charging for 300 s and then discharging the super-
capacitor using a constant current load set at 1 A. 

3. Experimental results and discussion 

Three supercapacitors were used in each experiment to evaluate the 
TID effects on capacitance and were mounted on a PCB and positioned 
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inside the irradiator chamber. 
As shown in Fig. 3 (a) the device under test was connected to the 

charging and discharging circuit using two wires feeding through the 
irradiator access port. The advantage of having the charging and dis-
charging circuit outside the irradiator is to limit the effects of TID on 
other components. For example, it has been demonstrated that opera-
tional amplifiers [30], power MOSFETs [31], and voltage regulators 
[32] are affected by γ radiation. Before mounting the supercapacitor 
inside the ionizing chamber, the dose rate was experimentally measured 
using an ionization chamber, with a result of 2.07 Gy/s, which is within 
the range suggested by the MIL-STD-883K standard. 

Fig. 4 illustrates the voltage-time characteristics, charging and dis-
charging current during the experiments to evaluate capacitance and 
internal resistance. 

Capacitance was calculated according to the BS EN 62391 using the 
following equation: 

C= Id
t2 − t1

U1 − U2
(1)  

where: 

C is the capacitance of supercapacitor [F] 
Id is the discharge current [A] 
U1 is the measured start voltage [V] 
U2 is the measured end voltage [V] 
t1 is the time at which the terminal voltage of the capacitor reaches 
the value U1 from the start of the discharge [s] 
t2 is the time at which the terminal voltage of the capacitor reaches 
the value U2 from the start of the discharge [s]; 

Fig. 1. Block diagram of capacitance and internal resistance measurement circuit.  

Fig. 2. Block diagram of self-discharge measurement circuit.  

Fig. 3. Supercapacitor positioned inside the irradiator during capacitance test 
(a) and supercapacitors positioned using irradiator’s rack (b). 

Fig. 4. Experimental measurement of voltage/time characteristics between 
supercapacitor terminals in capacitance and internal resistance experiments. 
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Experiments to evaluate the internal resistance and self-discharging 
characteristics before and after irradiation were performed on two 
different groups of supercapacitors for a total irradiation time of 16 h 
and 4 h. Supercapacitors 4 to 9 were irradiated during two different 
irradiation tests, as shown in Fig. 3 (b). 

Fig. 5 presents the results for capacitance measurements obtained 
using equation (1) to evaluate the effects of TID during the irradiation. 
As seen, similar behaviour was observed in all cases, with negligible 
effects up to a total dose of 40 kGy. 

Although it is evident that the results are in good agreement with the 
manufacturer’s nominal value of 100 F with a 20% tolerance [33], 
additional experiments were carried out to estimate other potential 
sources of measurement error during the experiments. For example, the 
temperature of the irradiation chamber was measured to increase from 
ambient room temperature to 40 ◦C during the first two hours of irra-
diation. As a result, the effect of temperature on the capacitance of 
supercapacitor was investigated. Supercapacitors 1 to 3 connected to the 
charging and discharging circuit by two wires were placed inside an 
oven, following the same experimental arrangement developed for 
irradiation experiments. The voltage across the supercapacitors, the 
charging current and discharging current were monitored for 5 h to 
evaluate capacitance changes during the test. A second evaluation was 
completed to assess if the results of capacitance measurements were 
affected directly by the tolerances and self-heating effects of the com-
ponents employed in charging and discharging circuits. Supercapacitors 
1 to 3 were charged and discharged in the laboratory environment at 
ambient temperature for five hours, and then the capacitance was 
calculated to evaluate if the initial calculated value had undergone any 
change during the experiment. 

Fig. 6 illustrates the comparison between the effects of TID, tem-
perature and test circuit components. As can be seen in the figure, the 
three plots are very similar. All the experiments show a variation of the 
initial capacitance value compared to the value calculated after 5 h 
within the range 1.3%–2.2%. This result demonstrates the small changes 
in the capacitance values were unlikely to be the result of irradiation. To 
the best knowledge of the authors, the results of TID effects on capaci-
tance during the irradiation are novel. The 3 supercapacitors did not 
show any temporary changes to the capacitance during the irradiation 
test, this result could suggest that the dielectric constant of the elec-
trolyte is not affected. 

Internal resistance was calculated according to BS EN 62391 using 
the following equation: 

R=
ΔU3

Id
(2)  

where: 

R is the internal resistance of supercapacitor [Ω] 
ΔU3 is the difference of voltages between the calculation start 
voltage and the set value of constant voltage charging [V] 

Table 1 shows the results for the internal resistance irradiation test 
with a TID up to 29 kGy and 89 kGy. The findings on irradiation effects 
for the internal resistance of supercapacitors extends to those in litera-
ture, confirming that no effects have been observed up to a dose of 89 
kGy. 

Fig. 7 shows the voltage between the supercapacitor terminals 
measured during this study to evaluate the self-discharge characteristic 
of the supercapacitors. The supercapacitor was charged at 1 A constant 
current up to the rated voltage of 2.7 V, then continuing to charge at 2.7 
V constant voltage for 300 s and at the end disconnecting the super-
capacitor from the circuit. During the experiments, the voltage across 
the terminals of supercapacitor was monitored every 12 h for 72 h. 

The self-discharge parameter was calculated according to the 
following equation: 

Us− d =Uend − UR (3)  

where: 

Us− d is the self-discharge characteristic [V] 

Fig. 5. Total Ionizing Dose effects on capacitance characteristic.  

Fig. 6. Comparisons of TID, temperature and circuit effects on capacitance 
characteristic. 

Table 1 
Internal resistance before and after irradiations.  

Supercapacitor under test TID[kGy] R[Ω] 

Irradiated Non Irradiated 

SuperCAP#4 27 0.045 0.046 
SuperCAP#5 29 0.045 0.047 
SuperCAP#6 29 0.045 0.046  

SuperCAP#7 83 0.045 0.045 
SuperCAP#8 89 0.047 0.047 
SuperCAP#9 89 0.047 0.048  
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Uend is the voltage between open capacitor terminal at the end of the 
experiment [V] 
UR is the rated voltage [V] 

Finally, the results on the self-discharge characteristic of super-
capacitors are reported in Table 2. The self-discharge characteristic is a 
fundamental parameter to evaluate the energy stored by the super-
capacitor exposed to γ radiation during deployment. The values present 
the changes in voltage before and after the irradiation calculated with 
equation (3). The voltage increase in the supercapacitor after irradiation 
at 27 kGy and 89 kGy ranged from 0.015 V to 0.065 V. 

4. Conclusion 

This paper has investigated the effect of TID on the electrical prop-
erties of supercapacitors to determine their suitability for use in two 
specific nuclear decommissioning environments. The first set of exper-
iments evaluated the effects of gamma radiation on capacitance when 
the devices were irradiated with a dose of 40 kGy, with a second 
experiment examining whether the internal resistance and self- 
discharging abilities of the supercapacitors changed before and after 
being irradiated with a dose of 89 kGy. The results of these experiments 
indicated that the electrical properties of the supercapacitors showed no 
observable effects both during and after irradiation. 

The TID that the supercapacitors were exposed to in the experiments 
is relatively high for a nuclear decommissioning environment, and it can 
therefore be concluded that the particular supercapacitors that were 
tested could have an operational life span up to 10 years within a 

medium level sludge storage facility and up to 2 years if deployed close 
to a hot spot in a Pressurized Water Reactor under decommissioning. 
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