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Abstract
Terrestrial organisms and ecosystems are being exposed to new and rapidly changing combinations of solar UV radiation and 
other environmental factors because of ongoing changes in stratospheric ozone and climate. In this Quadrennial Assessment, 
we examine the interactive effects of changes in stratospheric ozone, UV radiation and climate on terrestrial ecosystems 
and biogeochemical cycles in the context of the Montreal Protocol. We specifically assess effects on terrestrial organisms, 
agriculture and food supply, biodiversity, ecosystem services and feedbacks to the climate system. Emphasis is placed on 
the role of extreme climate events in altering the exposure to UV radiation of organisms and ecosystems and the potential 
effects on biodiversity. We also address the responses of plants to increased temporal variability in solar UV radiation, the 
interactive effects of UV radiation and other climate change factors (e.g. drought, temperature) on crops, and the role of 
UV radiation in driving the breakdown of organic matter from dead plant material (i.e. litter) and biocides (pesticides and 
herbicides). Our assessment indicates that UV radiation and climate interact in various ways to affect the structure and func-
tion of terrestrial ecosystems, and that by protecting the ozone layer, the Montreal Protocol continues to play a vital role in 
maintaining healthy, diverse ecosystems on land that sustain life on Earth. Furthermore, the Montreal Protocol and its Kigali 
Amendment are mitigating some of the negative environmental consequences of climate change by limiting the emissions 
of greenhouse gases and protecting the carbon sequestration potential of vegetation and the terrestrial carbon pool.

Graphical abstract

1 Introduction

The Montreal Protocol and its Amendments have been 
highly effective in protecting the Earth’s stratospheric 
ozone layer and preventing global-scale increases in solar 
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ultraviolet-B radiation (UV-B; wavelengths between 280 
and 315 nm) at the Earth’s surface [1]. Consequently, this 
multilateral treaty, ratified by all 198 United Nations mem-
ber states, has prevented large-scale detrimental effects of 
elevated UV-B radiation on agricultural productivity, ter-
restrial organisms and ecosystems [2–4]. Moreover, because 
many of the ozone-depleting compounds regulated by the 
Montreal Protocol are also potent greenhouse gases, this 
treaty and its Kigali Amendment are playing an important 
role in mitigating global warming and other environmental 
effects of climate change [5, 6].

Changes in stratospheric ozone and climate are not independ-
ent of one another [7, 8] and both can affect surface ultraviolet 
radiation (UV; 280–400 nm), especially UV-B radiation [9–11]. 
According to current projections, which assume full compli-
ance with the Montreal Protocol, future changes in UV radia-
tion reaching the Earth’s surface are likely to be due primar-
ily to changes in climate (i.e. mainly cloud cover, aerosols and 
surface reflectivity) rather than changes in stratospheric ozone 
[10, 12, 13]. However, future changes in UV radiation at the 
Earth’s surface are uncertain: a new study projects an increase 
in the UV Index of 3–8% over the tropics and mid-latitudes, 
respectively, by 2100 depending on the greenhouse gas (GHG) 
scenario used in the model simulations, cloud cover, and aerosol 
concentrations [10, 14]. Changes in the exposure of organisms 
and ecosystems to UV radiation also results from increased 
incidence and extent of wildfires, which generate aerosols (also 
causing further damage to the ozone layer), and from alterations 
in vegetation cover from land-use practices (e.g. deforestation), 
melting of snow and ice, and shifting distribution ranges of spe-
cies responding to climate change [10, 12, 15–18] (Summarised 
in Table 1). In this assessment, we address how the expected, 
rather small changes in UV irradiation interact with the ongoing 
changes in climate to affect food security, biodiversity, biogeo-
chemical cycles and feedbacks to the climate system.

Since our last Quadrennial Assessment [12, 19], the 
Earth’s climate has continued to change and the frequency 
and intensity of extreme climate events (e.g. heat waves, 
droughts, and storms), and those events resulting from a 
combination of weather extremes and other drivers (e.g. 
wildfires), have increased [20, 21]. As global warming and 
its consequences continue to increase, there is renewed 
interest in possible technological interventions to reduce 
the warming. Stratospheric Aerosol Injection (SAI), an 
intervention that involves Solar Radiation Management 
(SRM), has received the most attention due to its potential 
feasibility. SAI would involve injecting reflective aerosols, 
such as sulphate, into the stratosphere to reflect incoming 
solar radiation away from the Earth’s surface [22]. There 
are many uncertainties associated with this intervention, 
including risks to the stratospheric ozone layer that could 
increase ground-level UV irradiance [23–25]. In addition to 
the risks associated with the initiation of SAI, once adopted, 

any subsequent termination of this climate intervention 
would lead to a rapid increase in temperature and extreme 
deleterious effects on ecosystems [26, 27]. This, and other 
SRM interventions, would likely expose the Earth’s ecosys-
tems to new and potentially rapidly changing combinations 
of UV radiation and other biotic and abiotic environmental 
factors [28].

In this Quadrennial Assessment, we evaluate the current 
state of the science on the changes in stratospheric ozone, solar 
UV radiation and their interactions with climate change as they 
affect terrestrial ecosystems and biogeochemical cycles in the 
context of the Montreal Protocol [29]. We also address key gaps 
in knowledge and how these interacting effects and the Montreal 
Protocol will have a bearing on the targets of the United Nations 
Sustainable Development Goals (SDGs) and their targets.

2  Effects of stratospheric ozone depletion 
on climate and extreme climate events 
on exposure to UV radiation

While both stratospheric ozone depletion and climate change 
can modify the amount of UV radiation reaching terrestrial 
ecosystems [8, 10], ozone depletion itself can also contrib-
ute to climate change by modifying atmospheric circula-
tion patterns and altering regional patterns of wind, pre-
cipitation and temperature [30–32]. The impacts of these 
changes in climate on terrestrial ecosystems have been most 

Table 1  Summary of the effects of various climate change-driven fac-
tors on the potential exposure of terrestrial plants and animals to UV 
radiation

Effects show direction (i.e. decreases (−) or increases ( +)) in expo-
sure to UV radiation with the relative magnitude of these changes 
indicated by the number of negative and positive signs. In some cases 
(e.g. altered phenology), changes may either increase or decrease UV 
exposure depending on the circumstances and species. Changes in 
exposure to UV radiation resulting from modifications in land cover 
(i.e. deforestation and shrub encroachment) refer to effects on ground-
dwelling, understorey organisms. The effects on exposure to UV 
radiation shown here do not include changes in stratospheric ozone. 
Additional information and relevant references are provided in the 
text that follows

Climate change effect Effect on 
exposure to UV 
radiation

Migration or range shift to higher elevations  + 
Migration or range shift to higher latitudes - -
Altered phenology (seasonal development) -/ + 
Deforestation (wet regions)  +  +  + 
Shrub encroachment (dry regions) - - -
Altered cloud cover - - -/ +  +  + 
Change in aerosols - -/ +  + 
Decreased snow/ice cover - / +  + 



Photochemical & Photobiological Sciences 

1 3

pronounced in Antarctica and in the high latitudes of the 
Southern Hemisphere, although there is evidence of ozone-
driven climate change in Arctic regions as well [33]. In 
addition to the effects of climate change on UV irradiation 
outlined above (Table 1), extreme events linked to climate 
change (e.g. droughts, floods, heat waves, fires) may abruptly 
change UV radiation conditions for many organisms. Below, 
we assess recent findings on the effects of ozone-driven cli-
mate change on polar ecosystems and the potential effects 
of extreme events on the exposure of terrestrial ecosystems 
in general to UV radiation.

2.1  Recent stratospheric ozone depletion 
and climate change effects on polar ecosystems

The impact of stratospheric ozone depletion on polar eco-
systems is a complex interplay between the consequences of 
changing surface UV radiation, and effects caused by shifts 
in the weather and climate due to the associated cooling of 
the lower stratosphere [12, 29, 34]. The increased UV irradi-
ance in the polar regions as a direct result of ozone deple-
tion has been documented since the late 1970s (ozone hole 
era) [8]. This has particularly been the case in the Antarctic 
region, where measurements show that the UV Index at the 
surface in late spring and early summer has, at times, been 
similar to that at mid- and subtropical latitudes [10, 35]. 
In the past, it was assumed that snow and ice cover would 
provide plants and surface organisms some protection from 
the high UV irradiances that occur during the peak of ozone 
depletion, but with climate warming accelerating the melting 
of snow and sea ice, Antarctic organisms are increasingly 
being exposed to this elevated UV radiation. How these high 
UV irradiances in late springtime impact the resident plants 
and animals is not entirely clear; studies conducted at the 
end of the twentieth century found relatively small effects 
on plants exposed to the elevated UV radiation experienced 
at that time. This was likely due to the inherent adaptations, 
UV-protective mechanisms and acclimation responses of 
these species in order to survive extreme environments 
[36–38]. Without the Montreal Protocol, the maximum 
UV Index would have potentially increased from pre-ozone 
depletion levels of 6–20, exposing coastal Antarctic organ-
isms to UV Indices at the end of this century that would 
be greater than those experienced today in the tropics [10]. 
These extreme UV radiation conditions would likely have 
exceeded the UV-tolerances of many Antarctic organisms. 
In the Arctic, surface UV-B irradiance has also been ele-
vated in recent years (e.g. 2019/2020) when episodic large 
stratospheric ozone depletion has followed anomalously cold 
stratospheric winters [10]. However, unlike in the Antarctic, 
these events occur during early spring when most organisms 
are still protected by sea ice or snow cover.

Changes in the stratosphere driven by ozone depletion 
have also been clearly shown to cause seasonally dependent 
shifts in near-surface patterns of wind, temperature and pre-
cipitation [39–42]. Knock-on effects on warming of oceans 
and melting sea ice cover have been investigated [40–49], 
but many uncertainties persist [50] as the effects of ozone 
depletion on weather patterns are occurring against a back-
drop of climate change. Collectively, these changes have 
led to increased variability of weather and climate, which is 
most pronounced in the polar regions [51]. As documented 
in our previous assessments and elsewhere, these shifts in 
weather and climate have had pronounced impacts on many 
Antarctic organisms, from tiny moss and cushion plants to 
wandering albatross [12, 34, 52, 53].

Since our last Quadrennial Assessment, extremes have 
occurred in both ozone depletion and climatic events that 
have led to observed or potential effects on plants and ani-
mals in polar regions (Table 2). Specific findings include:

• During spring 2019, the Antarctic stratosphere was 
strongly disturbed by meteorological influences from 
upward-propagating atmospheric waves [54–56] result-
ing in a small ozone hole. These stratospheric conditions 
played a role in enhancing prolonged drought over the 
2019/2020 austral summer that exacerbated the unprec-
edented wildfires in eastern Australia [57–64]. Effects 
on stratospheric chemistry following the wildfires led to 
wider changes in both the chemical composition and tem-
perature of the stratosphere across southern mid-latitudes 
[18, 65–73]. Strong vertical and horizontal gradients in 
the ozone concentration of the Antarctic upper tropo-
sphere during the austral spring potentially delayed the 
subsequent effects on surface climate [32].The role of 
ozone depletion in modulating the dynamical coupling 
between the polar stratosphere and the surface at lower 
latitudes for this particular season is still under investi-
gation. Nevertheless, it appears likely that the combined 
effects of climate change and ozone depletion could have 
impacted both the timing and magnitude of these wild-
fires with considerable consequences for ecosystems in 
this region.

• In contrast to 2019, a strong and persistent Antarctic 
ozone hole occurred in 2020 and 2021 [54, 74–76] and 
this led to record surface UV irradiances at several sites 
across East Antarctica during early summer. It has been 
suggested that the Australian wildfires that occurred 
during the previous summer contributed to this strong 
ozone loss [18, 54–56, 71, 72, 74]. There is evidence 
that increased ozone depletion has tended to delay the 
annual breakdown of the Antarctic stratospheric vortex 
[77]. Modelling suggests that increasing greenhouse gas 
concentrations also favour a more persistent vortex [78], 
as well as reducing the likelihood of a weaker vortex 
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[58]. While concentrations of ozone-depleting substances 
(ODSs) remain elevated, later seasonal persistence of 
the Antarctic vortex could expose organisms to higher 
UV irradiances at times of year when young animals are 
born/hatch and when plants are actively growing. The 
loss of protective snow cover could exacerbate these 
effects [34].

• Since our last assessment there have been two wide-
spread heatwave events in Antarctica, the first in summer 
2019/2020 when heat records were broken around the 
continent [63]. In March 2022 (autumn) extreme temper-
atures, almost 40 ˚C higher than normal, were reported 
as an atmospheric river, or plume of warm, moist air, 
moved onto the Antarctic plateau. Heatwaves such as 
these accelerate melting of icebanks [79], potentially 
exposing vegetation to high springtime UV-B radiation 
from which they have previously been protected [36]. 
The impacts of these heatwaves and the subsequent ice 
melt have been poorly studied in Antarctica in part due 
to the lack of environmental monitoring with networks 
of sensors tracking temperature and climate variables at 
appropriate scales. This lack of data is well illustrated by 
the recently published global maps of soil temperature 
[80], which exclude Antarctica. Warming temperatures 
on the Antarctic Peninsula are opening up ice free areas 
[79] causing the expansion of vascular plants [81] and 
increasing the possibility of new plant and animal species 
invading the continent [21, 82]. As in the Arctic, there 
are examples of both plant expansion (i.e. “greening”, 
[81, 83]) and death of plants by drought (i.e. “browning”, 
[84–88]). Heatwaves may also be particularly detrimen-
tal to mosses, as they survive by creating warm micro-
climates in Antarctica’s cold environments but this may 
become a disadvantage as air temperatures increase [89].

• In the Arctic, unprecedented low total column ozone val-
ues occurred in the 2020 boreal spring [90, 91] due to 
strong stratospheric ozone depletion, and this resulted in 
record-breaking high solar UV-B irradiances [92, 93]. 
These conditions were promoted by weak tropospheric 
wave activity [90, 94], associated with anomalous sea 
surface temperature in the North Pacific [33], which 
caused the stratospheric vortex to become large and sta-
ble. Heatwave conditions that occurred in the Siberian 
Arctic in early 2020 [95] appear to have been aided by 
atmospheric circulation patterns that were affected by 
the strong ozone depletion [33, 94]. Ozone depletion in 
March 2020 may also have aided the prevailing reduction 
of sea ice in the Arctic Ocean bordering Siberia [96]. 
As indicated above, most Arctic organisms are currently 
protected by snow and sea ice at the time of maximum 
ozone depletion and high UV radiation conditions at this 
time of year (i.e. early March to mid-April 2020), but 

changes in snow and ice cover resulting from climate 
change could increase exposure to UV radiation.

2.2  Interactive effects of extreme climate events 
and UV radiation extending beyond polar 
ecosystems

Globally, extreme climate events (ECEs1) are increasing in 
frequency and severity with climate change and are pro-
jected to become even more prevalent in the future as the 
climate continues to change [20]. Examples of ECEs include 
stronger storms and tropical cyclones, catastrophic floods, 
protracted droughts, anomalous heat waves and freezes, and 
more intense wildfires [113–118]. ECEs cause long-term 
disruption to ecosystem structure and function [119–122] 
and occur against a backdrop of more gradual changes in 
the environment (e.g. rising surface temperatures and atmos-
pheric carbon dioxide  (CO2) concentrations). These disrup-
tions to ecosystem function can exacerbate the deleterious 
effects of ECEs on plants and animals [123]. Extreme cli-
mate events also alter the amount of UV radiation reach-
ing terrestrial ecosystems (Fig. 1). These changes in UV 
radiation can occur over short or long timeframes, which 
can then lead to acute or chronic effects on ecosystems, 
respectively. The changes in solar UV radiation together 
with other environmental factors (e.g. temperature, avail-
ability of moisture) may affect biodiversity, productivity, 
emissions of greenhouse gases [124–126], and ecosystem 
carbon storage [123]. For example, fires, floods, and tropical 
cyclones (hurricanes) all create openings in forest canopies 
[127, 128], driving subsequent adjustment in the understo-
rey vegetation to an acute or chronic increase in incident 
solar radiation; these increases in solar radiation are often 
accompanied by increases in temperature and decreases in 
soil moisture [129–131]. There is also an associated increase 
in the amplitude of fluctuations in these abiotic factors. 
Some plant species (e.g. shade-adapted specialists) may not 
be able to adjust to this new environment and will go locally 
extinct. However, other plant species can respond quickly to 
these environmental changes [132–134] and may increase in 

1 An extreme climate event has been defined as “an episode or 
occurrence in which a statistically rare or unusual climatic period 
alters ecosystem structure and ⁄or function well outside the bounds 
of what is considered typical or normal variability” [112]; or simi-
larly, according to the IPCC, “if the value of a variable exceeds (or 
lies below) a threshold” that is exceeded [20]. Compound extreme 
events are the “combination of multiple drivers and/or hazards that 
contribute to societal or environmental risk.” An example of a com-
pound extreme event would be fire weather conditions which are the 
combination of hot, dry, and windy conditions [20].
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abundance. With respect to UV radiation, some plant species 
can respond rapidly to increases in amounts and variability 
in solar UV radiation through the production and accumu-
lation of UV-protective pigments [131, 135] (Sect. 3), and 
these attributes may allow these species to be successful in 
the changing conditions. From an ecosystem perspective, 
fires and hurricanes are among the most disruptive examples 
of ECEs as they can cause the loss of productivity and bio-
diversity, and increase the emissions of GHGs [136–138], 
which can be enhanced by UV radiation (Sect. 6).

The disruptive nature of ECEs also opens up the remain-
ing ecological communities to invasive species, which can 
further destabilise these systems [12]. For example, certain 
invasive species that can tolerate high solar radiation and 
colonise open habitats may displace some native, special-
ised or endemic species [139]. To what extent differences 
among plant species in their tolerances to UV radiation 
influences species invasions into high UV environments 
remains unclear [140, 141]. Recovery of ecosystems from 
these ECEs will largely depend on the species that colonise 
the more open habitats created, and their biodiversity value 
and traits that support ecosystem function [142].

Wildfires and droughts affect the amount of UV and pho-
tosynthetically active radiation (PAR; 400–700 nm) reaching 
terrestrial ecosystems due to increasing aerosols from smoke 
and dust, and volatile organic compounds released by plants 
[143]. These atmospheric changes not only reduce PAR and 

UV radiation, but also change the spectral composition of 
sunlight at ground level [144]. Importantly, changes in air 
quality resulting from fires and droughts can occur well 
beyond the location of these events [145–147]. Thus, these 
conditions arising from fires and droughts can potentially 
affect photosynthesis and light-driven development in plants 
[148], as well as litter decomposition and GHG emissions 
in ecosystems [19] not directly impacted by these extreme 
events (Sect. 6.1).

3  Effects of UV radiation and climate 
interactions on plants and animals

While moderate UV-B irradiance serves as an informational 
cue that facilitates the normal regulation of plant growth 
and metabolism, exposure to excessive UV radiation, and 
in particular short-wavelength UV-B radiation, can have 
deleterious effects on terrestrial organisms [e.g. 150]. As 
sessile, photosynthetic organisms, plants require sunlight for 
their growth and reproduction, but this also means that they 
can receive a large cumulative amount of solar UV radia-
tion over their lifetime. This cumulative amount would have 
been very high in the extreme UV irradiation conditions 
that would have occurred without the Montreal Protocol 
[1]; however, because of its implementation appreciable 
reductions in photosynthesis in terrestrial plants have been 
avoided. High UV irradiance conditions would also likely 
impair growth with severe consequences for global carbon 
storage and climate [3, 10] (Box 1). Under current climate 
conditions, and in most regions of the world, land plants 
appear to show adequate protection against UV radiation that 
limits the deleterious effects of moderate UV-B radiation. 
There are physiological similarities in responses to adverse 
conditions (stress), that may determine the extent to which 
plants can tolerate increased UV radiation in combination 
with other abiotic factors (e.g. temperature, drought, ele-
vated  CO2) that occur simultaneously. In this section, we 
highlight recent progress in identifying the mechanisms by 
which plants perceive and respond to UV radiation. These 
findings allow us to better assess the impacts of changes in 
UV radiation, plant response to rapid increases in UV radia-
tion (as occur following many ECEs), and how UV radiation 
interacts with environmental stresses (e.g. climate change) 
to modulate their growth and productivity.

In contrast to the abundant literature on the effects of 
UV-B radiation on terrestrial plants, far less attention has 
been paid to the effects of UV-B radiation on terrestrial ani-
mals. What research there is on animals, typically addresses 
vision in the UV-A waveband and its effect on behaviour 
[150], and the application of these findings for controlling 
insect pests and pollinators of certain crops [151]. One 
exception is the increasing research, largely focussed on 

Fig. 1  Pathways by which extreme climate events (ECEs) driven by 
changes in stratospheric ozone and climate can affect exposure of ter-
restrial organisms and ecosystems to UV radiation. Changes in strato-
spheric ozone and climate interact to influence the frequency and 
intensity of a number of ECEs (upper-most grey rectangles). These 
ECEs in turn affect atmospheric and surface intermediaries (multi-
coloured ovals connected with ECEs by overlapping shaded regions), 
which can increase ( +) or decrease (-) the solar UV radiation reach-
ing terrestrial organisms and ecosystems. Solid arrows show direct 
mediation by climate, ozone and UV radiation on ECEs and potential 
interactive and feedback effects. Dashed arrows show chronic effects 
of climate change factors
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agricultural systems, showing that terrestrial invertebrates, 
including mites [152, 153] and insects such as aphids 
[154–156], are vulnerable to direct damage from UV-B 
radiation. There are interesting parallels between inverte-
brate and plant responses to UV radiation; for example, in 
the role of DNA-repair [157, 158], antioxidant metabolism 
[159–162] and pigments [155, 156, 161] in conferring UV-
protection. This includes evidence that mites can obtain 
UV-protective compounds by consuming pollen [160]. It is 
also clear that avoidance behaviour plays a major part in 
reducing the exposure of invertebrates to solar UV radiation 
[152–154, 163].

3.1  Perception and response of plants to changing 
UV radiation

The need to better understand how organisms respond to 
elevated UV-B radiation, as occurs with stratospheric ozone 
depletion, stimulated research that eventually led to the dis-
covery of a UV-B photoreceptor in plants (UVR8, which 
stands for Ultraviolet Resistance Locus 8) [164]. It is now 
well-documented that UVR8 mediates a number of plant 
responses to changes in UV-B radiation in the environment. 
Recently, UVR8 has been found to operate over a spectral 
region extending through the UV-B and part of the UV-A 
radiation wavebands [165]. Thus, variation in solar UV 
radiation attenuated by the stratospheric ozone layer (which 
screens UV radiation up to ca. 335 nm) is well matched to 
the action spectrum of UVR8 [166, 167]. This might suggest 
that the evolution of UVR8 allowed plants to perceive and 
respond to environmental cues related to changes in strato-
spheric ozone.

The UVR8-signalling pathway likely evolved very early 
in the transition of plants from aquatic to terrestrial environ-
ments [168–170]. Two overlapping signalling pathways for 
UV responses (UVR8/WRKY36/HY5 and UVR8/COP1/
SPA-HY5 pathways) have been conserved during the evo-
lution of green plants [170, 171]. These pathways regulate a 
series of genetic transcription factors that affect accumula-
tion of flavonoids, functioning of the plant hormone auxin, 
and growth (i.e. through inhibition of elongation of lateral 
roots and hypocotyls [172]). Subsequently, diversification 
of signal transduction to increase crosstalk with other sig-
nalling pathways that control the production of additional 
secondary metabolites, such as brassinosteroids (hormones 
involved in plant development), enabled fine-tuning of toler-
ance to UV radiation in photosynthetic organisms. Specific 
responses in plants that are involved in their acclimation to 
UV radiation include: the accumulation of flavonoid pig-
ments as UV sunscreens, shorter stature with increased 
branching, and smaller leaves with thickened cell walls. 
These changes together with a more conservative strategy 
(i.e. slower but more efficient growth, photosynthesis, and 

water loss [173, 174]) collectively mitigate the potentially 
deleterious effects of current levels of solar UV radiation 
on plants.

Among the diverse functions of phenolic compounds in 
growth, development and reproduction, certain flavonoids 
and related phenolic acids (e.g. hydroxycinnamic acid deriv-
atives) screen UV radiation in plant tissues and are therefore 
central to plant UV-acclimation responses. The accumula-
tion of these compounds in leaves, flower petals and pollen 
is temperature dependent but is also driven by UV-B radia-
tion [135, 175, 176]. Flavonoids fulfil many additional roles 
in plants, in that they are involved in ameliorating biotic 
and abiotic environmental-stress, regulating the transport 
of certain hormones (i.e. auxin) and are required in many 
species for successful germination and growth of the pol-
len tube on the stigma of flowers, where they participate 
in cell signalling and recognition [177–180]. There is also 
evidence that greater accumulation of flavonoids in pollen 
grains improves their germination (e.g. in Clarkia unguic-
ulate; [181]) and flavonoids function in UV screening in 
pollen, which is essential to maintain viability [182, 183]. 
Additionally, flavonoid glycosides (quercetins and kaempfer-
ols), hydroxycinnamic acids and anthocyanins in leaves and 
pollen act as strong antioxidants, and, as such, they scavenge 
reactive oxygen species (ROS) produced by abiotic stressors 
such as excessive solar radiation, including UV-B radiation 
[178, 184].

In assessing plant acclimation to increased UV radia-
tion, it is relevant to consider responses to short-term, rapid 
fluctuations in UV radiation—as would occur with chang-
ing cloud cover or from day-to-day during the break-up of 
the stratospheric ozone hole—as well as to the longer-term 
(i.e. decade-scale changes that occur from anthropogenic 
changes in stratospheric ozone together with climate). The 
patterns of these responses can be used to evaluate whether 
plants’ epidermal UV screening and photoprotection prin-
cipally acclimate to immediate changes in UV radiation 
or if plants mainly rely on other mechanisms that allow 
trans-generational improvements in protection against UV 
radiation (i.e. genetic adaptation or epigenetics). There is 
increasing evidence that the accumulation of photoprotective 
compounds (including flavonoids, hydroxycinnamic acids 
and carotenoids) tracks seasonal and even daily variation 
in UV radiation [185–190]. In general, the magnitude of 
diurnal changes in UV screening is less than those that occur 
during the development of leaves. Diurnal changes in UV 
screening can, however, be of comparable size to the vari-
ation in screening that results from day-to-day fluctuations 
in UV radiation and temperature [176, 186, 191]. Rapid 
acclimation of UV screening to short-term changes in UV 
radiation indicates a high level of phenotypic plasticity and 
suggests that many plants can acclimate to short-term fluc-
tuations in UV irradiance arising from transient reductions 
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in stratospheric ozone, reduced cloud cover or certain ECEs 
(Fig. 1; Sect. 2.2). In fact, a comparison of 629 taxa growing 
together at high-elevation and high-latitude locations subject 
to strongly contrasting UV irradiances, found phenotypic 
plasticity in epidermal UV screening according to their 
immediate growing microenvironment, and this outweighed 
any differences in adaptation arising from their evolutionary 
history under disparate climates [192]. Similarly, the impor-
tance of the local environment over the place of origin is also 
highlighted by experiments where species and populations 
are grown in the same location and habitat (i.e. common-
garden experiments [193]).

Although the capacity for rapid acclimation may be 
advantageous for adjusting to short-term environmental 
variability, high phenotypic plasticity may interfere with the 
capacity for genetic adaptation to changing conditions over 
long time periods [194–196]. Understanding the relative 
importance of phenotypic plasticity vs. genetic adaptation 
is needed to evaluate the consequences of climate change-
induced range shifts that expose plant species to UV irradi-
ances that might be beyond those experienced in their his-
toric ranges (Sect. 4.1).
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Studies examining the mechanisms by which native plant 
species tolerate naturally high UV-B environments can pro-
vide insights into the range of adaptive responses exhibited 
by plants to UV-B radiation. For example, Rheum nobile 
(Sikkim Rhubarb), an herbaceous plant that grows above 
4000 m on the Tibetan Plateau, has large translucent flower 
bracts containing high concentrations of flavonoids, which 
form a protective cover over its flowers. This species can, 
thus, attenuate UV-B radiation within its floral tissues to 
similar levels across its elevation range [197]. In the same 
region, other herbaceous plants, such as Megacarpaea 
delavayi (a wild mustard [198]) and five species in the genus 
Saussurea (thistle-like plants in the sunflower family [199]) 
have a rapid DNA-repair mechanism to mitigate the damag-
ing effects of high UV-B irradiances. Comparative genomic 
analysis of 377 Tibetan peach populations showed that the 
expansion of SINE retrotransposons (genetic variations that 
regulate gene expression), promotes adaptation to UV-B 
radiation [200]. These, and other evolutionary adaptations of 
specialist alpine species to extreme UV radiation conditions 
indicate how plants in general might adapt to high UV-B 
irradiances. However, the rate of changes in UV irradiance 
as a result of ozone depletion or climate change is likely to 
outpace the rates of adaptation in many species, especially 
long-lived perennials such as trees. Additionally, plants 
endemic to high elevations often have limited distribution 
ranges and abundances, and may be among the most vulner-
able to habitat loss due to climate change.

3.2  Proxies for past solar UV irradiance based 
on acclimation responses of modern‑day plants 
to UV radiation

Because many of the phenolic UV sunscreens accumulated 
by plants are resistant to decay, it may be possible to infer 
historical changes in solar UV radiation from tissue samples 
of plants that have been preserved in herbaria or in sediment 
cores. Herbarium specimens offer the potential to retrospec-
tively infer past environmental conditions by assessing how 
plant traits have changed over the period of their collection 
(usually decades). However, to be reliable proxies for UV 
radiation, herbarium specimens must be sampled in a con-
sistent and unbiased manner over time (See [201] for a full 
discussion of necessary procedures). If these protocols are 
followed, and if other factors that can modify flavonoid and 
anthocyanin accumulation in plants (e.g. shading, changes 
in temperature, availability of moisture or total solar irra-
diance) are accounted for, one could associate trends in 
pigmentation of thermostable compounds with historical 
changes in UV radiation.

Over longer time frames the effects of major global events 
such as changes in solar activity, volcanic eruptions, or 
reversals in the Earth’s magnetic field (e.g. at the Laschamps 

Excursion 42,000 years ago) might be examined through 
changes in the phenolic composition of pollen or spores. 
For example, the hydroxycinnamic acid para-coumaric acid, 
which is preserved in fossilised sporopollenin (a compound 
that forms the outer wall of spores and pollen), continues to 
be the focus of research seeking such a proxy for UV-B radi-
ation over geological time periods. However, before it can be 
reliably used it is necessary to ascertain the action spectrum 
of its response to UV radiation, its rate of degradation, the 
response time of its synthesis, as well as the consistency of 
response among species and over time [202]. In the case of 
fossilised pollen from Nitraria (a steppe plant) and conifers, 
chemical signatures have been shown to differ from those of 
contemporary (extant) pollen in a predictable and consistent 
manner such that stable relationships can be modelled [203].

3.3  Interactive effects of UV radiation and climate 
change factors

Ongoing changes in climate, together with associated 
changes in plant species distribution, are exposing wild 
plants, forests and crops to new combinations of UV radia-
tion and other climatic conditions [10, 124]. Combinations 
of particular concern are high UV-B irradiance and drought 
or temperature, as climate change is increasing the frequency 
and severity of heat waves and droughts, and these events 
frequently coincide with high UV radiation, particularly at 
mid to low latitudes [204].

There are marked similarities in the acclimation responses 
of plants to increases in UV radiation and drought. A recent 
meta-analysis found these two sets of responses to be gen-
erally consistent irrespective of whether experiments were 
performed in controlled environments (i.e. growth cham-
bers or greenhouses) or in the field [205]. In general, when 
plants are exposed to co-occurring drought and increased 
UV irradiance, the accumulation of defence compounds 
(e.g. proline and secondary antioxidants, such as flavonoids 
and anthocyanins) and other stress responses (e.g. decreased 
leaf area, reduced stomatal opening) is enhanced. Thus, the 
combined detrimental effects of these stressors on plant 
function are milder (i.e. reduced production of stress‐asso-
ciated malondialdehyde (MDA) and reactive oxygen species 
(ROS)), and this reduces the negative effects on photosyn-
thesis and biomass production [205, 206]. The response 
of plants to increased UV radiation may therefore confer 
cross-protection against drought [205, 207] and mitigate 
some of the detrimental effects of drought on plant growth 
and productivity, unless both stress factors are excessive. 
Further, it has been postulated that plants may use UV radia-
tion as a signal of impending drought [208]. The functional 
association between exposure to drought and UV radiation 
exposure appears to involve common physiological defence 
and acclimation responses [208, 209]. For example, multiple 
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studies have shown that overexpression of protective pig-
ments in plants results in enhanced protection against both 
drought and UV-B radiation [210, 211]. UV-B radiation can 
even be exploited for seed priming, resulting in enhanced 
expression of drought tolerance of plants grown from such 
UV pre-treated seeds [212]. Certain agricultural practices 
may also negatively impact crop tolerance of both UV radia-
tion and drought. For example, growth allocation to roots 
relative to shoots often increases in drought-stressed plants, 
as well as those exposed to high solar UV-B radiation (i.e. 
increased root:shoot ratios), but high nitrogen availability 
has the opposite effect on root–shoot allocation [213].

High UV-B irradiance often co-occurs with high tem-
peratures. A recent study of a commercial tomato cultivar 
(Solanum lycopersicum cv. Money Maker) compared plants 
transferred under near-ambient solar UV radiation to those 
placed in a UV exclusion treatment in the field. Exposure to 
UV-B radiation led to partial closure of leaf stomatal pores, 
reducing transpiration and evaporative cooling, and thus 
increasing leaf temperature by up to 1.5 °C [214]. These 
findings are relevant in warmer climates where even small 
increases in temperature may have substantial consequences 
for survival of crops [215], as high temperatures are well-
known to negatively affect photosynthesis and growth of 
many plant species. More broadly, a recent meta-analysis 
across terrestrial, freshwater and marine plants, algae and 
animals [216] showed that any negative effects of UV-B 
radiation can be somewhat compensated for by elevated tem-
peratures, although this depends on the habitat and organ-
ism involved. This positive effect of warming appears to be 
restricted to cool climates where organisms often function at 
temperatures below their physiological optima, and thus is 
not expected to occur in environments approaching the ther-
mal and physiological limits of organisms [216]. Given the 
current context of global warming, more detailed tempera-
ture and UV-radiation dose–response studies are required 
to fill this knowledge gap. Furthermore, the scope of such 
studies needs to go beyond crop yield, as early evidence 
shows that interactive effects of heat and UV radiation can 
also affect crop quality [217] (Sect. 5.2).

Apart from high temperatures, the effects of UV radia-
tion on plants can also be modified by low temperatures, 
and climate change is expected to increase the incidence 
of extreme cold events in some regions [20](Sect. 2.2). 
In studies with the model plant Arabidopsis thaliana, the 
synthesis of flavonoids is strongly enhanced in response to 
low temperatures (4/2 °C, day/night) compared to moder-
ate temperatures (18/20 °C), just as it is by UV radiation. 
Where plants are simultaneously exposed to both cold and 
UV radiation, complex interactive effects are observed, 
with UV-B decoupling flavonoid accumulation from 
gene expression, indicating post-translational regulation 
[218]. Low temperatures and UV-B radiation also produce 

a shift in the composition of flavonoid glycosides from 
kaempferols to quercetins [176]. The shift in composition 
towards quercetin synthesis at low temperatures suggests 
an enhancement in antioxidant function [176, 219], which 
could increase overall plant hardiness.

Temperature is a cue for many organisms, controlling 
their seasonal development (i.e. phenology). Changes in 
thermal regime, such as periods of extreme heat or cold or 
even an absence of cold temperatures, can disrupt the tim-
ing of growth, reproduction, and other aspects of phenology 
[220, 221]. Temporal shifts in phenology can also change 
the seasonal timing of exposure to UV radiation, as solar 
UV radiation varies at high-to-mid-latitudes over the course 
of the year. Shifts in phenology due to changes in climate 
and UV radiation may result in new combinations of biotic 
interactions (i.e. competitors and pests; Sect. 4.1) and abiotic 
stresses that may be outside the tolerances for some species. 
For plants, these new combinations of abiotic stresses can 
have detrimental effects on their growth and survival even 
though each individual stressor may have a negligible effect 
[222].

Complex effects on plants may also occur when other 
environmental factors interact with UV radiation. Recent 
studies have revisited the interactive effects of UV radia-
tion and increased nitrogen deposition [223], ozone pol-
lution [15, 224] and elevated atmospheric  CO2 concentra-
tion, where short-term stimulation can be outweighed by 
long-term downregulation of photosynthesis [225], as noted 
in our previous assessments [12, 226]. Elucidation of the 
interactive effects of UV radiation and these other environ-
mental factors is necessary to improve our ability to model 
and assess the effects of UV radiation on the carbon seques-
tration of terrestrial vegetation in a changing climate (e.g. 
Box 1).

4  Species distributions and biodiversity

Maintaining the wide variety of plants, animals, and micro-
organisms in terrestrial environments (i.e. biodiversity) is 
essential for ecosystem health, stability, and valuable ser-
vices provided to humans. The loss of biodiversity can occur 
directly (e.g. hunting or harvesting) or indirectly (e.g. loss of 
habitat, climate change, and invasive species). While con-
siderable attention has been given to the effects of climate 
change on biodiversity [21, 227, 228], far less is known 
about how solar UV radiation might interact with climate 
change to influence species distributions and diversity in 
ecological communities. We examine these effects from 
available studies and evaluate how the UV radiation expo-
sures of species can potentially change as their distributions 
shift in response to climate change.
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4.1  Potential effects of climate change and UV 
radiation on shifting species distributions

Plant and animal species are migrating or shifting their 
distribution ranges to higher elevations and latitudes in 
response to ongoing changes in climate [229–231]. As 
species occupy higher elevations and latitudes, they may 
encounter increased or decreased UV radiation, respectively, 
because of the natural gradients in solar UV radiation that 
occur with elevation and latitude (Table 1). Some plants and 
animals are also shifting their ranges in the opposite direc-
tion, viz., towards lower elevation (lower UV radiation) and 
latitude (higher UV radiation), to avoid the increased sea-
sonality of temperature at higher latitudes [232, 233]. How 
species respond to novel combinations of UV radiation and 
multiple climatic conditions has direct implications for how 
they will interact with other species, including their pests 
and pathogens (Sect. 5.3), with consequences for biodiver-
sity [e.g. 235].

4.1.1  Latitudinal change

While the changes in UV radiation received by plants and 
animals resulting from latitudinal shifts in ranges are gener-
ally rather modest, they may affect terrestrial ecosystems and 
biodiversity. For instance, if one assumes species migrate at 
their maximal rates to keep pace with climate change (i.e. 
their average climate velocity for the period 2050–2090; 
[235]), the UV irradiance under clear sky conditions for her-
baceous plants would decline by 4.5%, while that for more 
mobile plant-eating insects would decline by 16.2% after a 
century of climate change (Fig. 2A).

Plants encountering reduced UV-B irradiance resulting 
from range shifts would likely reduce their levels of UV-
protective compounds (i.e. epidermal flavonoids and other 
phenolic compounds) [236, 237]. The multiplicity of roles 
performed by these plant secondary compounds could, in 
turn, make some plants more vulnerable to herbivores [238, 
239] (Sect. 5.3) as some of these chemicals serve as deter-
rents for insect herbivores.

Accelerated loss of biodiversity will likely occur as cli-
mate change continues to exert its effects on range shifts 
on plants and animals. Plants use both temperature and day 
length (photoperiod) as environmental cues for regulation 
of phenology (flowering, dormancy, budburst, etc.). Trees 
with long generation times may be especially vulnerable to 
extinction because they have limited opportunities to geneti-
cally adapt to a changing photoperiod and their environmen-
tal cues such as UV radiation may be mismatched with their 
new environment [240–242]. At present, it is unclear how 
changes in UV radiation in combination with climate change 
will affect species migrations and adaptation as experimental 

and modelling data are not yet available to quantify and fully 
assess the risk of these interactive effects.

4.1.2  Elevational change

For many montane ecosystems, climate change is resulting 
in the migration of lower elevation species to higher eleva-
tions. Climate change is also reducing the envelope of suit-
able habitats for high elevation alpine species to survive, 
while increasing competition against emigrating species 
from lower elevations [21, 243]. However, like latitudinal 
shifts towards the equator, elevational distribution changes 
also occur downslope for some species [232, 233]. For spe-
cies shifting their ranges to higher elevations, their exposure 
to solar UV radiation would be expected to increase, assum-
ing no change in cloud cover (Fig. 2B). Further, reduced 
snow cover due to warmer temperatures exposes organisms 
to fluctuations in temperature and solar radiation, including 
UV-B radiation [244].

High elevation alpine plants often have heightened accu-
mulation of UV-screening compounds and herbivore defence 
[140, 245–248]. Across a diversity of plant species from 
alpine and subalpine zones in Bulgaria, improved photopro-
tection has been found to effectively prevent greater DNA 
damage caused by increased UV radiation at higher alti-
tudes. These mechanisms were sufficiently effective since 
plants growing at the highest elevations had fewer UV-
induced DNA dimers than those at lower elevations, with 
grasses (Family Poaceae) least susceptible to UV-induced 
DNA damage among a wide diversity of plant families tested 
[249]. Nevertheless, as species migrate to high elevations, 
more resources may be allocated towards protection against 
UV radiation, and this could in turn divert resources away 
from growth, which could then reduce competitive ability 
[250, 251]. Depending on the availability of suitable habitats 
at higher elevations, these changes in species interactions 
have the potential to negatively affect biodiversity [252] by 
shifting the balance of competition between species [253, 
254].

While climate change is causing many species to migrate 
to higher elevations, these climate change-induced shifts 
in distribution ranges are often most pronounced for non-
native, invasive species [255–257]. At present, it is unclear 
if UV radiation affects native and non-native invasive spe-
cies differently [140, 141, 258–260]. However, invasive spe-
cies are generally considered to exhibit greater phenotypic 
plasticity to new environments than native species, although 
this may depend on availability of resources [261, 262]. In 
some cases, invasive species have been found to alter their 
production of UV screening compounds to a greater degree 
than native species [140]. This flexibility may allow non-
native, invasive species to occupy new habitats more rapidly 
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than native species and, in some cases, outcompete endemic 
alpine species [234].

4.2  Assessing the risks to biodiversity 
from the interactive effects of UV radiation 
and climate change

Climate change can cause declines in biodiversity by reduc-
ing the availability of suitable habitats for species and by 
differentially shifting their distribution ranges, which then 
disrupts species interactions and ecosystem function. If spe-
cies cannot keep pace with climate change, then populations 
will decline leading to a loss of biodiversity. In this context, 
species distribution models (SDMs) are used to determine 
how climate change will affect future habitat suitability of 
species through changes in key abiotic drivers. These mod-
els can be used to inform species conservation as well as 
management for plant production in agriculture and forestry 
[265].

Several studies have shown that the inclusion of solar 
UV-B radiation in models forecasting future distribution 
ranges of ecologically and agriculturally important crop 
and tree species improves their statistical predictive power 
[266–272]. These models are based on different scenarios of 
climate change (i.e. IPCC scenarios of greenhouse gas emis-
sions) and create projections based on correlative relation-
ships between climate and species occurrence. These projec-
tions suggest that the ranges of some species of native plants 
from open, dry habitats found in arid and semi-arid shrub-
steppe biomes will expand to higher elevations [267–272], 
while the ranges of willows and other related species from 
wetter habitats will contract [266].

Some studies of plants native to China and central Asia 
include UV-B radiation among the potential explanatory 
climatic variables that contribute to species distributions, 
sourcing data from the global climatology [273]. Future 
habitat suitability estimated using Maximum Entropy 
models (MaxEnt; models that apply basic machine learn-
ing algorithms to resolve environmental conditions where 
the species is present across its distribution) reveal incident 
UV-B radiation together with precipitation and temperature 
as significant correlates of species occurrence. While these 
models do not identify the mechanisms underlying these 
results, the findings suggest that such models could be use-
ful in assessing risks to biodiversity, as well as providing 
information on potential species distributions and suitable 
habitats for conservation and planting crops for different 
scenarios of climate and solar UV-B radiation.

Despite the inclusion of UV-B radiation among signifi-
cant climatic variables in some studies of species distri-
butions [266–272], most modelling studies to date do not 
include UV-B radiation and its interaction with other abiotic 
stressors as potential constraints on species distribution. As 

more detailed UV-B databases become available, it is likely 
that UV-B radiation will more routinely be included among 
climatic variables used to predict species occurrence and 
changes in biodiversity. As well as species distribution, 
climatological data that include regional UV-B irradiances 
can be applied to study whether climatic trends correlate 

Fig. 2  Potential changes in exposure to UV radiation as plants and 
insects migrate to higher latitudes and elevations with climate change. 
Panel A shows the estimated changes in UV radiation as plants and 
their herbivorous insects migrate poleward after 100 years (y) of cli-
mate change. UV radiation data are simulated midday summer (June 
21) UV irradiances (here reported as UV Index; red line) based on 
stratospheric ozone levels in 1980 at sea level (radiative transfer 
model TUV; [263]). Horizontal arrows show distances migrated for 
herbaceous plants (green arrow) and plant-eating insects (orange 
arrow) originating from 30° N after 100  years of climate change 
assuming maximum rates of migration and average climate velocity 
for 2050–2090 (from [235]). Panel B shows the simulated midday 
summer (June 21) clear sky UV Index changes with elevation in the 
European Alps (46° N latitude; red line) and the estimated changes in 
UV irradiance for plants (green line) and insects (orange line) as they 
migrate from 2000 m to higher elevations after 100 years of climate 
change, assuming average current rates of leading edge migration 
for Western European montane plants (28.2  m/decade) and insects 
(90.5 m/decade) [264]
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with patterns in plant functional traits among species. For 
example, a large-scale study of 1192 grassland species found 
that UV radiation was negatively correlated with leaf size 
across the Mongolian and Tibetan Plateau [274], while leaf 
shape, reflectance, and thickness have also been found to 
covary with UV-B radiation along environmental gradients 
[275–277].

5  Effects on agriculture and food 
production

Some of the earliest concerns raised over stratospheric ozone 
depletion and the accompanying increase in solar UV-B 
radiation considered the potential for reductions in crop pro-
ductivity and compromised food security [278, 279]. A prior 
assessment [38] using results from field studies conducted 
at high latitude locations indicated that plant productivity 
declines by about 3% for every 10% increase in plant effec-
tive UV-B radiation (i.e. UV-B radiation weighted accord-
ing to a generalised plant action spectrum [280]). These 
findings implied that the projected increases in solar UV 
radiation with changes in stratospheric ozone and climate, 
assuming full compliance with the Montreal Protocol, would 
have minimal effects on agricultural productivity. However, 
few experimental studies to date have been conducted on 
species growing in those regions with the highest natural 
levels of UV-B radiation on Earth (i.e. the tropics and high 
elevations). Previous studies also tended to focus on crop 
productivity but paid less attention to the effects of UV 
radiation on food quality. The effects of UV radiation on 
agroecosystems also extends beyond the direct effects on 
crop plants, as UV radiation can influence pest–pathogen 
interactions and the persistence and effectiveness of bioc-
ides and agricultural pollutants. The management of solar 
radiation in greenhouses and advances in artificial UV light-
ing are exploiting some of the beneficial effects of modest 
exposures to UV radiation to improve food quality, enhance 
plant defences against pest and pathogens, and contributing 
to more sustainable agricultural practices [281].

5.1  Agroecosystems vulnerable to changes in UV 
radiation and climate

As noted in our 2019 Update Assessment [282], and in other 
reports [283, 284], most field research to date on the effects 
of UV radiation on crops has been concentrated on regions 
outside the tropics and at lower elevations. The tropics 
extend over approximately 33% of the Earth’s land surface 
[285] and harbour a vast reservoir of biodiversity [286] that 
provides critical resources and essential services for agricul-
ture and food security [287]. Thus, tropical agroecosystems 

warrant further attention to safeguard a sustainable future 
for life on Earth.

Because the projected recovery of stratospheric ozone is 
highly dependent on changes in GHG concentrations and 
lifetimes of ODS, there remains some uncertainty about 
how UV-B radiation might change in the future for tropi-
cal regions [10, 288]. Under some scenarios, UV-B radia-
tion could increase by 3% in the tropics due to interactions 
between stratospheric ozone, climate and aerosols [8, 10]. 
This increase would further elevate the already high levels of 
UV-B radiation that occur naturally at low latitudes. At pre-
sent, the consequences of these relatively modest percentage 
increases in UV-B radiation on crops or wild plants in this 
region are uncertain. Available evidence suggests that current 
levels of UV-B radiation in the tropics can alter the morphol-
ogy (e.g. smaller leaves, reduced shoot height) and chemistry 
(e.g. increased flavonoid levels) of native, non-crop tropical 
plants, but that biomass production is rarely decreased in 
these species (e.g. [289]). By comparison, several field exper-
iments have shown that certain varieties of temperate-zone 
crops (e.g. wheat and soybean) [290–292] show decreases in 
photosynthesis and yield when grown under ambient UV-B 
radiation in the tropics. These findings suggest that some 
important crop species grown in the tropics might be vulner-
able to relatively small increases in UV-B radiation.

As noted above and in Sect. 4.1, climate change is shift-
ing bioclimatic zones and this is allowing certain crops to 
be grown at higher elevations than was previously possible 
[293–298]. For some crop species originating from lower 
elevations, the more intense UV radiation at high elevations 
may exceed their tolerances to UV radiation with nega-
tive consequences for their physiology and growth [299]. 
As crop species are grown in these new habitats, they will 
also encounter new weeds, pests and pathogens, which may 
disrupt the structure and function of these agroecosystems 
[300, 301]. Differential effects of climate change on range 
shifts and phenology can also lead to spatial and/or temporal 
or seasonal mismatches between pollinators and their plant 
hosts [302, 303], posing additional risks to food security. 
Many of these high-elevation agroecosystems support com-
munity livelihoods and are important carbon sinks that help 
mitigate global warming. Thus, their risks from changes in 
climate and UV radiation are of particular concern.

5.2  Effects of UV radiation on food quality

Laboratory and field studies have found significant effects 
of UV radiation on crop quality with regard to texture, fla-
vour, appearance and nutritional content. It is now well-
established that the concentrations of a wide array of natural 
plant chemicals are modified by UV radiation [304–307] 
and these changes in chemical composition can have posi-
tive and negative effects on food quality. There is abundant 
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research demonstrating that exposure to modest levels of 
UV radiation can improve food quality by enhancing crop 
flavour [308], taste [309], colour [310], nutritional content 
[311–314], and pharmaceutical content [315–317] in vari-
ous plants. Given that the intake of fruits and vegetables of 
many consumers is well below recommended levels [318], 
the higher nutritional content of crops exposed to UV radia-
tion may generate long-term health benefits. For example, 
Keflie et al. [319] used solar UV-B radiation to increase 
vitamin D in oyster mushrooms, which may alleviate vitamin 
D deficiency in humans. Some have proposed legal regula-
tion for UV treatment of foods, including mushrooms [320].

In some cases, exposure of crops to UV radiation can 
lead to a decrease in their nutritional value for humans and 
livestock. For example, some species of tropical grasses 
show increases in tannins when grown under experimentally 
elevated UV-B radiation, and this would imply a reduced 
palatability of forage for cattle [321, 322]. High levels of UV 
radiation may also increase amounts of other anti-nutritional 
compounds in plants, such as oxalates, which are generally 
associated with kidney problems [323]. At present, the full 
scope of UV-induced anti-nutritional compounds is not fully 
known nor is the identification of crops most at risk to these 
changes.

5.3  Effects of UV radiation on plant interactions 
with pests and pathogens

The Food and Agriculture Organization of the United 
Nations (FAO) estimates that plant pests2 cause a 20–40% 
loss in global agricultural production per year, costing ca. 
$220 billion USD, with the impacts of invasive insect spe-
cies adding another $70 billion USD [324]. It is expected 
that climate change, including ECEs, will increase the inci-
dence and severity of pests and pathogens in some regions, 
as these organisms colonise new previously sub-optimal 
habitats along latitudinal and elevational gradients [325, 
326]. The climate-induced parallel range shifts of plants 
with latitude or elevation into new habitats may constitute 
additional stress from plant pests (Sect. 4.1) [327]. Ris-
ing concentrations of  CO2 and associated global warming 
together with regional increases in UV radiation may also 
act together to compromise food security through complex 
effects on plant pests and disease [328]. While our previ-
ous assessments have reported on UV-mediated increases in 
resistance to specific pests and pathogens [12, 38], we note 

that there is a need for more detailed studies on the interac-
tive effects of UV radiation,  CO2 and other climate change 
factors on plant interactions with pests and pathogens.

Exposure to UV radiation can confer increased resistance 
of certain crops to pests and diseases through changes in 
host physiology, morphology, and biochemistry. As noted in 
Sect. 3.1, UV radiation typically enhances the production of 
polyphenolic compounds, such as flavonoids. Some of these 
compounds enhance a plant’s defence against herbivores and 
pathogens (e.g. viral, fungal or bacterial) [239, 282, 329]. 
Disease and pest attack will also elicit the production of 
increased amounts of these polyphenolic compounds that 
can make the host plant unpalatable or toxic (Sect. 5.2) and/
or protect the plant through their antioxidant properties (e.g. 
scavenging of free radicals). These effects on pests or patho-
gen attack are part of a wider network of interactive effects 
on plant physiology and morphology potentially altering the 
susceptibility of crops to these threats [330].

Chemical biocides are widely employed to manage pests 
and pathogens in crops (Sect. 5.4). However, several bio-
control agents against insect pests have been developed 
and used as alternatives to chemical pesticides. Of particu-
lar interest is a group of fungi that are parasitic on insects 
(entomopathogenic fungi). Entomopathogenic fungi kill 
insects by penetrating the outer protective cuticle layer of 
specific hosts with the help of proteases [331]. These fungi 
live naturally in soils but can be mass-produced for applica-
tion to crops where they have been used against pests includ-
ing spittlebugs and locusts, which affect crops such as maize, 
sugarcane and beans [331], as well as against various insect 
pests in rice [332]. However, many of the entomopatho-
genic fungi are strongly inhibited by UV radiation and 
temperatures above  300 C, which affect their development 
and pathogenic function against certain insects. Therefore, 
these abiotic constraints are considered a major barrier to 
the use of entomopathogenic fungi in controlling insect pests 
[332–335]. However, the effect of solar UV-B radiation on 
these fungi remains to be confirmed through experiments 
where they are grown under realistic solar radiation condi-
tions [336]. Such studies may also allow for selection of fun-
gal biocontrol agents that are more tolerant to UV-B radia-
tion and other climate factors, for use as biocontrol agents 
to safeguard economically important agricultural systems.

5.4  Effects of UV radiation on agricultural biocides

The widespread application of biocides (herbicides and 
pesticides) for controlling or killing harmful organisms in 
agricultural field settings results in some accumulation of 
these chemicals in water, soil, and atmosphere, and may 
also result in residues in agricultural products. Given that 
biocides are designed to be bioactive, their adverse effects 
on non-target organisms and humans are of concern. Direct 

2 A pest in this context is “any species, strain or biotype of plant, 
animal or pathogenic agent injurious to the plants or plant products”, 
as per the definition in the International Standard for Phytosanitary 
Measures No. 5 (ISPM) adopted by the Commission on Phytosanitary 
Measures of the International Plant Protection Convention.
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and indirect photodegradation by solar UV radiation can 
potentially reduce the environmental residence time of 
pesticides [19]. However, photochemical degradation 
can also reduce the functional effectiveness of biocides 
as crop protectants, which may lead to greater amounts 
being administered by growers [337, 338]. Direct photo-
degradation of biocides occurs when a chemical absorbs 
UV radiation, leading to its breakdown into various degra-
dation products [339]. Indirect photodegradation involves 
the reaction of the biocide with reactive intermediates 
formed when natural photosensitisers (e.g. nitrate) absorb 
solar radiation [340]. Not all biocides are subject to direct 
photodegradation under solar radiation. For biocides with 
an action spectrum for direct photodegradation only in the 
UV-C region (wavelengths 100–280 nm) and not extending 
into the solar UV-B, only indirect photodegradation occurs 
under solar radiation.

In the field, the exposure of biocides to solar radiation 
depends on the manner in which they are applied to crops, 
as well as the specific characteristics of the crops, including 
age and canopy structure, which determines their exposure 
to solar radiation. These factors, together with the chemi-
cal composition of the pesticide formulation determine the 
extent to which they are photodegraded in the field. For 
example, the additive (co-formulation compound) benoxa-
cor, which is used as a safener (i.e. a compound used in 
combination with herbicides to reduce negative effects on 
crops) of the herbicide metolachlor, accelerates the photo-
degradation of the active ingredient on soil surfaces, lessen-
ing its toxicity [341]. The extent to which biocides are pho-
todegraded is also highly dependent on where the biocide 
residues occur. For example, the photodegradation rate of 
the herbicide imazethapyr is two orders of magnitude slower 
when applied to maize and soybean leaves than in aqueous 
solutions [342]. The leaves of aromatic herbs like thyme 
emit volatile organic compounds that can further affect the 
photodegradation of biocides deposited on their leaf sur-
faces, resulting in the formation of different photoproducts 
[341, 343–345]. Thus, the importance of direct vs. indirect 
UV-mediated photodegradation of biocides in the environ-
ment appears highly context dependent, and requires further 
research across a range of crops, environmental conditions 
and methods of application to clarify modes of action.

Climate change may be an additional factor impacting 
pesticide photodegradation on leaf surfaces. While pho-
todegradation kinetics typically have a weak temperature 
dependence, pyrethroid insecticides applied onto spinach 
plants grown at 16–21ºC degraded up to 2 times slower than 
when plants were grown at lower temperatures (10–15 ºC), 
likely due to differences in the chemical composition of leaf 
wax [346].

As observed for other contaminants [e.g. 348,112] bioc-
ide photodegradation products can be more toxic than their 

parent compounds. For example, some breakdown products 
generated by UV-B radiation of the fungicide chlorothalonil 
and the insecticide imidacloprid on plant leaves are more 
toxic to fish than their parent compounds [344].

Functional nanopesticides are being developed using 
nano-emulsion technologies as an alternative to traditional 
pesticide applications [348–351]. Encapsulated pesticides 
in nano-carriers, such as polymers, nanoclays, and metal 
organic frameworks provide controlled-release kinetics and 
improved stability against environmental degradation by UV 
radiation. The use of encapsulated pesticides prevents unde-
sirable pesticide losses and release into the environment that 
otherwise would cause ecological and health concerns [352]. 
The development of nano-biocides may contribute to more 
environmentally friendly and sustainable food production 
systems (Sect. 7), potentially protecting the integrity of bioc-
ides during their application on crops, while still facilitating 
subsequent degradation of their residues.

5.5  Development and application of UV lighting 
systems in agriculture

Concerns over the effects of elevated UV-B radiation result-
ing from ozone depletion on food production stimulated 
considerable research into the effects of UV-B radiation on 
crops, and much of this early research focused mainly on the 
leaf-level physiology and shoot growth of traditional crop 
plants (e.g. soybean, rice, maize; [353]). More recently, stud-
ies have examined effects of UV-B radiation on plants of 
medicinal value, mushrooms and algae [354]. For example, 
mushrooms [355, 356] and certain microalgae [357] syn-
thesise increased amounts of vitamin D after being exposed 
to UV-B radiation (Sect. 5.2) [357, 358]. In addition, more 
attention is being given to studying the effects of UV-B 
radiation on seeds, fruits, subterranean organs (e.g. roots 
and tubers), and on derived products, such as wine and olive 
oil [312, 359–362].

Results from these studies indicate that plants exposed 
to low or moderate levels of UV-B radiation in controlled 
environments (e.g. greenhouses, growth chambers) often 
have improved vigour, enhanced nutraceutical quality and 
are more resistant to pest and pathogens compared to plants 
that are grown in the absence of UV-B radiation, as typically 
occurs in commercial production glasshouses [281].

Other studies have shown how the application of UV-B 
radiation can modulate different physiological processes 
important for agriculture. These advances include, (1) accu-
mulation of anthocyanins and other antioxidants in different 
coloured fruits, such as peach, apple, grapes, and blueberry 
[313, 362–365] (Sect. 5.2); (2) improving the tolerance of 
rice and tomato to low temperatures, salinity and drought 
[366, 367]; (3) the manipulation of flavonoid accumulation 
in vegetables [368]; (4) the production of smaller cucumber 
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plants for targeted commercialisation [174]; (5) an increase 
in anticancer compounds in Catharanthus roseus [369] 
following treatment with a combination of hormones and 
UV radiation; and (6) extending the shelf-life of fruit by 
reducing the activity of enzymes involved in fruit rotting 
[370]. Also, the accumulation of bioactive compounds can 
be triggered more effectively by applying high UV-B radia-
tion during short periods in specific developmental stages 
(frequently near harvest) rather than using UV-B radiation 
over longer periods. This approach has been successfully 
applied in kale and grapes [361, 371, 372]. These advances 
have been achieved by translating research that was con-
ducted to better understand the effects of increased UV-B 
radiation resulting from ozone depletion into commercial 
practices to improve food quality and production (Sect. 7).

One of the more significant technological advances in 
plant UV research and horticulture has been the development 
and use of UV light-emitting diodes (LEDs). Increasingly, 
LED lighting systems are being used by growers before and 
after harvest to improve food value. LEDs are more energy-
efficient and environmentally friendly than most traditional 
light sources used in horticulture (e.g. high-pressure sodium 
vapour or metal halide lamps), and by utilising LEDs that 
emit both in the UV and PAR regions the control of the 
spectral composition, intensity and exposure period can be 
attuned to the light requirements of specific plants and crops 
[373, 374]. However, at present, only UV-A LEDs have been 
widely adopted to stimulate the accumulation of desirable 
plant compounds [375]. There are also some examples of 
successful application of UV LEDs in reducing certain plant 
diseases [376] and increasing nutritional quality [375].

6  Effects on biogeochemical cycles 
and climate feedbacks

Terrestrial ecosystems provide many valuable services, 
including the processing of dead organic material and the 
storage and recycling of essential nutrients. Both land vege-
tation and soils are also important carbon sinks that influence 
the concentrations of atmospheric  CO2 and hence climate. 
Solar UV radiation affects carbon storage and atmospheric 
 CO2 by influencing plant productivity [3], and the photodeg-
radation of modern dead plant material (litter) and ancient 
organic matter preserved in permafrost soils [377, 378], 
which becomes exposed to solar radiation because of cli-
mate change-induced thawing [379–383] (Box 2). Changes 
in climate and UV radiation can further interact to alter the 
cycling of other elements (nitrogen being the most impor-
tant) and the emissions of GHGs other than  CO2, which can 
affect stratospheric ozone and climate. Below, we evaluate 
new findings that address the underlying mechanisms and 

climate consequences of the interactive effects of UV radia-
tion and climate change on biogeochemical cycles.

6.1  Photodegradation of plant litter

The decomposition of plant litter is a key biogeochemical 
process determining rates of nutrient cycling and energy 
flow in terrestrial ecosystems. This process affects veg-
etation productivity, carbon storage and soil fertility, and 
releases  CO2 and other GHGs to the atmosphere [384]. Thus, 
decomposition of litter has important feedback effects to the 
climate system.

In general, the rate of litter decomposition is regulated by 
climatic factors (temperature and moisture) and the chemical 
composition of litter (primarily the amount of lignin and the 
ratio of carbon to nitrogen (C:N ratio) in the litter), which 
modifies the activity and composition of the decomposer 
organisms (fungi, bacteria and invertebrate decomposers). 
Exposure of litter to solar UV radiation and short-wave-
length visible radiation (i.e. blue and green light), can cause 
the direct breakdown of lignin and other plant cell wall con-
stituents forming non-volatile and volatile compounds (e.g. 
 CO2 which is released to the atmosphere). This process is 
referred to as photochemical mineralisation or photominer-
alisation [384, 385] (Fig. 3A, right panel). Additionally, UV 
and short-wavelength visible radiation can also accelerate 
the breakdown of litter by changing its chemistry, making it 
more palatable to microbes and thereby enhancing microbial 
decomposition (Fig. 3A, left panel) [386–388]. Promotion of 
microbial activity can also occur by the photodegradation of 
waxy surfaces layers (i.e. leaf cuticle) that allows moisture to 
more readily penetrate litter [389]. These indirect effects of 
solar radiation on microbial decomposition are collectively 
referred to as photo-priming or photofacilitation [390, 391]. 
In some situations, solar UV radiation can negatively affect 
litter decomposition by altering the composition and activi-
ties of the decomposer community (not shown in Fig. 3) 
[392]. The overall effect of solar radiation on litter decom-
position reflects the net effect of these three processes [390].

Among litter components, lignin has been identified as 
the most photoreactive due to its absorption in the UV and 
blue–green region of the solar spectrum [384, 391]. How-
ever, recent studies have found that cellulose and hemicel-
lulose are even more susceptible to photodegradation than 
lignin [393, 394]. These discrepancies are an unresolved 
knowledge gap that could be addressed by identifying dif-
ferences in the photodegradation action spectra for lignin, 
cellulose, and hemicellulose. The presence of polyphenolic 
compounds in plant litter (Sect. 3.1) decreases photodegra-
dation under natural [395] and controlled laboratory condi-
tions [396]. This result suggests that the accumulation of 
polyphenolic secondary metabolites in green leaves may 
persist during the early phase of litter decomposition and 
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attenuate the penetration of UV-B radiation into litter. The 
surface area of litter exposed to solar radiation is also an 
important predictor of litter decomposition rate and carbon 
turnover [397–399].

Photodegradation of litter was initially thought to be 
important only in dryland ecosystems (e.g. deserts and grass-
lands) where low moisture and high temperatures often con-
strain the activities of decomposing microbes. Recent studies 
have established that photodegradation of litter is important 
not only in semi-arid [400–402] and arid [403–406] ecosys-
tems but also in moist environments that support tropical 
[407], subtropical [408], temperate and boreal forests [392, 
395, 396], alpine steppe [409], and marshes [410].

Calculations of the strength of the terrestrial carbon sink 
have typically excluded photodegradation of litter in mesic 
ecosystems (having moderate water supply) due to their high 
vegetation cover. However, recent field studies found that 
photodegradation of litter facilitates carbon cycling in can-
opy openings of temperate and tropical forests, even where 
understory solar radiation is relatively low [395, 396, 407, 
411]. Exposure to the full solar spectrum, resulting from the 
formation of a forest gap, can increase litter photodegrada-
tion rates by up to 120% relative to shaded conditions across 
a wide diversity of plant species [395]. This number is con-
siderably higher than that for photodegradation in semi-arid 
regions (60%) [412] or across several habitats or biomes 

(23%) [386], underscoring the importance of forest distur-
bance in mesic ecosystems. Exposure to solar radiation alters 
lignin structure of litter in the early stages of decomposition, 
promoting litter degradation via photofacilitation. This fact 
highlights the role of photofacilitation in mesic ecosystems, 
where higher water availability favours microbial decompo-
sition compared to drylands [387, 413] (Fig. 3). On the other 
hand, relatively high UV radiation, which occurs during the 
time of the year when the forest canopy is leafless, may also 
have an inhibitory effect on microbial decomposers [396]. 
The seasonal consequences of these effects of UV radiation 
on understory microbes and overall ecosystem health and 
function remain unclear.

Recent studies have clarified the relative importance 
of the different wavelengths of solar radiation (i.e. UV-B, 
UV-A and blue–green) in driving photodegradation of litter 
and these findings have implications for the effects of ozone 
depletion on this process. A recent meta-analysis found 
that, globally, solar radiation increases litter mass loss by 
15.3 (± 1.0)% relative to litter that has not been exposed to 
solar radiation [414]. The contribution of UV-B radiation 
was found to be significant only in specific environments, 
causing an 18% and 23% loss of litter mass in semi-arid 
regions and polar regions, respectively. The relatively lim-
ited importance of UV-B radiation in promoting loss of litter 
mass agrees with the results obtained with a new spectral 

Fig. 3  The relative importance 
of photomineralisation and pho-
tofacilitation in litter decompo-
sition across terrestrial biomes 
and environments. Panel A 
illustrates the processes of pho-
tofacilitation and photominerali-
sation in the photodegradation 
of surface litter exposed to solar 
radiation (UV radiation and 
blue–green light) in representa-
tive wet (forest; greater photo-
faciliation) and dry (grassland; 
greater photomineralisation) 
ecosystems. Panel B shows rela-
tive changes in photofacilitation 
and photomineralisation across 
biomes and along gradients of 
moisture, microbial activity 
and exposure to solar radiation. 
Not shown in this figure is the 
potential leaching of non-
volatile breakdown compounds 
resulting from photodegradation 
of litter that can occur when 
it rains, and possible negative 
direct effects of UV radiation on 
microbes
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weighting function for litter photomineralisation, which 
showed that UV-B and UV-A radiation, together with vis-
ible blue-green light, are responsible for 9%, 61% and 30%, 
respectively, of total photochemical (abiotic) carbon loss 
[404] (Fig. 4). Overall, these rather small effects of UV-B 
radiation suggests that litter photodegradation would be min-
imally affected by further changes in stratospheric ozone.

Photodegradation can also be influenced by changes in 
vegetation cover and soil erosion that result from changes 
in land use and climate, including ECEs (Sect. 2.2). The 
loss of forests and other natural or semi-natural vegetation 
cover due to agricultural practices increases photodegrada-
tion of surface litter [19, 397], such that deforestation and 
land clearing will accelerate release of carbon from the eco-
system and alter patterns of GHG emissions and nutrient 
cycling [395, 402, 415, 416]. In dryland ecosystems, litter 
position (e.g. at the soil surface vs. buried or covered in 
dust) is the predominant factor determining carbon loss from 
photodegradation [398, 417]. In contrast to forests, these 
dryland systems are experiencing an increase in woody plant 
cover as a result of changes in land use and climate and these 
vegetation shifts result in more shading of ground litter and 
increased soil erosion and deposition, which decrease lit-
ter photodegradation [418, 419]. Additional environmental 
changes such as increased nitrogen deposition and abandon-
ment or less intensive use of agricultural land may slow litter 
decomposition through the attenuation of surface UV radia-
tion by increased plant canopy development [409].

Rainfall is another factor affecting litter photodegrada-
tion. In an experiment performed in drylands, the addition of 
supplemental precipitation (simulating a 2.7 times increased 
rainfall) accelerated loss of litter mass by a factor of 2.6 
under near-ambient solar radiation but had no effect if litter 
was not previously exposed to solar radiation [388]. This 
result suggests that photodegradation followed by leaching 
may be another significant mechanism of loss of litter mass 
in arid ecosystems [388, 420].

Collectively, these findings indicate that the overall effect 
of photodegradation on the decomposition of plant litter 
depends on environmental conditions (primarily moisture 
and temperature), litter quality, the degree of exposure of 
litter to solar radiation (as influenced by vegetation cover, 
litter position and degree of soil–litter mixing), and the solar 
spectral composition of radiation reaching the litter layer 
[12]. Given the relatively small contribution of UV-B radia-
tion to loss of litter mass and photomineralisation, ongoing 
and projected changes in stratospheric ozone and their inter-
action with climate and land-use changes are likely to impact 
litter photodegradation mainly by modifying its exposure to 
total solar radiation [12, 19, 145].

6.2  Photochemical release of nutrients 
from terrestrial ecosystems

Most studies of photodegradation of organic matter in ter-
restrial ecosystems have focussed on effects on carbon but, 
as demonstrated in aquatic ecosystems [111], UV radiation 
can also affect the storage and cycling of other elements, 
such as nitrogen and phosphorous. Even in understory envi-
ronments, where the amount and spectral composition of 
solar radiation is greatly modified by canopy structure and 
phenology, UV-B radiation [395], UV-A radiation and blue 
light can promote the conversion of organic nitrogen into 
inorganic compounds (nitrogen mineralisation) [411, 415].

A recent meta-analysis of litter degradation studies 
found that the amount of UV radiation received affected 
the timing of nitrogen and phosphorous loss compared 

Fig. 4  Action spectrum and weighted solar radiation for the photo-
mineralisation of litter from plants in the North American Sonoran 
Desert. Panel A shows the mean weighting function/action spectrum 
for the photo-mineralisation of plant litter (heavy solid line; measured 
as  CO2 loss), with 95% confidence interval (dotted line; CI), along 
with the average solar noon spectral irradiance over the time period 
of the study (thin solid line). Panel B shows solar radiation at solar 
noon weighted according to the action spectrum in Panel A, along 
with the total % effectiveness of the solar UV-B, UV-A and visible 
wavebands. Adapted from [404]
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to that of carbon [413] due to differences in the relative 
contribution of microbial vs. photochemical degradation. 
Under reduced UV radiation, nutrient mineralisation was 
slow and poorly correlated with overall loss of litter mass, 
whereas, under increased UV radiation, phosphorous and 
nitrogen mineralisation was rapid and correlated with car-
bon mineralisation. These results suggest that microbial 
processes dominate nutrient cycling under low levels of 
UV radiation, while abiotic processes, which are charac-
terised by a simultaneous release of nutrients and carbon, 
are more important at higher UV irradiances. Thus, under 

conditions of high UV irradiation the nutrients in litter 
may be made more rapidly available to plants, potentially 
reducing competition for nutrients between plants and 
microbes. These effects could play a significant role in 
ecosystem functioning but have not yet been thoroughly 
studied. The release of mineral forms of nitrogen is also 
likely to produce volatile nitrogen compounds including 
nitrous oxide  (N2O), which is both a powerful GHG and 
ODS [19]. Given the obvious implications for climate and 
stratospheric ozone, the effect of UV radiation on  N2O 
emissions by litter remains a critical knowledge gap to be 
addressed in future studies.

A B

thawing
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6.3  Methane emissions, UV radiation and plants

Methane  (CH4) is a potent greenhouse gas, such that rela-
tively small changes in its emissions can make a signifi-
cant contribution to climate change [421]. In addition to 
anthropogenic emissions, methane is released naturally by 
terrestrial ecosystems, particularly wetlands [422, 423]. At 
present, solar UV radiation is not considered an important 
driver of methane emission from terrestrial ecosystems [9, 
111, 424]. However, there is concern that climate changes 
associated with stratospheric ozone depletion at high lati-
tudes (tundra and taiga ecosystems in the Northern Hemi-
sphere and peatlands or wetlands in the Southern Hemi-
sphere) may enhance methane emissions [19].

Plants often serve as conduits of methane produced by 
bacteria in damp soils [425]. They also contribute to meth-
ane emissions through photochemical mineralisation of pec-
tin, waxes, and lignin by UV-B radiation, although this effect 
is deemed rather small [426]. Methane emission from plants 
is accelerated by interaction with other stressors such as 
herbivore damage and high temperatures [427]. Controlled 
experiments with Scots pine and Norway spruce under 
ambient conditions in Finland found a positive relationship 
between methane emissions and solar radiation, which was 
steeper at warmer temperatures [428]. Even then, in most 
habitats, direct emission from plants through photodegrada-
tion of pectin [429] is considered only a minor contributor to 
global terrestrial methane emissions [421, 428].

Methane emission from plants also occurs through micro-
bial methane production in the heartwood of trees (reviewed 
by [421, 424, 430]). From there, methane can be released to 
the atmosphere by passing through the bark or through the 
plant’s vascular system. This process is currently thought to be 
the main avenue of plant methane emissions in non-wetland 
environments, and it is modulated by the moisture and phe-
nolic content of heartwood rather than by UV radiation [431]. 
Reactive oxygen species (ROS), which are produced in all 
organisms and can be enhanced by oxidative stress, also take 
part in reactions that can release methane. Additional research 
is required to at the global scale to provide for a more complete 
understanding of the effects of climate and UV radiation on 
terrestrial methane emissions [421, 424, 427, 432].

6.4  Interactions of UV radiation with fire‑derived 
carbon

Forest fires are increasing in severity and frequency and 
will become even more prevalent as the climate contin-
ues to change [20]. Boreal forests are particularly vulner-
able to fires as extreme warming is expected in this region 
[433–439] close to the Arctic circle. Forest fires directly 
contribute to climate change by releasing GHGs such as 

 CO2, methane, and nitrous oxide [15, 434]. Wildfires also 
provide an important pathway for opening soil surfaces to 
UV irradiation, leading to enhanced photodegradation of 
organic matter with consequent release of  CO2 (Sect. 6.1; 
Box 2). Due to the incomplete combustion of wood and 
other biomass, fires convert a substantial fraction of veg-
etation into burnt biomass, termed charcoal or pyrogenic 
carbon (PyC) [436]. Recent estimates indicate that ca. 
256 Tg carbon  (TgC)  yr−1 (range = 196–340  TgC  yr−1; 1 
teragram =  1012 g) of biomass were converted into pyro-
genic carbon between 1997 and 2016 [440]. During rain-
fall events following a wildfire, ash and pyrogenic carbon 
(estimated up to 203  TgC  yr−1 in a modelling study [441]) 
reach nearby watersheds, resulting in increased loads of 
organic carbon, nutrients, and metals [442, 443]. The 
impact of wildfires on surrounding water bodies can last 
for years, affecting biogeochemical processes and drinking 
water quality [442, 444]. In addition, fire-derived aerosols 
can temporarily reduce incident UV radiation reaching the 
Earth’s surface [144] and slow down UV-driven chemical 
processes in the troposphere [15].

Pyrogenic carbon includes a broad suite of chemicals 
such as anhydrous sugars, condensed aromatics (often 
named black carbon), and graphitic carbon [440]. The 
specific chemical composition of PyC depends on bio-
mass type and charring temperature, and this composition 
affects its solubility, bioavailability, and photoreactivity 
[440, 443, 445, 446]. Adding to previous findings [440], 
recent studies confirmed that black carbon is the most 
photoreactive fraction of PyC [447] and that microbial 
mineralisation of PyC can be enhanced by prior exposure 
to UV radiation (i.e. photofacilitation) [443, 446], similar 
to plant litter (Sect. 6.1) and dissolved organic matter in 
water [111].

7  Sustainability and the Montreal Protocol

By protecting the stratospheric ozone layer and mitigat-
ing some of the effects of climate change, the Montreal 
Protocol and its Amendments are assisting in the imple-
mentation of several of the United Nations Sustainable 
Development Goals (SDGs). Many findings in our Quad-
rennial Assessment address SDGs and specific targets that 
are relevant to agriculture (SDG 2: Zero hunger) and ter-
restrial ecosystems (SDG 15: Life on land) (Fig. 5). Other 
relevant contributions of the Montreal Protocol are related 
to pollution and contamination (SDG 3: Good health 
and well-being), and climate change (SGD 13: Climate 
action). Specific SDG targets addressed by our findings 
are described below.
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7.1  SDG 2: Zero hunger

While small increases in solar UV-B radiation do not appear 
to pose a threat to crop yield, extreme increases in UV-B 
radiation, as would have occurred without the Montreal Pro-
tocol, would likely have significantly decreased agricultural 
productivity (Sect. 5) and jeopardised SDG 2 and particu-
larly 2.4 (Sustainable food production and resilient agricul-
tural practices). Several studies have shown that moderate 
UV radiation can alter the chemical composition of food 
and medicinal plants (Fig. 5a). In most cases, UV radia-
tion increases the nutritional profile of some crop species 
(e.g. by increasing the concentration of certain antioxidants, 
e.g. flavonoids), with potential long-term positive outcomes 
for human health (Sect. 5.2). The latter finding has moti-
vated the development of agricultural practices (e.g. UV-
transparent greenhouse coverings and UV-emitting LEDs) 
that exploit low and medium levels of UV-B radiation to 
enhance the nutraceutical properties of crops (Sect. 5.5). 
These practices can be directly deployed in both developed 
and developing countries to obtain food with an improved 
nutritional profile for increased food security.

7.2  SDG 3: Good health and well‑being

Plants exposed to modest levels of UV radiation often dis-
play some increase in resistance to pests and pathogens 
(Sect. 5.3), which could lead to reduced use of pesticides. 
However, solar UV radiation also degrades certain pesti-
cides (Fig. 5a). This may lead to increased application of 
pesticides (Sect. 5.4), which could increase the risk of expo-
sure of workers and consumers to these chemicals as well as 
adding to soil pollution and contamination (SDG 3.9). The 
net result on pesticide use likely depends on many factors, 
including changes in UV irradiance, cropping system, and 
types of pesticides.

Insert Fig,

7.3  SDG 13: Climate action

Modelling studies indicate that the Montreal Protocol and its 
Amendments have played a critical role in protecting global 
carbon sequestration by terrestrial vegetation, which has, 
in turn, slowed the build-up of  CO2 in the atmosphere and 
reduced a certain amount of global warming (Box 1). Also, 
exposure of plants to modest levels of UV radiation, that 
would not have continued to occur without the Montreal 
Protocol, can improve their tolerances to drought (Fig. 5b) 
and enhance resistance to pests and pathogens, thereby mak-
ing crops and natural ecosystems more resilient to climate 

change (Sect.  2.2, 3.3; SDG Target 13.1: Improve resilience 
to climate change). Finally, this Assessment prepared for the 
Parties to the Montreal Protocol and as a scientific publica-
tion contributes to SDG Target 13.3 (Improve education, 
awareness-raising and human and institutional capacity on 
climate change mitigation, adaptation, impact reduction and 
early warning).

7.4  SDG 15: Life on land

Increasing temperatures due to climate change are shift-
ing the distribution ranges of plants and animals to higher 
elevations and latitudes, which changes their exposure to 
solar UV irradiation (Fig. 5c; Sect. 4.1). Some modelling 
studies suggest that UV radiation can be important in influ-
encing the distribution shifts in plants (Sect. 4.2), which 
have the potential to negatively impact biodiversity (SDG 
Target 15.1: Conservation of terrestrial ecosystems). For 
mountain ecosystems, the shift to higher altitudes is often 
more pronounced for invasive species, which then occupy 
ecological niches of endemic alpine species with negative 
outcomes for biodiversity (SDG Target 15.4: Conservation 
of mountain ecosystems).

7.5  SDG 17: Partnership

Monitoring of the stratospheric ozone layer and its inter-
actions with climate change are key to understanding the 
effects of UV radiation on terrestrial ecosystems, there-
fore the assessment of how species respond to this climatic 
pressure represents a challenge imposed on all countries. 
Partnerships between countries in Northern and Southern 
Hemispheres have been facilitated by the Montreal Proto-
col, which has stimulated technology transfer and innova-
tion on the effects of UV radiation on plants and animals 
among scientific communities worldwide (SDG targets 17.6, 
17.7 and 17.8: North–South cooperation to access science, 
technology and innovation; Promote development, transfer 
and dissemination of environmentally sound technologies; 
and Science, technology and innovation capacity-building 
mechanisms for least developed countries). This partner-
ship has facilitated international support for data acquisi-
tion and sharing on the stratospheric ozone layer and the 
effect of UV radiation on terrestrial ecosystems (SDG target 
17.9: Enhance international capacity-building to achieve 
SDGs). This has assisted least developed countries to have 
first-hand information for the implementation of environ-
mental policies towards the achievement of SDGs (SDG 
target 17.14: Enhance policy coherence for sustainable 
development).



 Photochemical & Photobiological Sciences

1 3

8  Gaps in knowledge

In this assessment, we have identified several important 
knowledge gaps. These include:

• Additional well-designed field studies are needed on 
all the topics addressed here to increase the confi-
dence in our assessment. It is well-established that the 
responses of plants and other organisms to UV radiation 

are heavily dependent on other wavelengths of solar radi-
ation as well as environmental factors such as tempera-
ture and moisture availability. There is also large inter- 
and intraspecific variation in sensitivity to UV radiation. 
Thus, the assessment of the effects of changes in solar 
UV radiation, stratospheric ozone and climate requires 
research conducted on a variety of species under natural, 
field conditions. However, studies conducted under con-
trolled environmental conditions (e.g. growth chambers 
and glasshouses) can provide important insights into the 

Fig. 5  Pictorial representation of how the Montreal Protocol and its 
Amendments align with several Sustainable Development Goals 
(SDG) and their targets. Panel A shows SDGs 2.4 (Sustainable food 
production and resilient agricultural practices) and 3.9 (Deaths and 
illnesses from hazardous chemicals and soil pollution and contami-

nation). Panels B and C show SDGs 13.1 (Strengthen resilience and 
adaptive capacity to climate related disasters; centre panel) and 15.1, 
15.4, 15.5 (Protect, restore and promote sustainable use of terrestrial 
ecosystems, sustainably manage forests, combat desertification, and 
halt and reverse land degradation and halt biodiversity loss)
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mechanisms of effects of UV radiation. In our assess-
ment we have included certain studies carried out under 
controlled conditions when the results appear plausible 
and/or are useful for increasing awareness of potential 
effects and outcomes, but more field studies are clearly 
needed to reduce many of the uncertainties identified in 
this assessment.

• Research into the impacts of Solar Radiation Man-
agement (SRM), such as Stratospheric Aerosol Injec-
tion (SAI), is needed to keep pace with policy-makers’ 
interest in these technologies. This is of particular con-
cern, given that the existing evidence might suggest that 
impacts on terrestrial ecosystems of adopting SAI, and in 
particular any eventual termination or interruption of SAI 
following its adoption, are likely to be considerable, per-
sistent and in some cases irreversible [24, 26–28, 448]. 
Importantly, some models of the effects of SRM on pri-
mary productivity by terrestrial ecosystems only draw on 
estimates derived from relatively simple and short-term 
calculations of changing canopy-level light-use efficiency 
under SAI scenarios. Experimental evidence of the rela-
tive importance of short-term responses vs the long-term 
acclimation of photosynthesis to the changes in spectral 
composition and irradiance brought by SAI have yet to 
be assessed through controlled experiments. Thus, we are 
not in a position to confidently assess the effects of SAI 
on ecosystem-level carbon assimilation at this time.

• Experimental studies are needed to verify findings 
from modelling studies aimed at quantifying the 
environmental consequences of extreme levels of 
solar UV-B radiation, as would have occurred with 
uncontrolled emissions of ODS. While these model-
ling studies are powerful approaches to understanding 
the benefits of the Montreal Protocol, and assessing the 
risks of future changes in the stratospheric ozone layer 
[e.g. 3], they rely on several assumptions that can lead 
to large uncertainties in the findings. As experimental 
studies on organisms exposed to these extreme amounts 
of UV radiation are lacking, it is often assumed that the 
effects of UV-B radiation on growth, productivity and 
reproduction observed under current UV radiation can 
be linearly extrapolated to higher amounts of UV radia-
tion. This assumption is likely unrealistic, especially for 
the more extreme ozone depletion scenarios that would 
have eventually occurred without the Montreal Protocol. 
In addition, little is known about how the photomorpho-
genic responses of plants, which are driven by photore-
ceptors such as UVR8, are affected by extreme levels of 
UV-B radiation, or about the levels of UV irradiation 
where damage by the UV-B waveband supersedes the 
regulatory, photomorphogenic effects.

• There is a critical need to develop action spectra for 
plants and other organisms, which more accurately 

describe biological responses to the different wave-
lengths of UV radiation under the full solar spectrum. 
Action spectra are fundamental to interpreting biologi-
cal responses to changes in UV radiation that occur 
with stratospheric ozone depletion and they also serve 
as spectral weighting functions in both laboratory and 
field experiments [449]. Large uncertainties in assessing 
the effects of ozone depletion can occur if inappropriate 
action spectra are used [450].

• The establishment of long-term biomonitoring studies 
would improve our ability to assess how organisms 
and ecosystems will respond to the ongoing changes in 
UV radiation and climate. Changes in UV radiation and 
climate, especially extreme climate events and combined 
extreme events (e.g. wildfires), pose significant risks to 
the health, stability, and biodiversity of terrestrial eco-
systems, but little experimental or modelling data exist to 
quantify these effects. These studies are critically needed 
for organisms and ecosystems in polar regions, the trop-
ics and high-elevation mountains.

• The establishment of a global UV radiation biomoni-
toring network using material from selected organ-
isms (from pollen to plants and animals) could further 
increase our knowledge and reduce uncertainties on 
the use of biological proxies for solar UV radiation. 
Certain plant material and tissues, such as herbarium 
specimens and pollen in sediment cores, have the poten-
tial to serve as proxies for reconstructing past UV radia-
tion environments on Earth, but presently there are large 
uncertainties associated with these techniques.

• Studies are needed to characterise a wider array of 
interactive effects to adequately assess the conse-
quences and map potential mitigation options of ongo-
ing changes in solar UV radiation together with other 
contemporary environmental changes. Advances have 
been made in understanding how UV radiation interacts 
with other climate change factors (e.g. UV radiation and 
drought) to affect the growth and physiology of plants 
[451] but studies need to be expanded to include multi-
ple interactive factors (e.g. UV radiation, temperature, 
drought,  CO2 concentrations).

• There is a need for additional biomedical research 
examining how UV radiation-induced changes in 
plant secondary metabolites affects dietary availabil-
ity of metabolites, and the impacts of these changes on 
food quality and the epidemiology of human diseases. 
Evidence continues to mount showing that exposure of 
plants to UV radiation alters their secondary chemistry 
and nutritional quality. But how these changes affect 
human health is largely unknown. This knowledge gap 
needs to be addressed to gain a fuller understanding of 
climate change-associated effects of UV radiation and 
their consequences for consumers, as well as the develop-
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ment of more sustainable agricultural practices (Sect. 5.5 
and 7).

• Research is needed to better understand the effects of 
UV-B radiation on animals. In comparison to terres-
trial plants and ecosystems, there are far fewer studies 
on the effects of UV-B radiation on animals. While 
there are some similarities in experimental approaches 
used to study plant and animal responses to UV-B radia-
tion (e.g. providing different UV-B radiation treatments 
using UV-emitting lamps) there are also some important 
differences that often limit the applicability of UV radia-
tion research on animals. For example, plant research 
typically uses a filter material (e.g. cellulose diacetate) 
to remove the short-wavelength UV radiation that is pre-
sent in lamps but not in solar radiation [336]. Most plant 
research has also taken into account the effects of differ-
ent UV wavelengths using action spectra as biological 
spectral weighting functions in designing and interpret-
ing experiments using UV radiation produced by lamps 
[336]. Not all studies of the responses of terrestrial ani-
mals, including insects and other invertebrates, adopt 
these approaches. In our assessment, these experimen-
tal deficiencies represent a significant limit in placing 
current understanding of invertebrate responses, mostly 
obtained using UV-emitting lamps, in the context of vari-
ation in solar UV-B radiation in the field.

• Despite recent advances in understanding the ecologi-
cal significance of photodegradation in the decompo-
sition of plant litter, further research is needed to 
refine our mechanistic understanding of this process 
and assess its importance in the cycling of carbon and 
other nutrients, and feedbacks to the climate system. 
Findings since our last Quadrennial Assessment have 
revealed that photodegradation of plant litter is not only 
important in drylands, but across all terrestrial ecosys-
tems. These findings explain, in part, why traditional 
biogeochemical models of litter decomposition that 
do not include photodegradation are often inadequate 
in reproducing measured mass and carbon losses [401, 
452, 453]. Despite this general finding, many knowledge 
gaps remain, notably the quantification of the relative 
importance of photomineralisation vs photofacilitation 
in both dry and mesic environments, and whether the 
spectral weighting function derived from studies in dry-
lands also applies to mesic ecosystems. Nutrient cycling 
has also been much less studied than carbon cycling, 
and particularly how changes in nitrogen cycling caused 
by UV irradiance could feedback on climate change 
and stratospheric ozone depletion. Open questions also 
remain concerning the underlying chemistry controlling 
litter photomineralisation and the role of UV radiation in 
driving GHG emissions from the thawing of permafrost. 
Reducing these uncertainties would improve our ability 

to assess how changes in UV radiation and climate will 
impact carbon cycling and feedbacks to the climate sys-
tem.

9  Conclusions

The findings presented in this Quadrennial Assessment indi-
cate that changes in stratospheric ozone, UV radiation and 
climate can interact in various ways to modify terrestrial 
ecosystems and biogeochemical cycles. While exposure to 
solar UV radiation, and in particular the short-wavelength 
UV-B radiation, has the potential to cause deleterious effects 
on plants, animals, and microorganisms, most species have 
evolved mechanisms to tolerate or avoid harmful solar UV 
radiation at the Earth’s surface within the range experienced 
without significant ozone depletion. The extreme UV irradi-
ances that would have occurred without the Montreal Pro-
tocol (i.e. “World-Avoided” scenarios) would likely have 
exceeded these tolerance limits and greatly reduced the pro-
ductivity and biodiversity of terrestrial ecosystems. These 
conditions would also have driven increased photodegrada-
tion of organic matter and nutrient cycling, which would 
have increased emission of GHGs, including nitrous oxide, 
an ozone-depleting and greenhouse gas. Our findings fur-
ther indicate that, in some cases, moderate levels of solar 
UV radiation (i.e. ambient UV irradiances without appre-
ciable ozone depletion) can have some positive effects on 
organisms and the environment (e.g. improved food quality, 
enhanced plant defence against pests, improved plant vigour 
and resistance to other abiotic stresses, and the photodegra-
dation of pesticides). Maintaining these beneficial effects of 
moderate UV radiation would have been impossible without 
the Montreal Protocol. Thus, the Montreal Protocol and its 
Amendments have played, and continue to play, a vital role 
in maintaining healthy, diverse ecosystems on land that can 
sustain life on Earth. The Montreal Protocol and its Kigali 
Amendment are also directly and indirectly protecting the 
Earth’s climate and mitigating some of the negative con-
sequences of climate change by limiting the emissions of 
GHGs and protecting the carbon sequestration potential of 
vegetation and the terrestrial carbon pool [3, 5].

Since our last full assessment [12], there have been addi-
tional extreme weather events (e.g. heat waves, droughts, 
and hurricanes) and events resulting from a combination of 
weather extremes and other drivers (e.g. wildfires) that have 
all contributed to the disruption and destabilisation of terres-
trial ecosystems. These have been particularly pronounced 
in polar regions where anomalies in stratospheric ozone and 
ozone-driven climate change have occurred in the last three 
years [10]. Ozone depletion over Antarctica in certain years 
has coincided with early summer and has likely resulted 
in greater exposure to UV radiation of animals, plants and 



Photochemical & Photobiological Sciences 

1 3

microbes. These, and other extreme events (as outlined in 
Sect. 2.2), are expected to increase in frequency and inten-
sity in the future because of climate change [20]. Together 
with other aspects of climate change, these extreme events 
will likely alter the UV radiation received by terrestrial 
organisms to a greater degree than the expected changes in 
the stratospheric ozone layer—assuming continued and full 
compliance with the Montreal Protocol. While understand-
ing of the mechanisms of these UV-climate interactions is 
improving, the scale of their effects in terrestrial ecosystems 
remain poorly defined at present. Nonetheless, our findings 
indicate that the Montreal Protocol and its Amendments 
continue to make valuable contributions towards mitigat-
ing some of the negative environmental consequences of 
climate change as well as addressing several of the SDG 
targets established in the United Nations 2030 Agenda for 
Sustainable Development.
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