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Abstract 10 

A series of five trials was established in Great Britain to test the effectiveness of fourteen treatments 11 

and a control on reducing mortality and damage by pine weevil (Hylobius abietis) on recently 12 

replanted Sitka spruce (Picea sitchensis).  Overall percentage mortality and damage was significantly 13 

different between trials, varying from a median of 24% to 100%.  The most effective treatments in 14 

reducing mortality were insecticides and physical barriers, with insecticides being most cost 15 

effective.  Low volume applications of insecticides were found to be as effective as higher doses.  16 

Using larger trees did not reduce mortality compared to the control, nor did application of a 17 

controlled release fertiliser. At Auchencairn, the trial where mortality was highest no treatment 18 

provided protection and so there is a need to develop an effective and integrated approach to 19 

reducing damage by pine weevil.   20 
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1. Introduction 24 

In the UK, pine weevils (Hylobius abietis) are one of the most damaging pests on recently planted 25 

conifer restock sites (Willoughby et al., 2017) and the only insect pest where routine preventative 26 

measures are taken (Leather at al. 1999).  Maturation feeding by adult weevils damages the young 27 

trees, through chewing of the bark on the lower stem, causing girdling and death (Willoughby et al., 28 

2017).  Without some form of intervention, in the UK mortality of young trees averages 50% 29 

(Willoughby et al 2017) ranging between 30% and 100% (Leather et al., 1999).  The pine weevil also 30 

feeds on branches of mature trees and can be a vector of damaging fungal pathogens (Leather et al., 31 

1999).   32 

Despite pine weevil being recognised as a serious pest since the beginning of the last century 33 

(Leather et al 1999) it remains a highly damaging agent to commercial forestry in the UK (Willoughby 34 

et al., 2017).  There are no recent assessments of the cost of this damage but it was estimated in the 35 

late 1990s that pine weevil cost the forestry sector £4 million per year, for direct control measures 36 

alone, not including the replacement of killed trees (Leather et al., 1999).  Furthermore, future 37 

damage from pine weevil is likely to increase due to the heightened temperatures predicted as a 38 

result of climate change (Inward et al., 2012). 39 

 40 

The pine weevil is an important pest elsewhere in Europe (Leather et al., 1999), and a wide range of 41 

approaches have been adopted or are being investigated to control damage.  These can be grouped 42 

into nine broad categories: (1) chemical control (Luoranen & Viiri,, 2005), (2) biological control 43 
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(Williams et al., 2013), (3) physical barriers (Petersson et al., 2004), (4) site preparation (Wallertz et 44 

al. 2018), (5) use of larger (Thorsen et al. 2001, Nordlander et al., 2011) or smaller planting material 45 

(Petersson et al., 2008), (6) delayed planting (Moore 2004), (7) use of antifeedants (Unelius et al., 46 

2018), (8) enhanced plant defences (Lundborg et al., 2016, Zas et al. 2014) and (9) genetic 47 

improvement (Zas et al., 2017).  There have also been attempts to develop systems that predict the 48 

risk of damage to the young trees through characterisation of sites (Heritage & Moore 2000, 49 

Nordlander et al., 2017, Lopez-Villamor et al., 2019) and population monitoring systems have also 50 

been developed (Wainhouse et al., 2007, Forest Research 2019). There has been interest in 51 

combinations of these approaches to create an integrated pest management system for pine weevil 52 

in the UK (Evans et al., 2003).  The trials that this paper reports were focused on chemical 53 

treatments, physical barriers, the use of larger plantings stock and fertiliser.  These treatments in 54 

combination have not been formally compared before in the UK and other than one treatment, the 55 

polymer, the methods used could all be adopted currently to protect trees on planting sites. 56 

Use of insecticide treated trees has been shown to be a cost effective and practical approach to 57 

reducing damage. In 2016 it was used to protect 40% of trees planted in the EU (Norsk Wax, 2016).  58 

Leather et al., (1999) describe the ideal insecticide for pine weevil as one that is systemic and kills 59 

the adults but also masks or alters attractive host volatiles. Some insecticides have these two 60 

attributes; a study by Rose et al., (2005) showed that application of either a pyrethroid or a 61 

neonicotinoid insecticide to young Scots pine (Pinus sylvestris) trees inhibited feeding on them by 62 

pine weevil.   63 

While insecticides are effective and cheap, there is pressure to minimise the use of pesticides in 64 

forestry (Willoughby et al., 2004), while under the UK Woodland Assurance Scheme the use of 65 

pesticides, biological control measures and fertilisers are to be reduced (UKWAS, 2018).  There are 66 

also international influences encouraging reduction of pesticide use in forests, such as forest 67 
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certification (FSC, 2019) and regional policies such as the 2009 European Commission Directive on 68 

the Sustainable Use of Pesticides (European Commission, 2019). 69 

Three insecticides are currently used in the UK to treat stock in the nursery, prior to planting to 70 

protect it from pine weevil damage.  These are alpha cypermethrin and two neonicotinoid 71 

pesticides:  imidacloprid, marketed as Merit Forest and acetamiprid, marketed as Gazelle (The 72 

Advisory Service for Weed & Pest Control in Forestry & Amenity, 2018). For top up spraying in the 73 

forest two insecticides are used: cypermethrin, marketed as Forester and Gazelle (The Advisory 74 

Service for Weed & Pest Control in Forestry & Amenity, 2018).  In a trial in Sweden, Merit Forest was 75 

shown by Petersson et al., (2006) to be less effective than cypermethrin as a pre-planting treatment 76 

with significantly higher losses in the second year.  Evidence shows that Gazelle is potentially much 77 

less harmful than alpha cypermethrin (Willoughby et al., 2017). 78 

An alternative to using chemicals are physical barriers to pine weevil. Various guards have been 79 

tested and design is known to affect their efficacy.  Petersson et al., (2004) tested two broad types of 80 

guards, ones with a collar (a structure at the top of the guard preventing weevils from climbing up 81 

and over the guard) and ones without a collar.  They found those with a collar to be effective at 82 

controlling damage by pine weevil.  A later piece of research by Petersson et al., (2006) in Sweden 83 

showed Clipstop, a collared guard to be as effective as permethrin over three years.   84 

Clipstops were tested in informal trials in the UK in 2005 but did not reduce damage (Leslie & 85 

Liddon, 2017) and other barriers have been tried including paper guards and those fabricated from 86 

ladies’ stockings but none have been successful (Leslie & Liddon, 2017). Despite this unpromising 87 

experience, there are other guards available in the UK, including plastic Biosleeves, Multipro Sleeves 88 

and Weenets (Willoughby et al., 2017).  89 

A different approach involves the application of protective coatings on the lower part of the stem of 90 

young trees.  These include Flexcoat, a polysaccharide coating (Harlin and Eriksson, 2010), and 91 

Conniflex, a sand and glue based coating (Nordlander et al., 2009).  Conniflex has proved to be 92 
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effective in protecting Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) against pine 93 

weevil damage in a trial in Sweden (Nordlander et al., 2009) and to date has protected 320 million 94 

container grown stock trees (Svenska-Skogsplantor ,2019). Another treatment, Norsk Wax has been 95 

developed in Scandinavia (Norsk Wax 2016). Field trials in Sweden of this product were encouraging 96 

with 1.3% of treated trees being killed compared with 29% of those unprotected (Ohrn & 97 

Nordlander, 2015).   The use of protective coatings has largely replaced the use of insecticides in 98 

Sweden with an intention that 2020 will be the last year where insecticides will be applied (Sveriges 99 

Lantbruksuniversitet, 2018).   100 

Larger trees have been shown to be less attractive to pine weevil and to exhibit lower mortality 101 

(Nordlander et al., 2011).  Thorsen et al. (2001) identified a threshold basal diameter of greater than 102 

8mm and scarification around the planting position were needed for high seedling survival of 103 

Norway spruce (Picea abies) in Sweden. However, a study (Petersson et al., 2008) showed mini-104 

trees, 10 week old containerised seedlings of Norway spruce to be less damaged (3.5% vs 55%) than 105 

conventional planting stock.  When the mini-trees were damaged by pine weevil they released larger 106 

concentrations of limonene, a chemical known to be repellent to pine weevil, while conventional 107 

planting stock released the attractant alpha-pinene.   108 

In April 2017 Maelor Forest Nurseries Ltd. in collaboration with Scottish Woodlands, Flintshire 109 

Woodlands Ltd and Tilhill Forestry established a series of five trials across Great Britain with the aim 110 

of testing the effectiveness of fifteen treatments (including a control) in reducing the mortality and 111 

damage by pine weevil on newly planted Sitka spruce (Picea sitchensis).  The treatments included 112 

chemical control measures, physical barriers and planting materials that had greater girth and 113 

greater height than standard planting material. Specifically, the aims of the trials were to: 114 

1. Identify the most effective control measures in reducing mortality and damage 115 

2. Relate the effectiveness of the control measures to their cost 116 
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3. Compare effectiveness of treatments across sites. 117 

4. Relate the characteristics of the sites to damage from pine weevil 118 

 An analysis of results at two years is presented in this paper and recommendations made for future 119 

work.  The cumulative damage over two growing seasons, rather than one was used as it gives a 120 

better indication of the effects of treatments on damage and mortality over the establishment 121 

period. 122 

 123 

2. Material and Methods 124 

 125 

2.1 Site descriptions 126 

 127 

Five trials were established in April 2017 in the uplands of the UK, with four located in south west 128 

Scotland and the fifth, Cwm Henog, in southern Wales. The locations are described in Table 1 with 129 

details on the climate and suitability for Sitka spruce as generated by the Ecological Site 130 

Classification (Forest Research 2020).  Sitka spruce was selected as it is the most common species in 131 

commercial softwood forestry plantations in the UK (Forestry Commission, 2019).  Heritage and 132 

Moore (2000) identified site characteristics that strongly influenced damage by pine weevil and the 133 

sites are compared against these factors.  All comprised stands of monoculture Sitka spruce or 134 

stands with a preponderance of Sitka spruce which had been clear felled recently.     Furthermore, 135 

the sites were not close to areas of serious windthrow, the crop had not been thinned within six 136 

years previously, however all had older trees within 1-2km distance, and all had standing trees 137 

nearby.   There was exposed mineral soil around the trees on all sites, reducing risk but conversely 138 
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the brash and other harvesting residues had not been burned and stumps had not been removed.  139 

Characteristics that differed between the trials are described in Table 2. 140 

2.2 Treatments 141 

 142 

We tested 14 treatments and a control.  For Auchencairn, Cwm Henog, Newton Stewart and 143 

Ramshaw Rig sites, Sitka spruce came from A12 Seed Orchard material. For Lamloch, vegetatively 144 

propagated Sitka spruce was used from PF80, a full sib family with material vegetatively propagated.  145 

All trees were bare root and were graded for size and quality before being treated. There were four 146 

broad categories of treatment: physical barriers, chemical insecticides, size of planting stock and 147 

application of controlled release fertiliser.  148 

The physical barriers comprised four treatments. Biosleeves (Greenerpol Ltd, UK) and Multipro 149 

sleeves (Svenska Skogplantor, Sweden) were commercially available protection, fitted around the 150 

stems of the young trees at the nursery.  Multipro sleeves were made of waxed cardboard and are 151 

known to be biodegradable. Biosleeves, which are no longer available were made from an 152 

experimental biodegradable plastic, with an estimated lifetime in the forest of 2-5 years. The other 153 

two barrier treatments used an experimental polymer, applied to the tree stem in the nursery, 154 

covering either 85% or 50% of the stem. Application was carried out by dipping plants into a 155 

container of liquid polymer, taking care to avoid contact with roots or branches of the plant. The 156 

plants were then left to air dry for 1 hour before packing. Roots were regularly misted with water to 157 

prevent them drying out.   158 

The chemical treatments used three insecticides: Gazelle (Nisso Chemical Europe GmbH: 0.037g per 159 

tree acetamiprid), Alpha C6 ED (Techneat Ltd: 0.006g per tree alpha-cypermethrin) and Coragen 160 

(Dupont: 0.013g per tree chlorantraniliprole).  Coragen is not currently used on an operational scale 161 

to control pine weevil damage in Great Britain. The Alpha C 6 ED treatment was applied using an 162 

Electrodyn machine (Techneat Engineering Ltd.), which applies electrically charged insecticide 163 



7 
 

accurately to individual root collars of trees. The trees are earthed in the machine by passing over an 164 

earthing wire, ensuring that the insecticide is attracted to exactly the right location on the plant. The 165 

treatments of Coragen and Gazelle were applied using ultra low volume (ULV) application nozzles in 166 

bundles of ten trees but is now applied to individual trees using a purpose built machine. Due to the 167 

low volumes of water used in this process, the plants could be packed immediately after treatment.  168 

Conventional application was by knapsack sprayer to trees laid out on a clean, protected ground 169 

surface. Trees were turned over during the process to ensure good coverage. The trees were left to 170 

air dry for one hour before being packed. Roots were regularly misted with water to prevent them 171 

drying out. 172 

For all trials except Lamloch, seed orchard PSI A12 material was planted. Four treatments using 173 

larger trees than conventional planting stock (1 +1, 30-50 cm tall, 5mm root collar diameter) were 174 

tested in the trials.  Planting stock of 2+1 (30-50cm tall, 6mm root collar diameter), with a larger 175 

girth and 2+1 50-70cm with a larger girth (8mm root collar diameter) and height were included.  At 176 

Lamloch, vegetatively propagated (PF80) planting stock was planted. The 1+1 treatment was 177 

replaced by S+1 (25-50cm tall, 5.5mm root collar diameter), while the 2+1 treatment was replaced 178 

by a S+2 (25-50cm tall, 6.5mm root collar diameter) and the 2+1 50-70cm with a larger girth 179 

treatment was replaced with S+2 (50-70cm tall, 8.5mm root collar diameter). 180 

 181 

For each of two larger tree treatments and for the standard sized trees there were trees with and 182 

without application of Treeboost, a controlled release fertiliser (CRF) developed by Maelor Forest 183 

Nurseries Ltd.  This contains the following elements at the following concentrations: 13%N, 11% P, 184 

8% K + 2% CaO, 0.10% B, 0.015% Cu, 0.20% Fe, 0.08% Mn and 0.025% Zn. A summary of the 185 

treatments is described in Table 3. 186 
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For each plot 25 trees were packed into an individual labelled plastic bag. Four bags of the same 187 

treatment type were then packed into a larger bag which was then sealed. These bags were then 188 

kept in a cold store at approximately -2o C until point of planting. 189 

2.3 Experimental Design and Measurements 190 

 191 

The trials were established using a randomised complete block design with 15 treatments and four 192 

replicates. Each plot contained 25 trees in a 5 tree by 5 tree layout.  Stocking density was the 193 

commercial stocking rate used in the UK of 2,700 stems ha-1.  Assessments were made in July 2017, 194 

November 2017 and July 2018.  For each plot each individual tree was scored using the following five 195 

categories: 196 

A = Undamaged 

B = Damaged by weevil, but tree likely to survive 

C = Tree dead/dying due to weevil damage 

D = Tree dead for reasons other than weevil damage 

X = Tree missing 

Damage was attributed to pine weevil if the characteristic damage to the bark of the stem of the 197 

young tree was present. It is the 2018 assessment that is reported on in this paper. 198 

 199 

Statistical analysis 200 

 201 

Percentage mortality and percentage damaged by pine weevil per plot were combined and 202 

calculated by: 203 

 204 
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𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 𝑎𝑛𝑑 𝑑𝑎𝑚𝑎𝑔𝑒𝑑 =
100 ∙ (𝐵 + 𝐶) 

(𝐴 + 𝐵 + 𝐶)
 205 

Originally damage and death were to be analysed separately. However, these two variables were 206 

combined for two reasons.  The first was that it has been shown that damage by pine weevil reduced 207 

subsequent survival and growth (Leather et al., 1999) and second separating damage and mortality 208 

for analysis presented confusing results.  For example, a trial with high mortality may have low 209 

damage, because there are few trees alive to be damaged. This was particularly notable at 210 

Auchencairn, the trial with the highest mortality. 211 

The unstandardised residuals for percentage mortality and damaged were tested for normality.  For 212 

the treatments a Shapiro Wilkes test was used due to the small number of observations per 213 

treatment, whereas for the comparison between trials, the larger number of observations for each 214 

treatment meant a Kolmogorov- Smirnov test was used.  For the data for all trials the residuals from 215 

mortality and damage data before and after an Arcsine transformation did not conform to normality 216 

so non-parametric Kruskal Wallis tests have been used to test significance of differences.  For the 217 

mortality and damage date for individual trials all but Auchencairn were normally distributed but the 218 

variances were unequal for all trials except Cwym Henog.  Non-parametric Kruskal Wallis tests were 219 

therefore used to test significance of differences. 220 

To identify which treatments were significantly different a post-hoc Dunn’s test was employed with 221 

pairwise comparison applying the Bonferroni adjustment for multiple comparisons.  This approach 222 

was applied to the comparison of death and damage between trials. However, this is overly 223 

conservative when applied to large numbers of comparisons (McDonald, 2015) such as when testing 224 

significance between the 15 treatments.  In this case, the Benjamini-Hochberg procedure was 225 

applied, accepting a potential false-positive rate of one in ten (McDonald, 2015).  226 
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3. Results 227 

 228 

3.1 Overview of Results 229 

 230 

The results of damage by the five damage categories assessed are presented in Figure 1 for the trials 231 

and Figure 2 for the treatments. The percentage of trees killed by agents other than pine weevil was 232 

as much as 25%, but the percentage of trees missing was low at 10% or less.   Detailed results of 233 

damage and mortality are described in the following sections. 234 

3.2 Mortality and damage by trial  235 

 236 

There were significant differences (p<0.001) in the median percentage mortality and damage 237 

between trials (Figure 3).  Level of damage and mortality at Lamloch (median = 35%), Ramshaw Rig 238 

(median =36%) and Newton Stewart (median =24%) were lower than the other trials and not 239 

significantly different.  There was a high level of damage and mortality at Cwym Henog 240 

(median=72%) and complete mortality and damage at Auchencairn (median = 100%).  241 

3.3 Mortality and damage by treatment  242 

 243 

Figure 4 (a-e) describe the death and damage caused by pine weevil for each of the treatments.   244 

Results from Auchencairn are not shown as death and damage for all treatments was 100%. 245 

Combining the data from all trials including Auchncairn (Figure 4e) showed significant differences 246 

between treatments (p<0.00001) and that chemical treatments and barriers were as effective as 247 

Gazelle, the exception being the 50% polymer treatment.  Larger planting stock and larger planting 248 

stock with controlled release fertiliser were no more effective than the control.  Highly significant 249 
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differences between treatments were found at all trials, except Auchencairn (Lamloch p=0.003, 250 

Ramshaw Rig p=0.008, Newton Stewart p=0.0001 and Cwym Henog p=0.007).  Despite the variation 251 

in overall levels of death and damage between trials the general findings were that chemicals and 252 

barriers were most effective and that larger plants, with or without fertiliser were no more effective 253 

than the control. The efficacy of even the effective treatments was much reduced in trials where 254 

overall damage was high, such as Cwym Henog (Figure 4a) and Auchencairn, where all treatments 255 

exhibited 100% dead or damaged.  256 

4. Discussion 257 

There were significant differences in the level of damage and mortality between trials.  The highest 258 

level of mortality was at Auchencairn and the next highest was at Cwym Henog.  The percentage 259 

mortality and damage was significantly different between these trials and between them and the 260 

other three trials (Figure1, Figure 3).  At Auchencairn the previous Sitka spruce stand was felled over 261 

a protracted period, which may have allowed damaging populations of pine weevil to build up on 262 

the site.  Also, there was heavy grass growth on that site, which is known to increase pine weevil 263 

damage (Orlander and Nordlander, 2003).  Furthermore, the new trees were ‘hot planted’ 264 

immediately after harvesting and the extended harvesting of the previous crop may have acted to 265 

attract pine weevil onto the site through a continuous supply of fresh stumps and brash.  Lamloch 266 

was the only site where vegetatively propagated material was planted and this has been shown to 267 

be less attractive to pine weevil than seedling stock (Kennedy et al., 2006).  Lamloch was the trial 268 

site that sustained least mortality and damage from pine weevil and using vegetatively propagated 269 

stock could be a factor.  The treatments that were effective at reducing mortality and damage at 270 

other trials were also effective at Lamloch. 271 

Using the data pooled from all five trials, significant differences in percentage mortality were 272 

detected between treatments. Broadly, the treatments can be divided into two groups, those that 273 

effectively protected the young trees and those that were ineffective (no better than the control).   274 
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Chemical treatments and the physical barriers provided by the Multipro sleeves, Biosleeves and the 275 

85% polymer treatment proved effective in reducing damage and death.  The Multipro sleeves and 276 

Biosleeves provided excellent protection but their effectiveness was compromised by poor 277 

installation in some cases, allowing access to trees’ stems by the pine weevils. The fitting of Multipro 278 

sleeves and Biosleeves onto trees was labour intensive, and relatively slow compared to other 279 

treatments which adds to their cost (Table 3, Figure 5).  However, the additional cost of the guards 280 

may be offset by the need in some cases for top up spraying on insecticide treated trees. Application 281 

of guards was hindered by bigger branches on larger seedlings which reduced clearance for the 282 

sleeve. Proper burial of the lower part of the sleeve base was impeded by stony ground on some 283 

sites, allowing weevils to access the tree from the base. Furthermore, on exposed sites, it has been 284 

observed that movement of the tree shifted the position of the sleeve on the stem, allowing access 285 

by pine weevils. Weevils that were found inside sleeves were observed to cause significant damage 286 

to the tree.  287 

 The novel polymer barrier treatment gave mixed results, with death and damage for the 85% stem 288 

coverage treatment being significantly different from the control using pooled data from all trials. In 289 

contrast, death and damage using the 50% stem coverage was not significantly different from the 290 

control.  It was only at Cwym Henog, a trial with high levels of damage that the difference in death 291 

and damage is significantly lower for the 85% stem coverage treatment than the 50% treatment.  292 

The mixed performance of the polymer may be due to poor adhesion to the stem in some cases, 293 

reducing its protection to the young tree. The success of stem coatings in Scandinavia in reducing 294 

pine weevil damage (Norsk Wax, 2016) and their widespread use (Sveriges Lantbruksuniversitet, 295 

2018) suggests this is an approach worth further investigation. However, problems were 296 

experienced in trials in the UK with the protective wax cracking and exposing the stem to damage 297 

(Leslie and Liddon ,2017). The cost of the experimental polymer was not known but is assumed to be 298 

similar to that of Norsk Wax, which costs €0.05 (£0.04) to €0.09 (£0.08) per tree (Norsk Wax, 2016) 299 

(Table3, Figure 5).   300 
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Using greater stem coverage, such as in the 85% treatment may have drawbacks over the 50% 301 

treatment as research  in Sweden showed that greater coverage of the stem and needles reduced 302 

growth (Norsk Wax, 2016) and the importance of protection higher up the stem is not clear as 303 

weevils prefer to feed on the lower part of the stem where there is more cover (Nordlander et al., 304 

2005). In these trials, mortality from causes other than pine weevil was greater in the 85% treatment 305 

than others (Figure 2) which suggests extensive covering of the stem reduces survival in addition to 306 

growth.   307 

Using the pooled data from all trials and those from individual trials, chemical treatments and 308 

physical barriers were both effective in terms of their reduction in damage and mortality, with 309 

Gazelle, Gazelle ULV, Electrodyne, Coragen and Coragen ULV ranked highly, except at Cwym Henog.   310 

Chemical treatments were also more cost effective (Table 3, Figure 5) than the physical barriers.  311 

However, there is a global aim to reduce the use of chemicals used in forestry, driven by concerns 312 

about the toxic effect of insecticides on animals and by encouragement to reduce pesticide use by 313 

certification bodies (FSC, 2019).  Coragen is less toxic to non-target organisms than Gazelle (Roubos 314 

et al., 2014) but is currently not used on an operational scale in Great Britain to control pine weevil. 315 

The results were promising. Two treatments, the Gazelle ULV and the Coragen ULV applied 316 

insecticide at much lower volumes. The lower volume applications were as effective as those applied 317 

at conventional volumes.   318 

Across all trials, using larger planting stock did not reduce damage and mortality. Thorsen et al. 319 

(2001) found that larger stock with a root collar diameter of 8mm on scarified sites and 10mm on 320 

other sites showed negligible damage in Scandinavia.  The root collar diameter of the larger planting 321 

stock employed in this trial was at 8 to 8.5mm.  Populations of pine weevil are higher in the UK than 322 

in Scandinavia (Willoughby et al., 2017) and it may be that using larger trees would be an effective 323 

strategy at lower population densities, if this could reliably be predicted. However, using larger trees 324 

was not a successful control measure at the two trials with low overall damage and mortality and 325 
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use of the seedling planting stock; Newton Stewart and Ramshaw Rig and so based on these data it 326 

is not an effective strategy to reduce mortality and damage.   327 

Applying controlled release fertiliser did not influence death and damage from pine weevil, 328 

compared to the same sized planting stock without fertiliser applied.  This contrasts with the findings 329 

of Zas et al. (2006) who found fertiliser application increased damage by pine weevil.  330 

The lack of complete protection from any of the treatments when under high levels of damage, such 331 

as at Auchencairn is an encouragement for the development of an integrated pest management 332 

system for pine weevil. There are methods for predicting the population size of pine weevil, such as 333 

that devised by Nordlander et al., (2017) in Sweden and the Hylobius Management Support System 334 

(Willoughby et al., 2017) from the UK but these will need to be combined with an effective means of 335 

protection at high population densities. 336 

 337 

5. Conclusions 338 

The five trials tested the success of fourteen treatments against a control in reducing damage and 339 

mortality from pine weevil.  While there were significant differences in the damage and mortality 340 

caused by pine weevil across the sites, overall the following conclusions can be made: 341 

At these trials, insecticides and physical barriers were equally effective. However, physical barriers 342 

have been known to be less effective when used in certain site conditions.   343 

Ultra low volume insecticide treatments were as effective as using higher volume applications. 344 

The new insecticide Coragen was as effective as Gazelle and alpha cypermethrin. 345 

Planting larger trees did not reduce mortality and damage. 346 

Application of fertiliser in the field did not reduce mortality and damage.  347 
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At Auchencairn, where there were extreme levels of damage and mortality, none of the treatments 348 

were effective and this supports the need to develop an integrated solution to pine weevil.  349 
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Table 1 Location of trials. Climatic data and suitability for Sitka spruce generated by the Ecological 481 

Site Classification v4 (Forest Research 2020). AT = Accumulated temperature above 5oC, MD = 482 

moisture deficit and DAMS = exposure index where 3 is sheltered and 22+ is too exposed for 483 

productive forestry. 484 

Site Latitude Longitude AT (day 
degrees 
above 
5oC) 

MD 
(mm) 

DAMS Species 
suitability 

Auchencairn 55° 13′ 50.82″ N 003° 39′ 14.65″ W 1103 75 17 Suitable 

Cwm Henog 52° 07′ 12.99″ N 003° 43′ 55.94″ W 1057 54 17 Suitable 

Lamloch 55° 14′ 41.17″ N 004° 20′ 14.62″ W 1179 79 16 Suitable 

Newton Stewart 55° 01′ 16.79″ N 004° 40′ 06.86″ W 1387 107 17 Marginal 

Ramshaw Rig 55° 15′ 55.83″ N 003° 18′ 39.04″ W 1022 66 15 Marginal 

 485 

Table 2 Description of trials addressing the main factors influencing pine weevil damage as described 486 

in Heritage and Moore (2000). 487 

Site name Auchencairn Cwym 
Henog 

Lamloch Newton 
Stewart 

Ramshaw Rig 

Site management 
Month site was 
clearfelled 

February 
2016-March 
2017 

April - July 
2015 
 

May 2015-
November 
2015 

March-
August 
2016 

July 2016-
December 
2016 

Period between 
clearfell and planting 
(months) 

0-11  18-21 17-23 8-13 4-8 

Exposed mineral soil 
around plants? (Y/N) 

Yes Yes Yes Yes Yes 

Site burned after 
clearfell? (Y/N) 

No No No No No 

Stumps removed or 
destroyed? (Y/N) 

No No No No No 

Vegetation, woody? 
(light/moderate/heavy) 

light Light regen 
of willow / 
rowan 

moderate Light light 

Vegetation grasses? 
(light/moderate/heavy) 

heavy Light – 
moderate 

light Moderate light 

Plant Details 
Nursery code PSI A12 PSI A12 PF80 PSI A12 PSI A12 
Type seedling seedling vegetatively 

propagated 
seedling Seedling 

Size 30-50 30-50 25-50 30-50 30-50 
 488 

  489 
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Table 3 Details of treatments (* based on cost of Norsk Wax, a similar coating (Norsk wax 2016)). 490 

Treatment name Details  Additional 
Cost per 
tree 

Control  No treatment applied to the tree.  None 

Electrodyne alpha-cypermethrin – applied by electrodyne £0.11 

Gazelle spray Nisso Chemical Europe GmbH Gazelle - Applied by 
knapsack sprayer.  

£0.11 

Gazelle ULV New ULV nozzles, improved machine. £0.11 

Coragen spray Dupont coragen - Applied by knapsack sprayer. £0.11 

Coragen ULV New ULV nozzles, improved machine. £0.11 

Multipro Sleeves Multipro cardboard sleeve fixed around the stem of the 
tree before planting. 

£0.30 

Biosleeves Biosleeve (biodegradable plastic) fitted around the stem 
of the tree before planting. 

£0.35 

Polymer barrier 50 % A new polymer applied to 50% of the lower length of the 
stem. 

£0.06* 

Polymer barrier 85 %  A new polymer applied to 85% of the lower length of the 
stem. 

£0.06* 

1+1 stock + CRF  1+1 stock, 10g Treeboost controlled release fertiliser 
applied to roots before heeling in. 

£0.05 

2+1 stock  2+1 stock (greater girth) £0.06 

2+1 stock + CRF  2+1 stock, 10g Treeboost controlled release fertiliser 
applied to roots before heeling in. 

£0.11 

50-70cm 2+1 stock  50-70cm tall, 2+1 stock (greater height + girth). £0.06 

50-70cm 2+1 stock + 
CRF  

50-70cm tall, 2+1 stock (greater height + girth)10g 
Treeboost controlled release fertiliser applied to roots 
before heeling in. 

£0.11 

 491 

 492 

  493 
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 494 

 495 

Figure 1 Percentage of trees in each of the five damage categories in each of the trials. 496 

 497 

Figure 2 Percentage of trees in each of the five damage categories for each treatment.  498 
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 499 

Figure 3 Median percentage mortality and damage by trial.  The same letter above the bars denote 500 
groupings of sites with no significant difference. Boxplots show the median values as the dark 501 
horizontal lines; 25th and 75th percentiles as the top and bottom of the boxes. The vertical lines 502 
show the maximum and minimum values, excluding outliers shown as a circle.  503 
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 508 

Figure 4 Median percentage mortality and damage by treatment.  The same letter above the bars 509 
denote groupings of treatments with no significant difference. Boxplots show the median values as 510 
the dark horizontal lines; 25th and 75th percentiles as the top and bottom of the boxes. The vertical 511 
lines show the maximum and minimum values, excluding outliers shown as a circle.  512 

 513 
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 514 

Figure 5 Comparison of treatments by cost (£) and median percentage damage. 1=control, 515 

2=Electrodyne, 3=Gazelle spray, 4=Gazelle ULV, 5=Coragen spray, 6=Coragen ULV, 7=Multipro 516 

sleeves, 8=Polymer barrier 50%, 9=Polymer barrier 85%, 10=Biosleeves, 11=1+1 stock + CRF, 12=2+1 517 

stock, 13=2+1 stock+CRF, 14=50-70 2+1 stock and 15=50-70 2+1 stock+CRF 518 

 519 


