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Abstract (250 words) 

Exercise in young adults consistently improves various aspects of physiological and psychological 

health but we are now realising the potential benefits of exercise with advancing age. Specifically, 

exercise improves cardiovascular, musculoskeletal, and metabolic health through reductions in 

oxidative stress, chronic low-grade inflammation and modulating cellular processes within a variety of 

tissues. In this this chapter we will discuss the effects of acute and chronic exercise on these processes 

and conditions in an aging population and how manipulating exercise variables can provide different 

stimuli which can have differing effects on these processes. Additionally we will address how physical 

inactivity can accelerate aging in tissues by promoting cell senescence and atrophy and, how physical 

activity and physical inactivity may affect non-communicable disease risk in older adults via cellular 

processes. 

 

Physical Activity in the Elderly and Non Communicable Disease 

Advancing age is associated with increased risk of non-communicable disease (NCD), such as 

cardiovascular disease (CVD), type 2 diabetes (T2DM), and cancer but to name a few (90). Using 

mathematical modelling, Lozano et al. (90) suggested that there is a 39% increase in the incidence of 

deaths attributable to NCD as a direct consequence of the aging population. Healthcare provision, and 

healthcare insurance costs are significant due to the debilitating effects of such diseases on the human 

body. Epidemiological evidence strongly suggests that we become more inactive as we age (57), which 

further increases the risk of NCD incidence, morbidity and mortality in this population (87, 139). 

Insufficient physical activity in the older population is associated itself with muscle mass loss/atrophy 

and sarcopenia (45), T2DM (3), CVD (159), and increased risk of infection (89), and is estimated to 

contribute to $65.7bn worth of healthcare costs per annum worldwide (149), which is equivalent to 

the gross domestic product of Costa Rica in a single year. In fact, increasing physical activity levels in 



the older populations is linked with enhanced cognitive function, physical performance, improved 

cardiovascular health measures (20), reduced T2DM risk (37), together improving quality of life. 

Physical activity and exercise can stimulate a host of changes at the molecular, cellular, and tissue 

level, which translates to improved physical, as well as psychological health. The following sections 

will delve into the physiological effects of exercise, and the benefits for the older population, detailing 

molecular, cellular and tissue-level effects which partly explain the health benefits of exercise and 

physical activity.  

The Aging Cardiovascular System and Physical Activity/Inactivity 

The cardiovascular system (CVS) is essential for the delivery of oxygen and nutrients to every cell in 

the body, the removal of waste products, such as carbon dioxide, lactate and ammonia, and also works 

to help the immune system fight infection through distributing leukocytes to sites of infection. As we 

age, various aspects of our cardiovascular system change. Our heart undergoes structural changes, as 

do our blood vessels, which makes it difficult for the CVS to perform its roles efficiently. Unfortunately, 

due to aging, we are at a high risk of CVD morbidity and mortality (90), as a result of incidence of 

stroke, myocardial infarction (MI) and heart failure (HF). Therefore maintaining the health of our CVS 

is key for longevity. 

Aging and Vascular Function: Role of Exercise and Physical Activity 

Our blood vessels are to key structures within our body which regulate blood flow to all tissues of the 

body, and the ability of our vasculature to do so, is termed ‘vascular function’. The cells of the inner 

lining of all blood vessels are the endothelial cells. These cells are crucial in regulating blood flow via 

producing and releasing vasoactive substances such as nitric oxide (NO) (50). NO subsequently diffuses 

across to the surrounding vascular smooth muscle cells (VSMCs) and stimulate these cells to relax via 

Ca2+ active re-uptake by the sarcoplasmic reticulum. The relaxation causes a widening of the diameter 

of the blood vessel, thus allowing increased blood flow to tissues distal to the vessel. This 

predominantly occurs at the arteriolar level, rather than the artery or capillary level, due to the relative 

ratio of VSMCs to endothelial cells. We can assess vascular/endothelial function through a technology 

called ‘flow-mediated dilatation’, or FMD, which is the use of ultrasound technology to determine 

changes in vascular diameter (typically the brachial or femoral arteries) in response to an increase in 

flow after a period of ischaemia or occlusion. The subsequent shear stress after occlusion is removed 

results in an increase in NO production by the endothelium (28), and so FMD has been validated to be 

a  measure of endothelial, NO-dependent vasodilation (55). Studies to date have found significant 

relationship between endothelial function/FMD scores and cardiovascular-related mortality, with 



poorer scores and lower levels of vasodilation being predictive of earlier mortality (56). Unfortunately, 

with advancing age, we display significant reductions in endothelial function, as demonstrated in 

several studies (13, 14, 101, 134, 142). Potential causes include age-related elevations in oxidative 

stress, which may uncouple endothelial NO synthase (eNOS), which is required for NO production 

from its precursor, L-arginine. Aged vascular tissue exhibit greater production of superoxide (O2·-) 

anions (30, 59, 97) which may contribute to the uncoupling of eNOS. The role of oxidants in the age-

related reductions in endothelial function were confirmed in a study by Eskurza et al. (44). In this 

study, young, old sedentary adults were assessed for vascular function. They confirmed that vascular 

function was reduced in the older group, but that an acute dose of ascorbic acid (vitamin C, a powerful 

antioxidant) reversed this effect, so much so that there was no longer a significant difference in 

vascular function between the two age groups. 

Interestingly, the study by Eskurza et al. (44) also included an older, endurance trained group. Vascular 

function between the young group and the endurance trained older group were not different from 

one another, indicating a powerful role of exercise and physical activity to prevent or at least attenuate 

age-related vascular dysfunction. The potential for exercise and physical activity to do this, as 

indicated by this cross-sectional study, has been confirmed by longitudinal studies in both young (10, 

115) and older adults (13, 14). 

Cardiovascular Regeneration and Repair with Aging and Exercise 

Our bodies have the remarkable ability for endogenous regeneration, through our own stem and 

progenitor cell network. Stem cells, located in specific tissues, or from the bone marrow, contribute 

to tissue repair and growth. The walls of our heart contain c-kit+ cardiac stem/progenitor cells (43, 

116), which have been shown to differentiate into myocardial cells under stimulation in vitro and in 

vivo (43). Aging influences the function of these cardiac stem cells (22), with reduction in stemness of 

cardiac progenitor cells, impairments in differentiation into myocardial cells, and failure to secrete 

vital paracrine factors in response to stimulation in animal models (22). Aged mice also display CPCs 

expressing greater levels of senescent markers such as p27kip1, p53 and p19ARF, and subsequent loss 

of CPCs due to apoptosis occurred (148). Unfortunately, due to the invasive nature of CPC isolation, 

characterization and functional assessment, human data are lacking, however rat and mouse models 

are ideal as whole lifespan effects on such cells can be investigated with relative ease.  

Interestingly, exercise training in animals activates c-kit+ and Sca1+ cardiac progenitor cells, which may 

contribute to left ventricular physiological hypertrophy (163), a response that appears to be dose-

dependent (163). Mice that underwent physical training displayed greater number of c-Kit+Lin- cells 

than sedentary controls, potentially due to increased survival or increased proliferation of cardiac 



resident progenitors (88). It is possible that the increase in cardiac workload leads to increased cellular 

activation of these CPCs (150), which in turn would support the subsequent physiological hypertrophy 

observed with exercise training in humans. However, there is a lack of research in this area, and is an 

exciting area of future work to determine if exercise can be used to stimulate cardiac repair after 

ischaemic events in patients and in the elderly. 

Bone marrow-derived, or tissue-resident endothelial progenitor cells (EPCs) contribute to the 

regeneration  and growth of the vascular endothelium (5, 6). These cells may or may not differentiate 

into mature endothelial cells, but they do have the ability to secrete pro-angiogenic factors, such as 

vascular endothelial growth factor (VEGF) and interleukin-8 (IL-8) to support endothelial cell turnover 

and replication (71). Unfortunately, they circulate in such small numbers, within the region of 0.001-

0.01% of all circulating mononuclear cells (21). Despite this, their circulating number has been related 

to vascular function (18) and mortality risk, with lower progenitor cells associated with impairments 

in peripheral arterial tonometry and greater risk of mortality and morbidity in humans (110). Several 

studies have observed lower circulating EPCs in older humans compared to younger counterparts 

(120, 146), which was independent of other cardiometabolic risk factors (120). EPC function and 

survival are also affected by aging, with older adults displaying greater number apoptotic EPCs than 

younger individuals (83), and these cells display functional deficits, such as secretion of pro-angiogenic 

cytokines and growth factors (82). Together, these data show that aging-associated increased vascular 

and mortality risk may be partly due to loss of EPC number and/or function. Additionally, Xia et al. 

(161) treated mouse ischemic hindlimbs with human EPCs from young and old donors. They found 

that cells from young donors homed to the site of ischemia, and helped to promote vascular repair, 

and recover blood flow more so than sham delivery. Interestingly, they also found that EPCs from 

older individuals lacked this ability, and associated this with an inability of these EPCs to migrate in 

vitro, shown to be associated with impaired intracellular CXCR4:JAK-2 signaling (161, 162).  

Single bouts of exercise have a remarkable ability to mobilize these progenitor cells from peripheral 

tissues, such as the bone marrow, into the circulation in the post-exercise recovery period (121, 153), 

even in older adults, despite an attenuated response (120). The mobilization of such progenitor cells 

are accompanied by elevations in circulating VEGF (121, 152, 157), granulocyte colony-stimulating 

factor (G-CSF) (121) and stromal-derived factor-1α (SDF-1α) (152, 157), thought to act as 

chemoattractive factors. The response of EPCs to acute exercise is both time and intensity-dependent 

(84). Studies investigating the effect of regular exercise training on circulating EPCs provide mixed 

results with regards to outcomes. Most (29, 68, 85, 94, 124, 125, 133, 138, 151, 161), but not all studies 

(91, 146) demonstrate either an improvement in EPC number (due to increased mobilization or 

enhanced survival) or function with regular exercise training. In an elegant study, Xia et al. (161) 



demonstrated that 12 weeks physical exercise training in older populations can restore the age-

related impairment in EPC function. The researchers transplanted human EPCs (young and old donors, 

before and after exercise training) into mice that had undergone femoral artery ligation. Their data 

concur with their earlier finding that EPCs from older adults displayed reduced neovascularization and 

ability to recover blood flow in ischemic hindlimb in mice (162), but exercise training resulted in 

improved vascular repair capability, and recovery of blood flow.  

The current evidence strongly suggest that exercise has a strong positive benefit for the cardiovascular 

system in aging populations, through its effects on improving vascular function via increasing NO 

bioavailability, angiogenesis, and both cardiac (c-kit+ CPC activation  and survival) and vascular 

(improving EPC number and function) repair mechanisms.  

 

Musculoskeletal Health and Function with Healthy Aging 

One important change associated with biological aging is our reduced ability to exert force (or torque) 

around a joint. Age-associated dysfunction of the muscular system, termed sarcopenia, is defined as 

a syndrome characterised by loss of muscle mass and strength. This results in risk of adverse outcomes 

such as physical disability, inferior quality of life, and mortality (35, 39). Therefore, the European 

Working Group on Sarcopenia in Older People (EWGSOP) proposed that diagnosis requires evidence 

of reduced muscle mass, and either low muscle strength, or low physical performance. Recently, it has 

been observed that reduced muscle power (dynapenia) occurs faster than force or mass losses and 

may be more predictive of functional impairment (95). This is because many tasks of daily living 

require us to exert force over a short space of time. E.g. when we stand from a chair. 

 

Various interacting tissues, including connective, nervous, skeletal, and muscular, determine 

measurable force and power in vivo. These systems do not operate in isolation, so a holistic view of 

force production is required. For example, nerve conduction velocity, motor unit recruitment, and 

firing frequency all influence force via recruitment of muscle, and decline with age (79). However, 

skeletal muscle is our most important organ for generating force and power, and therefore this section 

will focus on the biology of aging muscle. 

 

 

Causes of Age-Associated Muscle Deterioration 

Several theories are proposed to explain our reduced muscular capacity with age. Alterations to 

contractile characteristics, namely decreased twitch speed and a shift in fibre type (from fast to slow) 



are observed in the elderly which reduces rate of force development. Decreased anabolic hormone 

production, increased proinflammatory cytokines, and protein turnover imbalances attenuate the 

ability of aged muscle to regenerate (which leads to atrophy and therefore reduced muscle mass). 

Importantly, these mechanisms occurring with age, are exacerbated (or even detected in isolation) by 

physical inactivity. However, if aging were ‘curable’ with exercise, masters athletes (older adults who 

train intensely on a regular basis) and ex-Olympians would be deemed immortal, which is clearly 

untrue. However, masters athletes do display a younger phenotype than age-matched sedentary 

counterparts, which results in lower incidence of frailty and dependency. As such, masters athletes 

may be considered as a model of successful aging (61). This hypothesis is supported by masters 

athletes presenting greater relative lean mass, and muscle power than sedentary counterparts, thus 

suggesting chronic exercise (even aerobic in nature) preserves muscle into later life (62). The following 

sections will discuss how each mechanism may cause muscle deterioration, and how exercise may 

mediate these mechanisms, with evidence from human studies. 

 

Aging and Reduction in Anabolic Hormones: Influence of Exercise 

As we age, less anabolic hormones are released into circulation to interact with muscular receptors, 

to exert muscle-building effects (131). This theory of muscle aging is supported by cell culture 

experiments (38), but also administering older adults testosterone and observing increased muscle 

mass and strength (7, 49, 132). Although supraphysiologic doses of anabolic hormones increase 

muscle mass, the effect of lifelong exercise or physical fitness on naturally occurring anabolic 

hormones is unclear. Ari and colleagues (4) reported higher testosterone in masters athletes 

compared with sedentary counterparts. However, this finding is not ubiquitous (64). Several studies 

inducting sedentary individuals onto an exercise programme do see an increase in ‘anabolic’ 

hormones, which accompanies lean mass gains (63, 66). What is evident however, is that a threshold 

level of metabolic stress may be required to induce hormone changes, as Khoo et al. (78) noted greater 

increases in testosterone following high volume, compared to low volume training. Similarly, Herbert 

et al. (66) reported increased insulin-like growth factor-1 (IGF-1) following high intensity training, but 

not following low intensity training in previously sedentary older men. 

 

Endocrinology is a complex discipline, with hormones exerting multiple actions, which confounds our 

ability to draw conclusions about whether hormone changes are to blame for muscle deterioration. 

For example, IGF-1 may be increased post-exercise compared to pre-exercise, but testosterone, 

cortisol, myostatin, and growth hormone may not be different, so can we say for sure that the 

individual is more ‘anabolic’ than before? Probably not. Similarly, a hormone in circulation may be 



increased post-exercise, but unless the hormone is bioavailable (i.e. not bound to a carrier), it cannot 

exert a cellular effect. The hormone is also reliant upon receptors within muscle to commence a 

downstream signalling cascade, resulting in transcription and translation of muscle protein. As such, 

we are some distance from understanding the endocrinology of aging and the effect exercise exerts. 

 

Inflammatory Cytokines: Effect of Aging and Exercise 

As we age, we experience increased systemic inflammation. We now know elevated inflammatory 

cytokines negatively correlate with muscle mass and strength in the elderly. Cytokines are small 

secreted proteins released by cells, which permit interaction and communication between cells (165). 

Rodent and cell culture experiments have demonstrated inflammatory cytokines directly impair 

expression of muscle-specific transcription factors, ultimately inhibiting protein synthesis (104, 140, 

147). More evidence on a human level for the inflamm-aging hypothesis is provided by Aguirre and 

colleague (1) who reported significant correlations between knee flexor strength and interleukin-6 (IL-

6) and C-reactive protein (CRP), both inflammatory cytokines, in frail, obese, older adults. 

Furthermore, Mikkelsen et al. (98) measured muscle size and strength, maximal oxygen uptake, but 

also inflammatory cytokines in old runners, young runners, and age-matched untrained individuals. 

CRP and IL-6 were higher in older groups, but lower in trained groups compared to untrained groups. 

It therefore appears age increases inflammation, but exercise may exert an anti-aging effect. 

 

Whilst increased low grade inflammation in the elderly is commonly observed, aging reduces cytokines 

that contribute to local recruitment of immune cells responsible for muscle remodelling. In other 

words, age reduces the adaptive response of skeletal muscle to exercise by reducing inflammatory 

cytokines (58). For example, Hamada et al. (58) observed an increase in systemic inflammation 

(demonstrated by elevations in CRP), yet lower local exercise-induced inflammation (demonstrated 

by reduced transcripts for CD18, IL-1β, IL-6, TNF-α, and TGF-β1 in muscle biopsies) in older adults 

compared to younger adults. To date, the effect of training status on exercise-induced inflammatory 

cytokine response in older adults is unexamined. 

 

Aging-Associated Effects on Skeletal Muscle Protein Turnover 

Regardless of the precise contribution of each of the above factors to muscle deterioration, reduced 

muscle ultimately results from an imbalance between muscle protein synthesis (MPS) and muscle 

protein breakdown (MPB).  Amino acid-based feeding increased net protein balance, via increased 

MPS, and reduced MPB (99). Exercise exerts a synergistic effect on MPS and ultimately net protein 

balance, with resistance exercise most potent (40, 48). MPS in response to amino acids (36, 156) and 



resistance exercise (81) is reduced in aged muscle compared to young muscle, and is termed anabolic 

resistance (117). It is worth noting however, that reduced MPS is not always observed in older adults 

(80, 141). Therefore, blaming chronological age for anabolic resistance, rather than physical inactivity 

(often associated with advanced age), may have led to classic type I error in cross-section comparison. 

Breen et al. (17) suggested that inactivity induces anabolic resistance as they observed two weeks’ 

reduced physical activity decreased lean leg mass by ~4%, and postprandial MPS by 26% in ~72 year 

olds. Furthermore, Symons (141) reported MPS increased in young and old adults to the same extent 

following resistance exercise and protein ingestion. In the sole study investigating MPS in masters 

athletes (41), masters and young triathletes completed 30 min downhill running to induce muscle 

damage, and MPS was lower in the masters triathletes comparing to the young triathletes, which 

resulted in poorer subsequent cycling performance. 

 

Due to this disruption in net protein balance, older individuals likely require greater protein intake to 

maintain muscle mass and function (111, 112). This is often difficult as older individuals have a lower 

appetite, and protein is the most satiating of the macronutrients. Therefore, pragmatic 

supplementation may be necessary to optimise health (111). 

 

Summary and Practical Applications 

 

Whilst recent advancements in physiological imaging and molecular biology provide insight into the 

mechanisms underpinning muscle aging, loss of function, and frailty, we are still some way from 

conclusive evidence to suggest which cause is dominant. What we know, is the above causes occur 

simultaneously, and are often interlinked. To most of us however, the mechanisms underpinning 

muscle aging are academic, and the critical issue is our health and independence. Physical inactivity 

and aging-reduced muscle function increases our likelihood of sarcopenia or dynapenia. Therefore, 

applied studies that demonstrate improved physical function may have the greatest practical 

application. For example, Fiatrione and colleagues (46) reported improved strength (175%), lean leg 

mass (9%), and gait speed (47%) in nonagenarian women following resistance exercise, which 

demonstrates great muscle plasticity into old age. More recently, high intensity interval training (HIIT) 

has shown some promise for increasing muscle power in older adults (~65 years) (63, 67, 126). Yet, 

the efficacy and safety of this model in the old-old (85+ years) is still untested. 

 

In summary, age reduces our capacity to increase muscle strength and size. Yet, by staying active and 

performing high intensity weight training or power output exercises, we can attenuate the symptoms 



of aging, which may result in a younger muscle phenotype. More importantly, having a large amount 

of muscle (relative to the rest of the population) is a predictor of longevity 

(https://www.ncbi.nlm.nih.gov/pubmed/24561114).  

 

Vitamin D and Bone Health in Older Adults 

Vitamin D status and metabolism is associated with numerous negative skeletal consequences 

affecting both bone and muscle, such as reduced bone mineral density (BMD), sarcopenia and 

dynapenia (age-associated loss of muscle strength), osteomalacia (marked softening of bones), and 

impaired calcium absorption (69). A large proportion of the global population are vitamin D deficient 

due to not meeting recommended intake guidelines and the climate restricting sufficient 

dermatological metabolism of vitamin D. The primary source of vitamin D is from direct skin exposure 

to Ultra Violet B (UVB) rays from the sun initiating the conversion of pre-vitamin D (7-

dehydrocholersterol) to vitamin D3 (cholecalciferol) (70), which is inherently dependent on climate 

and weather and thus latitude and season. Vitamin D concentrations are inversely linked with 

advancing age (26), with evidence suggesting that aging affects the cutaneous capacity for the initial 

metabolic conversion in the vitamin D pathway, and the concentration and expression of subsequent 

vitamin D metabolites, such as the vitamin D binding protein (DBP) and the vitamin D receptor (VDR) 

(11). The ligand-activated VDR, expressed in skeletal muscle as well as most other tissues, is a strong 

mediator of mRNA transcription and thus protein synthesis (12, 130). The expression of VDR and the 

post-transcriptional regulation of VDR and can be affected by aging (34). As a result, evidence has 

suggested that a lack of vitamin D in an aging population may affect skeletal muscle mass and strength 

and thus induce a risk of falls and immobility.  

It is generally accepted that vitamin D in combination with calcium beneficially affects bone health 

and quality, primarily the readily measured surrogate of bone strength: BMD. During the aging process 

there is a decline in the intestinal absorption of calcium, which may be predetermined by the 

bioavailability of the active form of vitamin D (1,25(OH)2D3) (154), which declines with advancing age. 

Vitamin D stimulates the production of calcium-binding protein (CBP) in the intestine to facilitate the 

absorption of calcium. Vitamin D is also a regulator of cell growth and maturation, particularly of 

osteoblasts (bone cells), and mediates the function of white blood cells such as macrophages and 

activated T- and B-lymphocytes, which modulate the immune system.  

Although there are mixed results on the effect of exercise and vitamin D metabolism in older adults, 

research has indicated that mechanical stress such as exercise and strength training can alter the 

expression and action of key vitamin D metabolites and increase skeletal muscle mass and strength 

https://www.ncbi.nlm.nih.gov/pubmed/24561114


(2, 93). This may be through alterations in vitamin D signalling, which has been found to influence 

skeletal muscle protein synthesis. Vitamin D seems to have a role on skeletal muscle (23) that is easily 

manipulated by exercise and physical activity. A lower vitamin D status has been associated with a 

decline in muscle mass and strength, which becomes increasingly prevalent as age advances. 

Investigations in vitro have reported 1,25(OH)2D3 to stimulate key cellular pathways of muscle growth 

and differentiation, acting primarily through the action of VDR, to induce myogenesis (24, 51). 

Currently it is uncertain if the effect of vitamin D on skeletal health is association or causation.  

 

The Elderly Immune System and Changes with Exercise 

Immune Cell Senescence and Aging 

Human immunosenescence is the canopy term used to refer to the gradual deterioration of the 

immune system and function attributed to advancing age. The complex process of aging negatively 

impacts the innate and adaptive immune system and their functional capacity, therefore 

compromising the ability of the host to elicit an effective immune response to fight (ever-evolving) 

invading pathogens or prevent the development of a pro-inflammatory environment. The innate and 

adaptive immune systems are differently affected by aging, whereby innate immunity appears to be 

better preserved while adaptive immunity exhibits age-dependent depreciation.  

Immunological parameters that impact health and mortality, creating the immune risk profile, become 

exhausted with the aging process. The functionality of the components of the adaptive immune 

system can become exhausted, specifically the main matured cells involved: bone marrow cells (B 

cells) and thymus lymphocytes (T cells) and their subsets. The primary lymphocyte subpopulation, 

CD3+ T cells can be divided into CD4+ and CD8+ subsets, which exhibit helper and cytotoxic functions. 

In particular, CD8 T cells are affected by age, inducing the development of an inverted CD4:CD8 T cell 

ratio and thus contributing to immune incompetence.  

 

Thymic Atrophy with Aging 

Age-dependent regression of the thymus, thymic atrophy, defined as the loss of thymic mass, induces 

a decline in the output of naïve T cells. Therefore, as age advances fewer T cells are developed and 

exported into the vascular pool (86), directly impacting on the peripheral T cell repertoire and altering 

white blood cell subset diversity, and thus the cells that are circulated to the target tissues.  
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There is an increase in the proportion of T cells expressing markers associated with senescence 

delineating T cell subpopulations from naïve T cells (recent thymic products with no proliferative 

history) to exhausted senescent T cells (not so recent poorly proliferative cells that exhibit severe 

functional abnormalities). These markers are primarily used to identify T cell subpopulations, but may 

also be used to provide insight into T cell differentiation, activation, and functional status. The 

combination of markers can be utilised to define naïve T cells turnover and loss of naïve T cells, 

assessing proliferative history. Aging can also restrict the T cell receptor (TCR) repertoire. T cell 

receptors are complex integral membrane proteins that are responsible for recognising antigens that 

are bound to the major histocompatibility complex (MHC). A diminished TCR pool reduces the capacity 

for T cells to identify specific bound antigens and illicit a distinct and critical immune response.  

 

Exercise and Immunosenescence 

The beneficial effect of exercise became apparent in the early work of David Neiman in the 1990’s 

who demonstrated that individuals who exercise are at less risk of upper respiratory tract infections 

(URTI), which are a major cause of visits to and treatment from physician. However, there is a 

hyperbolic relationship between intensity and volume of exercise and the risk of URTIs, suggesting 

that excessive or too intense exercise can be detrimental to effective immunity by supressing immune 

function. There are both acute and chronic effects of exercise on immune function. In response to an 

acute bout of exercise, one of the major changes that occurs is a change in the number of leukocytes 

(118), with a biphasic response induced. The redeployment of lymphocytes from tissues or the blood 

vessel wall with exercise consists of an initial increase, known as lymphoctosis, that is followed by a 

significant transient drop in lymphocyte number, known as lymphocytopenia. Immediately upon 

cessation of exercise the rise in lymphocyte and neutrophil number usually precedes a reduction to 

below baseline levels, creating a pocket period of reduced immune protection, known as exercise-

induced immunosuppression. Each of the individual cell types respond differently to exercise as they 

all perform different tasks to achieve sound immune function, however it is the Natural Killer (NK) 

cells and the cytotoxic T cells that display the largest response (128). Exercise-induced 

immunosuppression can also be altered by cytokines, the signalling molecules of the immune system. 

Circulating concentrations of cytokines have numerous responsibilities and roles in the inflammatory 

profile and protection against pathogens, directly and indirectly. Aging is recognised to strongly affect 

the redeployment of lymphocytes with particular subsets not mobilised in the bloodstream: although 

the relative numbers of T cells are similar between young and old, it is the absolute numbers that 

change. This causes a rise in senescent T cells that are mobilised and thus circulate around the body 



unable to play an efficient role in immune function and protection (129). This age-related 

accumulation of senescent T cells lowers the naïve T cell stock and can increase host infection risk. 

This is also due to older individuals having less naïve and low differentiated cells in the circulation and 

peripheral tissues for redeployment (114). Exercise can override the age-related impairments in T cell 

subset redeployment, specifically CD8+ T cells (135). Aerobic fitness level, achieved through regular 

exercise, is inversely associated with the proportion of senescent T cells, with the relationship 

withstanding adjustment for age (136). Regular exercise appears to alleviate the deleterious effect of 

aging on the immune system.  

Programmed cell death, or apoptosis, is an important mechanism in the mediation of the immune 

response, serving as a key role in the removal of damaged, infected, exhausted or redundant cells. 

This orchestrated system then allows for alterations in the proportion of cells that make up the 

bloodstream repertoire of T cells. Acute bouts of exercise have been shown to induce increases in 

both senescent and naïve T cells, and elevate apoptotic lymphocytes (100). Since aging induces an 

accumulation of senescent T cells, it is imperative for effective immune function to induce apoptosis 

in specific cell types, preferentially the older less functional cells, to allow for naïve T cells to be 

exported into the circulation, favourably altering the bloodstream repertoire. Exercise has been 

associated with an increase in apoptotic cells, although the mechanisms are not yet well understood. 

In addition, despite the modality of exercise, there is no evidence to suggest that lymphocyte-

apoptosis contributes to exercise-induced lymphocytopenia (127).  

 

 

Endocrine System, Aging and Physical Activity/Inactivity 

Incidence and prevalence of Diabetes Mellitus 

Diabetes is a global health problem, costing the national health services millions annually. Diabetes is 

a serious chronic disease, classified into two types: Type 1 Diabetes Mellitus (T1DM) and Type 2 

Diabetes Mellitus (T2DM). The latest prevalence stats from Diabetes UK in 2016, report that almost 

3.6 million people suffer from diabetes across the UK, with an additional 1 million likely to have 

undiagnosed T2DM, based on the Diabetes Prevalence Model 2016. Worldwide there are an expected 

450 million people with Diabetes, with the incidence rate on the rise.  

The initial pathophysiological events in the development of diabetes are insulin resistance, high blood 

glucose levels (hyperglycaemia), and impaired beta cell function (76). Beta cells are insulin-producing 

cells located in the islets of Langerhans in the pancreas. Degeneration of these cells is the main cause 
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of T1DM. T1DM is defined as insulin-dependent diabetes mellitus and requires medical monitoring 

and management in order to maintain euglycaemia (normal blood glucose concentration). The 

immune system attacks the beta cells, seizing the secretion of insulin and exposing the body to a 

hyperglycaemic state. This result is because insulin is the hormone responsible for the uptake of 

glucose from the systemic blood flow to the tissues. T2DM is defined as non-insulin-dependent 

diabetes mellitus and is the more common diagnosis. Although beta cell function may be affected, the 

autoimmune system does not attack the cells as in T1DM, the cells do not produce enough insulin to 

maintain euglycaemia. More commonly, T2DM is characterised by the body becoming resistant to the 

insulin that is secreted, known as insulin resistance or reduced insulin sensitivity. A lack of physical 

activity and exercise and a poor diet can lead to T2DM (105), suggesting it is a lifestyle-induced disease.  

 

Role of Physical Activity and Exercise on Improving Insulin Sensitivity in Older Adults 

Diabetes is very common in adults over the age of 65, with a decrease in insulin sensitivity observed 

with advancing age. Age-related changes, such as reduced physical activity, changes in diet, and 

undesirable changes in body composition, i.e. reduced muscle mass and increased fat mass, can affect 

glucose tolerance. A healthy lifestyle can reverse the detrimental effects on glucose metabolism. Most 

interventions focus on prevention rather than treatment, as diabetes is difficult to fully reverse. 

Although, it is known that regular exercise and a physically active lifestyle can help attenuate the usual 

decline in insulin sensitivity and glucose tolerance that is associated with aging. Older people, 

including those who are frail and/or weak, have been shown to benefit from endurance and resistance 

training, which can prevent age-related loss of muscle mass and strength, defined as sarcopenia and 

dynapenia. Muscle tissue has been identified as a major regulator of glucose homeostasis and 

tolerance; the more muscle tissue available to uptake glucose, the greater the control over systemic 

glucose levels. The initial step paramount for cellular glucose utilisation is the transport of glucose 

across the cell membrane into the matrix of the cell by the action of insulin, thus preventing hypo- 

and hyperglycaemia. The sensitivity of cells to the action of insulin may thus determine the rate at 

which glucose is cleared from the circulation. Since muscle tissue stores glucose, primarily as glycogen, 

the muscle mass has an available supply of glucose to maintain homeostasis in the case of 

hypoglycaemia. However, only during muscle activity can skeletal muscle glycogen breakdown provide 

a source of glucose (73), as it converted to lactate and then into blood glucose.  

In addition, exercise training and maintaining a physically active lifestyle can be beneficial in 

promoting loss of excess abdominal or visceral adiposity that accumulates with an energy imbalance. 

In turn, this can result in alleviating insulin resistance (52). Obesity is associated with a low-grade 



chronic inflammatory response, resulting from the secretion and activation of some pro-inflammatory 

cytokines/adipokines and respective pathways (137). Adipocytes exhibit properties shared by immune 

cells, mainly pro-inflammatory cytokine production, such as IL-6, tumor necrosis factor-α (TNF-α), and 

C-reactive protein (CRP), which can influence insulin production. Therefore, if older adults perform 

regular exercise and maintains a healthy body composition, the daily control over blood glucose levels 

may prevent the onset of a chronic hyperglycaemic state.  

In addition to altering body composition, exercise can also influence insulin sensitivity on a cellular 

basis (65). Exercise upregulates the demand on hepatic and skeletal muscle metabolism to provide 

fuel for the mechanical stress induced. During exercise, the production, regulation, and uptake of 

glucose is mediated by the glucose transporter type 4 (GLUT4) through insulin-controlled pathways 

(109), with excess glucose contributing to glycogen stores if not metabolically required. Insulin 

secretion is inhibited during exercise and thus the body relies on hepatic and skeletal muscle tissue 

cells being sufficiently sensitive to insulin to maintain glucose homeostasis. Regular exercise can 

improve the efficiency of this mechanism, and as a result can improve insulin sensitivity of cells. 

Continuing to exercise throughout the age span, particularly in older adult or elderly ages, can delay 

the onset or reduce the risk of insulin resistance (54) and thus diabetes.  

 

Oxidative Stress- An Aging Problem, An Exercise Solution? 

Free radicals, and reactive oxygen species (ROS) can be generated within the body by various 

metabolic pathways and enzymes, such as mitochondrial complexes in the electron transport chain 

(ETC), cytochrome P450, xanthine oxidase and nicotinamide dinucleotide phosphate (NADPH) oxidase 

(102). Oxidative stress occurs when free radical or ROS production exceeds the body’s antioxidant 

capacity, leading to unchecked effects of these reactive molecules and compounds on tissues, such as 

DNA modifications, damage to lipids, proteins and other macromolecules. The accumulation of 

oxidative stress has been purported to lead to the aging associated tissue dysfunction. This ‘free 

radical theory of aging’ (60) hypothesizes that this elevated exposure to oxidative stress  damages 

macromolecules, impairing antioxidant and repair mechanisms which leads to the deleterious effects 

on tissues (122). Indeed aging is associated with elevated levels of oxidative stress in various tissues 

in the body such as skeletal muscle (9), the heart, brain (103) and the vascular tree (92). Specifically, 

advanced age is linked with defective mitochondria which itself results from reduction in cytochrome 

C oxidase activity (103). This mitochondrial dysfunction leads to greater escape of generated electrons 

which can stimulate oxidative damage. Oxidative stress may play a role in processes such as 

inflammation (31), sarcopenia (72), insulin resistance (106). Whilst there is plethora of evidence to 
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show that lowering oxidative stress promotes tissue function (44, 142, 145), there is some evidence 

to challenge the free radical theory of aging, with studies showing that increasing antioxidant capacity 

in mice fails to extend lifespan (27), indicating that lowering oxidative stress may promote tissue 

function without affecting longevity. 

Exercise and physical activity modulates some of the deleterious side-effects of aging, and is known 

to be protective against oxidative stress-associated conditions, including CVD, diabetes (37), and 

cancer (25). However, acute exercise, due to the elevated oxygen consumption (�̇�𝑉O2), there is an 

enhanced leakage of superoxide (O2·-) from the ETC (158), leading to an imbalance between ROS 

production and antioxidant capacity. This overproduction of O2·- though, acts as an important redox 

signal for regular exercise-induced adaptations (33, 96, 160). Several studies in human aging 

populations report reductions in plasma or urine markers of oxidative stress with endurance training 

or regular aerobic exercise (e.g. Thiobarbituric Acid Reactive Substances; TBARS, lipid peroxidation, 

O2·-) (53, 74, 77) or an improvement in antioxidant capacity (upregulation of antioxidant enzymes, 

such as superoxide dismutase; SOD, and catalase) (42, 75, 143). Resistance exercise may also confer 

some benefits, with some studies reporting positive effects on oxidative stress biomarkers and 

antioxidant capacity (15, 16, 108, 155). However there is some contrasting evidence to show lack of 

efficacy of exercise training to modulate some oxidative stress biomarkers (107). These differences lie 

due to variety of biomarkers of oxidative stress and damage, as well as antioxidant capacity, and as 

yet, due to the rapid appearance and subsequent disappearance of ROS and free radicals, 

measurement is difficult, and often requires downstream markers (32). 

Physical inactivity itself promotes the elevation of basal ROS and oxidative stress (8, 113). Animal 

models of physical inactivity show that skeletal muscle from immobilized limbs in mice produce higher 

levels of O2·- and hydrogen peroxide (H2O2) than mobilized limbs (19, 144, 164). In cross-sectional 

studies comparing active vs. inactive animals, lipid peroxidation and protein damage levels in skeletal 

muscle are elevated in sedentary vs. active rodent models (47, 119). In humans, one study showed 

that 2 weeks of unilateral limb immobilization in old men resulted in greater H2O2 production and 

mitochondrial leakage than the mobilized limb, however this returned to normal after a period of 

exercise training, suggesting that exercise may be able to counteract the pro-oxidant effect of 

inactivity. Further studies show that inactive older individuals display greater levels of oxidative stress 

biomarkers than trained age-matched controls (123). Together, these animal and human models of 

inactivity show that sedentary behaviours promotes localised ROS production, which may have 

significant effects on tissue function, compromising health of older individuals. Considering the 

positive effect of regular physical aerobic and/or resistance exercise, physical activity should be 



promoted to counteract the negative effects of both aging and inactivity has on production of free 

radicals and downregulation of antioxidant enzymes in this susceptible population. 

 

Future Directions 

The exact ‘dose’ of exercise to promote healthy aging and longevity is still unknown, and unlikely to 

be described in the near future due to the varying effects that manipulating the time, intensity and 

frequency of exercise has on our cells and tissues. However, what is known is that exercise acts as a 

powerful, health-promoting, stimulus. Its ability to positively benefit a wide variety of cells, tissues 

and organs means it can be regarded as a potent anti-aging therapeutic intervention. The strong 

evidence available shows that physical activity and exercise can reduce NCD risk, improve 

cardiovascular, immune and muscle function, leading to improved quality of life in our ever increasing 

aging population. 
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