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Abstract 

Introduction: The aim of this investigation was to examine the impact high intensity interval 

training (HIIT) on serum insulin-like growth factor-I (IGF-I) in active compared with sedentary 

aging men. 

Methods: 22 lifetime sedentary (SED; 62 ± 2 years) and 17 masters’ athletes (LEX; 60 ± 5 

years) were recruited to the study. As HIIT requires preconditioning exercise in sedentary 

cohorts, the study required three assessment phases; enrolment (phase A), following 

preconditioning exercise (phase B), and post-HIIT (phase C). Serum IGF-I was determined by 

electrochemiluminescent immunoassay. 

Results: IGF-I was higher in LEX compared to SED at baseline (P=0.007, Cohen’s d=0.91), 

and phase B (P=0.083, Cohen’s d=0.59), with only a small difference at C (P=0.291, Cohen’s 

d=0.35). SED experienced a small increase in IGF-I following preconditioning from 13.1 ± 4.7 

to 14.2 ± 6.0 ug·dl-1 (P=0.376, Cohen’s d=0.22), followed by a larger increase post-HIIT (16.9 

± 4.4 ug·dl-1), which was significantly elevated compared with baseline (P=0.002, Cohen’s 

d=0.85), and post-preconditioning (P=0.005, Cohen’s d=0.51). LEX experienced a trivial 

changes in IGF-I from A to B (18.2 ± 6.4 to 17.2 ± 3.7 ug·dl-1 [P=0.538, Cohen’s d=0.19]), 

and post-HIIT (18.4 ± 4.1 ug·dl-1 [P=0.283, Cohen’s d=0.31]). Small increases were achieved 

in fat free mass in both groups following HIIT (P<0.05, Cohen’s d=0.32-0.45). 

Conclusions: In conclusion, HIIT with preconditioning exercise abrogates the age associated 

difference in IGF-I in SED and induces small improvements in both SED and LEX. 
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INTRODUCTION 

Insulin-like growth factor (IGF-I) is an endocrine and autocrine/paracrine growth factor 

expressed by multiple cell types. In humans, serum IGF-I peaks during adolescence and 

displays a gradual decline during middle-age. The reduction in circulating anabolic hormones, 

namely growth hormone (GH) and IGF-I, has been termed ‘somatopause’, and suggested as a 

potential mechanism for the atrophic sequelae of aging [1]. IGF-I is considered to play a central 

role in the age-associated compromise of both skeletal [2], and muscle [3] integrity. 

Exercise plays an integral role in maintaining muscle mass and function during 

advanced age [4]. Furthermore, exercise can improve cardiovascular function, metabolic 

health, muscular function, body composition, and quality of life, in aging cohorts [5, 6, 7]. For 

example, Fiatarone and colleagues [8] reported significant increases in maximal strength and 

gait speed following eight weeks of high-intensity resistance training in nonagenarians. 

Favorable adaptations to endurance training in elderly populations center on cardioprotective 

benefits [9], whilst high intensity interval training (HIIT) is a form of exercise largely untested 

in aging populations despite resurgent interest younger cohorts [10, 11]. HIIT involves repeated 

bouts of high-intensity exercise, interspersed with recover periods, proclaimed as a time-

efficient healthogenic strategy [10, 11] despite falling short of the recommended exercise 

volume to improve and maintain cardiovascular health [12]. However, prior to undertaking 

HIIT in sedentary aging cohorts, it is prudent to undertake a programme of preconditioning 

exercise [13]. 

Whilst acute exercise-induced elevations in IGF-I are consistently reported [14], the 

effect of exercise training on basal IGF-I is poorly understood, particularly in aging cohorts. 

For example, eight weeks of endurance training resulted in a 19% increase in systemic IGF-I 

in males aged 66 ± 2 years [15], yet Vitiello et al. [16] observed no change in IGF-I following 

six months of endurance training in males aged 67 ± 1 years. Furthermore, a recent 
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investigation reported decreased systemic IGF-1 following 12 weeks resistance exercise in 

older adults (74 ± 6 years), yet an increase in lean mass [17]. As such, the role of IGF-I in the 

adaptive process to exercise during middle and older age remains unclear. 

One way to identify whether a relationship exists between basal IGF-I and exercise 

during advancing age is to compare masters’ athletes with age matched sedentary counterparts. 

Similarly, subjecting a sedentary cohort to structured exercise training may establish whether 

basal IGF-I is influenced by an exercise intervention. A single study to date has directly 

compared serum IGF-I in masters’ athletes with controls [18], where the authors outline a lack 

of difference between endurance runners, speed-power athletes compared with moderately 

active controls. However, comparisons between masters’ athletes and sedentary aging men 

have not been established. Similarly, no study has examined the influence of HIIT, either with 

or without conditioning exercise on serum IGF-I in sedentary aging men compared with 

masters’ athletes. 

With these aspects in mind, the aims of this study were to; 1) establish whether masters’ 

athletes and sedentary controls have different serum IGF-I concentrations, and 2) determine 

whether HIIT preceded by preconditioning exercise would impact basal IGF-I concentrations 

in aging men. We hypothesized that: 1) IGF-I would be greater in masters’ athletes compared 

to sedentary older males, and 2) six weeks of HIIT, preceded by 6 weeks of preconditioning 

would increase IGF-I in sedentary aging men compared with masters’ athletes. 

 

METHODS AND MATERIALS 

Participants 

 Following approval to exercise by their general practitioner, participants provided 

informed written consent prior to the study which was approved by the institutional ethics 

committee. Twenty two males (62 ± 2 years, with a stature of 175 ± 6 cm, body mass of 91 ± 
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16 kg, and peak oxygen uptake of 28 ± 6 ml∙kg∙min-1) comprised the lifelong sedentary group 

(SED). Seventeen males (60 ± 5 years, with a stature of 173 ± 6 cm, body mass of 78 ± 12 kg, 

and peak oxygen uptake of 39 ± 6 ml∙kg∙min-1) were enrolled as lifelong exercisers (LEX) and 

acted as a positive control group. Participants recruited for the SED group did not participate 

in organized exercise programmes and had not done so for >30 years. The LEX group were 

highly active exercisers and had been so for the previous >30 years. They consisted of current 

masters’ athletes in sports including water-polo, triathlon, track cycling, road cycling, and 

distance running.  

 

Exercise Training 

To account for the contribution of aerobic conditioning exercise, participants were 

tested at three time points (phase A, B, and C), interspersed with two six weeks training blocks 

(12 weeks training in total [Figure 1]). As preconditioning, (training block 1), a six week 

exercise programme that reflected the ACSM guidelines of 150 mins·wk-1 of moderate to 

vigorous exercise was prescribed to SED. SED were advised to achieve a minimum of two 

sessions per week in accordance with the ACSM guidelines for older persons [19]. Participants 

were given verbal instructions on the use of a Polar FT1 heart rate monitor (Polar, Kempele, 

Finland) and exercise intensities were self-monitored, enabling recording of exercise time, and 

average and peak heart rate. The aim was to achieve an average heart rate reserve (HRR) of 

approximately 55% for the first two weeks of the intervention. This was increased to 60% of 

HRR for the subsequent weeks including 5-10 s of increased intensity every 10 min. The final 

two weeks required vigorous periods of exercise every 5 min achieving a HRR of 60-65%. The 

mode of training was optional, and included walking, walk/jogging, jogging, and cycling. Over 

the six week intervention, 160 ± 15 min·wk-1 exercise were achieved. Whilst SED underwent 

preconditioning, LEX maintained their habitual training. LEX recorded their weekly exercise, 
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which included type, frequency, intensity (recorded by heart rate telemetry), and duration of 

training. Time spent in low to medium intensity (<65% heart rate reserve [HRR]), and high-

intensity (>65% HRR) training totalled 214 ± 131 min·wk-1 and 67 ± 52 min·wk-1 respectively. 

Both groups undertook supervised HIIT programmes from phase B to C. HIIT sessions 

were performed every five days, for six weeks (nine sessions in total). Rationale for this 

programme is provided by our previous work which identified that five days recovery was 

required for recovery of peak power output (PPO) post-HIIT amongst older males [20]. 

Sessions consisted of 6 x 30 s sprints at 40% PPO (determined during familiarization) 

interspersed with 3 min active recovery on a cycle ergometer (Wattbike Ltd., Nottingham, UK). 

Sessions were conducted in groups of 4-6 and were the sole exercise performed by both groups 

during this time. To allow for comparison with other literature, training intensities were 

compared with power achieved at VO2peak. In the majority of cases, 40% of PPO exceeded 

power at VO2peak; in 4 cases (1 SED; 3 LEX), it exceeded 90% of power at VO2peak (92; 92; 96; 

98% respectively). In SED, mean training intensity equated to 141 ± 27% of power at VO2peak, 

whilst in LEX, mean training intensity equated to 126 ± 22% of power output at VO2peak. 
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FIGURE 1: 
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Blood draws and analysis 

 Blood samples from each participant were collected at each phase between 07:00-09:00 

h, 48-72 hours following the last exercise session as previously described [21, 22]. Samples 

were obtained using a 20-gauge disposable needle equipped with Vacutainer tube holder 

(Becton Dickinson, Oxford, UK) following an overnight fast and 20 min supine rest. Blood 

draws were conducted from the antecubital vein, by the same phlebotomist to control for 

biological variation, and inter- and intra-subject variation. Approximately 14 mL of blood was 

drawn into two 10 mL serum separator tubes and allowed to clot at room temperature prior to 

being centrifuged at 6,000 rpm at 15°C for 15 min. Resultant serum was divided into 

appropriate aliquots and stored at -80°C until analysis. Serum concentrations of IGF-I were 

measured by electrochemiluminescent immunoassay on the E601 module of the Roche Cobas 

6000 (Burgess Hill, West Sussex, U.K.). Inter-assay coefficients of variation (CV) over a 6 

month period were <5%. Analysis was conducted in the Clinical Biochemistry Laboratory at 

Royal Glamorgan Hospital (Wales, UK).  

 

Body composition 

Stature was measured to the nearest 0.1 cm using a stadiometer (Seca, Birmingham, 

UK), and body mass and body composition was determined by a multi frequency bioelectrical 

impedance analyzer (BIA [Tanita MC-180MA Body Composition Analyzer, Tanita UK Ltd.]). 

GMON software (v1.7.0, Tanita UK Ltd.) was used to determine absolute and relative body 

fat. Fat free mass (FFM) was calculated by subtracting fat mass from total body mass. 

 

Peak oxygen uptake and peak power output 

Peak oxygen uptake (VO2peak) was determined using a Cortex II Metalyser 3B-R2 

(Cortex, Biophysik, Leipzig, Germany) utilizing methods previously described [23] and a 
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modified Storer Test [24]. PPO was established using the 6 s Herbert test [25] on an air-braked 

cycle ergometer (Wattbike Ltd., Nottingham, UK). Order of measurement was; blood 

sampling, body composition, PPO determination, and VO2peak assessment. 

 

Statistical Analysis 

 Following a Shapiro-Wilk test of normality and Levene’s test for homogeneity of 

variance, a 2 x 3 (group [SED, LEX] x time [phase A, B, C]) repeated measures analysis of 

variance (ANOVA) with post hoc Tukey’s LSD tested for differences between groups and 

between time points. To determine relationships between variables, a Pearson’s correlation 

coefficient was conducted. Alpha level was set a priori at P≤0.05, and effect size is displayed, 

and classified as <0.2=trivial, 0.2-0.49=small, 0.5-0.79=moderate, and >0.8=large. Data are 

presented as mean ± standard deviation (SD). As LEX maintained their current exercise habits 

between phase A and B, we used these two samples to determine the absolute minimum 

threshold for a meaningful change in IGF-I (expressed as a percentage). 

 

RESULTS 

Basal IGF-I concentrations at phase A, B, and C for both groups are displayed in Figure 

2A, and in SED in Figure 3. IGF-I was largely higher in LEX compared to SED at baseline 

(P=0.007, Cohen’s d=0.91), moderately higher after preconditioning (P=0.083, Cohen’s 

d=0.59), whilst a small difference existed post-HIIT (P=0.291, Cohen’s d=0.35). 

SED IGF-I increased post-HIIT compared to baseline (16.9 ± 4.4 and 13.1 ± 4.7 ug·dl-

1 respectively [~29% increase; P=0.002, Cohen’s d=0.85]) and compared to preconditioning 

(~21% increase; 14.2 ± 6.0 ug·dl-1 [P=0.005, Cohen’s d=0.51]). Preconditioning accounted for 

~8% of the increase from baseline (P=0.376, Cohen’s d=0.22). 
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LEX experienced a trivial ~1% difference in IGF-I post-HIIT compared to baseline 

(18.4 ± 4.1 and 18.2 ± 6.4 ug·dl-1 respectively [P=0.901, Cohen’s d=0.04), and a ~7% increase 

post-HIIT compared to phase B (17.2 ± 3.7 ug·dl-1 [P=0.283, Cohen’s d=0.31). A trivial change 

in IGF-I was observed in LEX from phase A to B, equal to 5% (P=0.538, Cohen’s d=0.19). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



11 

 

FIGURE 2: 
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FIGURE 3: 

 

 

Body composition is displayed in Figure 2B and 2C. Body fat percentage was greater 

in SED than LEX at baseline (P=0.013, Cohen’s d=0.862), after preconditioning (P=0.031, 

Cohen’s d=0.74), and post-HIIT (P=0.020, Cohen’s d=0.80). 

HIIT decreased SED body fat percentage by ~3.3% compared to baseline (21.1 ± 12.0% 

and 24.4 ± 11.6% respectively [P<0.001, Cohen’s d=0.28]) and ~2.2% compared to 

preconditioning (23.1 ± 12.6% [P=0.008, Cohen’s d=0.16]). A ~1.3% decrease occurred as a 

result of preconditioning alone (P=0.006, Cohen’s d=0.10). LEX body fat percentage decreased 

from 16.3 ± 6.0% at baseline to 12.6 ± 8.9% post-HIIT (P=0.006, Cohen’s d=0.48), which was 

also lower than at phase B (15.6 ± 6.6% [P=0.020, Cohen’s d=0.37]. LEX body fat percentage 

was trivially decreased from phase A to B (P=0.079, Cohen’s d=0.11). 
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FFM was not significantly different between SED and LEX at A, B, or C (P=0.439-

0.61). SED FFM was similar at baseline and following preconditioning (66.7 ± 7.1 kg and 67.1 

± 7.3 kg respectively [P=0.336, Cohen’s d=0.06]). This was followed by a ~3.0% increase post-

HIIT (69.1 ± 8.3 kg [P=0.005, Cohen’s d=0.26]), which was ~3.6% greater than at baseline 

(P=0.001, Cohen’s d=0.32). LEX FFM was unchanged from phase A to B (65.2 ± 6.4 kg and 

65.3 ± 6.4 kg respectively [P=0.590, Cohen’s d=0.03]), followed by a ~4.0% increase post-

HIIT (67.9 ± 5.1 kg [P=0.008, Cohen’s d=0.45]), which was ~4.1% greater than at baseline 

(P=0.006, Cohen’s d=0.48). 

At baseline, a weak negative correlation was present between IGF-I and BMI (P=0.016, 

r=-0.385), and IGF-I and body fat percentage (P=0.030, r=-0.345), whereas a moderate 

relationship existed between IGF-I and FFM (P=0.087, r=0.600). The change in IGF-I from 

pre- to post-HIIT was not significantly associated with change in FFM (P=0.860, r=0.029) or 

body fat percentage (P=0.860, r=-0.029). There was a strong significant correlation between 

change in FFM and body fat percentage from baseline to post-HIIT (P<0.001, r=-0.904).  

 

DISCUSSION 

The main findings from the present study were that 1) masters’ athletes (LEX) have 

higher basal IGF-I concentrations than age-matched sedentary (SED) counterparts and that 2) 

a programme of HIIT training that includes preconditioning exercise increases IGF-I 

concentrations in SED compared with LEX. These data provided preliminary evidence for the 

positive influence of HIIT on tissue growth factors in lifelong sedentary aging men. 

Our data are in agreement with some [26], but not all [17, 27] previous investigations 

in reporting increased IGF-I following exercise interventions. However, it is evident that a) 

previous exercise training, and b) exercise intensity, mediate the IGF-I response to training. 

LEX exhibited greater IGF-I compared to SED at baseline, supporting our hypothesis that 
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lifelong exercise would be associated with higher basal IGF-I concentrations. Preconditioning 

accounted for ~8% of the IGF-I increase in SED, whereas HIIT accounted for a further ~21%, 

despite a reduction in training volume from ~160 min·wk-1 to ~3-6 min·wk-1. As such, it 

appears that HIIT likely induces greater increases in basal IGF-I compared with a higher 

volume of lower intensity exercise in SED. However, this remains preliminary until confirmed 

by a randomized controlled trial. 

Arnarson et al. [17] observed that following 12 weeks resistance training, lean body 

mass increases were negatively associated with IGF-I changes, leading these authors to 

hypothesize that during periods of anabolism, IGF-I was redistributed from circulation into 

tissue. However, our data do not support such a redistribution, as SED FFM was increased 

post-HIIT, concomitantly with an increase in systemic IGF-I. Moreover, changes in FFM were 

not associated with changes in IGF-I in either group. Hofmann and colleagues [27] add further 

ambiguity to the relationship between lean mass and IGF-I, reporting increased muscle quality 

and chair stand performance after six months of resistance training, without serum IGF-I 

perturbations at three, or six months. As such, despite the in vitro evidence demonstrating IGF-

I to be critical for muscle hypertrophy [28], further research is required to untangle the known 

associations between exercise, IGF-I, and lean body mass, in older adults. 

HIIT appears to induce a number of favorable adaptations in older adults, including 

vascular function [23], quality of life [7], muscle power [29], and mitochondrial function [30]. 

Despite the evident benefits of HIIT to older adults, we suggest caution when inducting older 

adults onto a HIIT programme, as we have previously demonstrated delayed recovery in older, 

compared to young, males [20]. Moreover, Donath et al. [31] reported increased postural sway 

following a single HIIT session in seniors (70 ± 3 years), suggesting an increased likelihood of 

falls acutely post-HIIT. As such, pragmatic periodization is necessary to allow adequate 

recovery and mitigate risk arising from HIIT [13]. 
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One limitation of the present investigation is that groups were not BMI-matched (SED 

were heavier than LEX). As such, differences in IGF-I between groups could have been caused 

by differences in body composition, rather than differences in habitual exercise, which is 

supported by the moderate correlations between IGF-I and body composition parameters. 

However, given the interrelationship between exercise and body composition, delineating these 

effects was outside the scope of the present study and requires further investigation. 

 

Conclusion 

In conclusion, lifelong sedentariness was associated with lower systemic IGF-I 

compared to masters’ athletes. However, a programme of HIIT training that includes 

preconditioning exercise increases IGF-I concentrations in SED compared with LEX and 

provides preliminary evidence for the positive influence of HIIT on tissue growth factors in 

lifelong sedentary aging men. 
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FIGURE LEGENDS 

Figure 1: The CONSORT (Consolidated Standards of Reporting Trials) flow chart depicting 

transit of lifelong sedentary (SED) and lifelong exercising (LEX) participants though the study. 

HIIT = high intensity interval training. 

 

Figure 2: (A) Insulin-like growth factor (IGF-I), (B), body fat percentage, and (C) fat free 

mass in a group of sedentary (SED) and lifelong exercising (LEX) older males. Data are 

presented as mean ± SD. *Denotes significant differences from phase A (P<0.05). **Denotes 

significant difference between phase B and C (P<0.05). ¥Denotes significant difference 

between groups at this experimental phase.  

 

Figure 3: Insulin-like growth factor (IGF-I) in a group of sedentary older males. Data are 

presented as individual data points in addition to mean ± SD. The minimum threshold for a 

meaningful change compared to baseline has been added as a dashed line. *Denotes significant 

differences from phase A (P<0.05). **Denotes significant difference between phase B and C 

(P<0.05). 


